
Project Hand-in-Hand
The beginning of a beautiful friendship

1

Why have a libc in LLVM?

2

What is the purpose of a libc?

High-level languages eventually make calls to libc

3

libc++ often defers to libc
Example: <cmath> A normal pattern

#include <math.h>

namespace std {
using ::sinf;

constexpr float sin(float x)
{
return sinf(x);

}

// ...
}

4

LLVM-libc is implemented in freestanding C++
Better syntax abstractions
Cleaner function interface
Designed to be modular

5

libc++'s missing feature
Floating-point numbers are hard

6

C++17 added from_chars
from_chars_result from_chars(const char* first, const char* last,
 floating-point-type& value,
 chars_format fmt = chars_format::general)

 Effects: The pattern is the expected form of the subject sequence in the "C" locale, as described for strtod, except
that

 Preconditions: fmt has the value of one of the enumerators of chars_format.5

6

 — the sign '+' may only appear in the exponent part;(6.1)

 — if fmt has chars_format::scientific set but not chars_format::fixed, the otherwise optional exponent part shall appear;(6.2)

 — if fmt has chars_format::fixed set but not chars_format::scientific, the optional exponent part shall not appear; and(6.3)

 — if fmt is chars_format::hex, the prefix "0x" or "0X" is assumed.
[Example 1: The string 0x123 is parsed to have the value 0 with remaining characters x123.— end example]

(6.4)

 In any case, the resulting value is one of at most two floating-point values closest to the value of the string matching the pattern.

 Throws: Nothing7

 SEE ALSO: ISO/IEC 9899:2018, 7.22.1.3, 7.22.1.4

7

https://eel.is/c++draft/text#charconv.from.chars-5
https://eel.is/c++draft/text#charconv.from.chars-6
https://eel.is/c++draft/text#charconv.from.chars-6.1
https://eel.is/c++draft/text#charconv.from.chars-6.2
https://eel.is/c++draft/text#charconv.from.chars-6.3
https://eel.is/c++draft/text#charconv.from.chars-6.4
https://eel.is/c++draft/text#charconv.from.chars-7

But they have very different interfaces?

from_chars_result from_chars(
const char* first,
const char* last,
floating-point-type& value,
chars_format fmt);

double strtod(
const char *restrict str,
char **restrict end);

8

Why can't libc++ roll its own thing?
String-to-float parsing is hard (like, really hard)

The core functionality is the same (why rewrite ~2300 LoC?)
If only libc had a different interface...

1.
2.

[1] [2]

'Approximating at Scale: How strto float in LLVM’s libc is faster' by Michael Jones
'Floating-Point ＜charconv＞: Making Your Code 10x Faster With C++17's Final Boss' by Stephan T. Lavavej

9

https://www.youtube.com/watch?v=s-UjbTV8p6g
https://www.youtube.com/watch?v=4P_kbF0EbZM
https://www.youtube.com/watch?v=s-UjbTV8p6g
https://www.youtube.com/watch?v=4P_kbF0EbZM

LLVM-libc already has that!
String-to-float functions call a function template
All implemented in headers
No OS-specific dependencies

10

Extending a hand 🫴
What if we worked together?

11

Can libc++ use LLVM-libc's code for
std::from_chars?

12

From the libc++ side...

13

Needs to be user-transparent

14

⚠️ Caution! Unstable APIs! ⚠️
Explicit and narrow interface

Need a plan for API changes
If you randomly include LLVM-libc internals, Michael will scream 😱

3.

[3]

'What Does It Take to Implement the C++ Standard Library? (C++Now Edition)' by Christopher Di Bella

15

https://youtu.be/bXlm3taD6lw?si=u8ESdnyGZMd_PzWH&t=1060
https://youtu.be/bXlm3taD6lw?si=u8ESdnyGZMd_PzWH&t=1060

From the LLVM-libc side...

16

Code is written in standalone C++
Similar API to what libc++ wants

Well optimised[2]

17

https://www.youtube.com/watch?v=s-UjbTV8p6g

Header-only: easy to include
#ifndef LLVM_LIBC_SHARED_STR_TO_INTEGER_H
#define LLVM_LIBC_SHARED_STR_TO_INTEGER_H

#include "src/__support/str_to_integer.h"

namespace LIBC_NAMESPACE_DECL {
namespace shared {

using LIBC_NAMESPACE::StrToNumResult;

using internal::strtointeger;

} // namespace shared
} // namespace LIBC_NAMESPACE_DECL

#endif // LLVM_LIBC_SHARED_STR_TO_INTEGER_H

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

18

But what if it doesn't work?

19

Coupling APIs limits evolution

glibc and libstdc++ tried interop with files and streams:

—

Public dependencies are difficult to change

“There are additional benefits to this approach:

The old libstdc++ documentation calls this **the cool way**.

...

The downside is a strong coupling between glibc and libstdc++, and the loss of
optimization opportunities within the glibc stdio implementation....”

libio vtables

20

https://discourse.llvm.org/t/rfc-project-hand-in-hand-llvm-libc-libc-code-sharing/77701/7
https://sourceware.org/glibc/wiki/LibioVtables

What if libc and libc++ diverge?
Existing Sink common ancestor Completely diverge

21

22

It seems like it'll work?
Only one thing left to do

23

🤝 So we did it! 🤝

LLVM 20 ships floating-point std::from_chars

The project has been a success for both libc++ and
LLVM-libc

llvm/llvm-project#91651

24

https://github.com/llvm/llvm-project/pull/91651

Special thanks
Louis Dionne: organisation, code review
Mark de Weaver: wrote the libc++ parts
Everyone who participated in the RFC and code reviews

25

Future work
Find other places libc++ would benefit
Support other parts of LLVM
Build LLVM-libc/libc++/libunwind as one library

26

🤝 Project Hand-in-Hand 🤝

27

