
Towards Useful Fast-Math
Andy Kaylor

andy_kaylor@yahoo.com
LLVM Developers’ Meeting, October 2024

mailto:andy_kaylor@yahoo.com

Fast-Math Considered Harmful
“-ffast-math

Might allow some programs designed to not be too dependent on IEEE behavior for floating-
point to run faster, or die trying.” (gcc 3.4.6 documentation)

“Ofast [means] ‘make it faster and wronger please’” (Jon Chesterton, discussion of deprecating
-Ofast)

“Beware of fast-math” (Simon Byrne, https://simonbyrne.github.io/notes/fastmath/)

https://simonbyrne.github.io/notes/fastmath/

Problems with fast-math

● Fast-math will almost certainly change your numeric results

○ (A * B) * C → A * (B * C)

● Fast-math may optimize away explicit checks for NaN or infinity

○ if (std::isnan(x)) → if (false)

● Fast-math may turn off support for denormal values

○ FTZ/DAZ are set during program initialization

● Fast-math can lead to complete loss of precision

○ (A - B) + Epsilon → (A + Epsilon) - B

Problems with fast-math

● Fast-math will almost certainly change your numeric results

○ (A * B) * C → A * (B * C)

● Fast-math may optimize away explicit checks for NaN or infinity

○ if (std::isnan(x)) → if (false)

● Fast-math may turn off support for denormal values

○ FTZ/DAZ are set during program initialization

● Fast-math can lead to complete loss of precision

○ (A - B) + Epsilon → (A + Epsilon) - B

Problems with fast-math

● Fast-math will almost certainly change your numeric results

○ (A * B) * C → A * (B * C)

● Fast-math may optimize away explicit checks for NaN or infinity

○ if (std::isnan(x)) → if (false)

● Fast-math may turn off support for denormal values

○ FTZ/DAZ are set during program initialization

● Fast-math can lead to complete loss of precision

○ (A - B) + Epsilon → (A + Epsilon) - B

Problems with fast-math

● Fast-math will almost certainly change your numeric results

○ (A * B) * C → A * (B * C)

● Fast-math may optimize away explicit checks for NaN or infinity

○ if (std::isnan(x)) → if (false)

● Fast-math may turn off support for denormal values

○ FTZ/DAZ are set during program initialization

● Fast-math can lead to complete loss of precision

○ (A - B) + Epsilon → (A + Epsilon) - B

A Worst Case Example
float foo() {
float A = 1.0f;
float C = 1.0f;

// Find the smallest value A = 2^k for which (A + 1 - A) != 1
do {
A *= 2.0f;
C = A + 1.0f - A;

} while (C == 1.0f);

return A;
}

A Worst Case Example
define dso_local noundef nofpclass(nan inf) float @_Z3foov() {

entry:

unreachable

}

So why would anyone use this?

● Better optimization through algebra
○ (A * B) * C → A * (B *C)

● Vectorization

○ Vector operations often require reassociation

● Eliminate restrictions/handling for special cases

○ X - X → 0.0

So why would anyone use this?

● Better optimization through algebra
○ (A * B) * C → A * (B *C)

● Vectorization

○ Vector operations often require reassociation

● Eliminate restrictions/handling for special cases

○ X - X → 0.0

// Reassociation will allow hoisting X * Y

for (i = 0; i < n; ++i)

A[i] = X * B[i] * Y;

So why would anyone use this?

● Better optimization through algebra
○ (A * B) * C → A * (B *C)

● Vectorization

○ Vector operations often require reassociation

● Eliminate restrictions/handling for special cases

○ X - X → 0.0
// This requires reassociation to vectorize

for (i = 0; i < n; ++i)

sum += x[i];

So why would anyone use this?

● Better optimization through algebra
○ (A * B) * C → A * (B *C)

● Vectorization

○ Vector operations often require reassociation

● Eliminate restrictions/handling for special cases

○ X - X → 0.0

Fast-math, unsafe math, and fp-model
● GCC defines two broad options for fast-math: -ffast-math and -funsafe-

math-optimizations

○ Which one sounds riskier?

○ -ffast-math is more aggressive – it assumes no NaN or infinite values will be seen

● In clang, we offer -ffp-model to broadly control floating-point semantics
○ -ffp-model=fast is roughly equivalent to -funsafe-math-optimizations

○ -ffp-model=aggressive is roughly equivalent to -ffast-math

● Many other options let you control individual semantics
○ -f[no-]math-errno

○ -f[no-]honor-nans, -f[no-]honor-infinities

○ -ffp-contract=[on|off|fast]

○ -f[no-]associative-math

○ -f[no-]reciprocal-math

Pragmas for local control
#pragma float_control([push|pop])

#pragma float_control(precise, [on|off])

#pragma clang fp reassociate([on|off])

#pragma clang fp reciprocal([on|off])

#pragma STDC FP_CONTRACT [ON|OFF|DEFAULT]

A general approach
1. Compile everything with -ffp-model=fast

2. Test for acceptable results

3. Disable fast-math for a subset of files until tests pass

4. Re-enable fast-math and use pragmas to isolate sensitive functions

5. Move pragmas into local scopes in the sensitive functions

What else are can the compiler do?
I propose a feature to allow the user to interactively disable fast-math optimizations

Conceptually similar to opt-bisect, but more user-oriented

Would require new infrastructure to request permission to perform a fast-math

transformation

allowFastMath(“X / (X * Y) --> 1.0 / Y”, &I, Op1);

Output would inform users what was happening

“Allowing fast-math (1): ‘X / (X * Y) --> 1.0 / Y’ at src.cpp, line 26”

Typical fast-math optimization

// X / (X * Y) --> 1.0 / Y

// Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.

// We can ignore the possibility that X is infinity because INF/INF is NaN.

Value *X, *Y;

if (I.hasNoNaNs() && I.hasAllowReassoc() &&

match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {

replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));

replaceOperand(I, 1, Y);

return &I;

}

Proposed fast-math optimization
// X / (X * Y) --> 1.0 / Y
// Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
// We can ignore the possibility that X is infinity because INF/INF is NaN.
Value *X, *Y;
if (I.hasNoNaNs() && I.hasAllowReassoc() && Op1->hasAllowReassoc()&&

match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
if (allowFastMath(“X / (X * Y) --> 1.0 / Y”, Op1, &I)) {

replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
replaceOperand(I, 1, Y);
return &I;

}
}

Allowing fast-math (1): ‘X / (X * Y) --> 1.0 / Y’ at src.cpp, line 26

%mul = fmul fast double %x, %y

%div = fdiv fast double %x, %mul

	Slide 1: Towards Useful Fast-Math
	Slide 2: Fast-Math Considered Harmful
	Slide 3: Problems with fast-math
	Slide 4: Problems with fast-math
	Slide 5: Problems with fast-math
	Slide 6: Problems with fast-math
	Slide 7: A Worst Case Example
	Slide 8: A Worst Case Example
	Slide 9: So why would anyone use this?
	Slide 10: So why would anyone use this?
	Slide 11: So why would anyone use this?
	Slide 12: So why would anyone use this?
	Slide 13: Fast-math, unsafe math, and fp-model
	Slide 14: Pragmas for local control
	Slide 15: A general approach
	Slide 16: What else are can the compiler do?
	Slide 17: Typical fast-math optimization
	Slide 18: Proposed fast-math optimization

