def pl : PeepholeRewrite Op [.int] .int := {

lhs := lhs,
rhs := rhs,
correct := by

rw [lhs, rhs]; funext lv; simp_peephole [add, cst] at lv
/- + ¥V (a : BitVec 32), a + BitVec.ofInt 32 0 = a -/

intros a; simp_alive /- goals accomplished & -/

}
/-- x -/
def rhs : Com Op [.int] .int := [mlir_icom| {

~bbO(%x: int):

/-- x +0 -/
def 1lhs : Com Op [.int] .int := [mlir_icom| {
~bbO(%x: int):
%0 = const © : () -> int
%1 = add (%x, %0) : (int, int) -> int
return (%1) : (int) -> ()
]

return (%x) : (int) -> ()

3]

lean-mlir: Formally Verifying Peephole Optimizations for MLIR

Siddharth Bhat, Alex Keizer, Chris Hughes, Andres Goens, Tobias Grosser

UNIVERSITY OF
UNIVERSITY OF AMSTERDAM CAMBRIDGE




Wait, What About Alive?

define i32 @src(i32) {
%r = udiv 132 %0, 8192
ret 132 %r

}

define i32 @tgt(i32) {
%r = 1lshr 132 %0, 13
ret 132 %r

}



Wait, What About Alive?

define i32 @src(i32) {
%r = udiv 132 %@, 8192
ret 132 %r

}

define i32 @tgt(i32) {
%r = 1lshr 132 %0, 13
ret 132 %r

}



Wait, What About Alive?

define i32 @src(i32) {
%r = udiv 132 %0, 8192
ret 132 %r

}

define i32 @tgt(i32) {
%r = lshr 132 %0, 13
ret 132 %r

}



Wait, What About Alive?

define i32 @src(i32) { Transformation seems to be correct!
%r = udiv 132 %0, 8192
ret 132 %r

}

define i32 @tgt(i32) {
%r = 1lshr 132 %0, 13
ret 132 %r

}



Wait, What About Alive?

define i32 @src(i32) {
%r = udiv 132 %0, 1
ret 132 %r

}

define i32 @tgt(i32) {
%r = 1lshr 132 %0, 13
ret 132 %r

}



Alive is Awesomel!

define i32 @src(i32) { Transformation doesn't verify!
%r = udiv 132 %0, 1
ret 132 %r ERROR: Value mismatch
}
Example:
define i32 @tgt(i32) { i32 %#0 = #x00000001 (1)
%r = 1lshr 132 %0, 13
ret 132 %r Source:
} 132 %r = #x00000001 (1)
Target:

132 %r = #x00000000 (0)
Source value: #x00000001 (1)
Target value: #x00000000 (0)



Alive is Awesomel!

define i32 @src(i32) { Transformation doesn't verify!
%r = udiv 132 %0, 1
ret 132 %r ERROR: Value mismatch
}
Example:
define i32 @tgt(i32) { 132 %#0 = #x00000001 (1)
%r = 1lshr 132 %0, 13
ret 132 %r Source:
} 132 %r = #x00000001 (1)
Target:

132 %r = #x00000000 (0)
Source value: #x00000001 (1)
Target value: #x00000000 (0)



Alive is Awesomel!

define i32 @src(i32) { Transformation doesn't verify!
%r = udiv 132 %0, 1
ret 132 %r ERROR: Value mismatch
}
Example:
define i32 @tgt(i32) { 132 %#0 = #x00000001 (1)
%r = 1lshr 132 %0, 13
ret 132 %r Source:
} 132 %r = #x00000001 (1)
Target:

132 %r = #x00000000 (0)
Source value: #x00000001 (1)
Target value: #x00000000 (0)



Alive is Awesome!

[Inst Fold fma TR Y
only (#10010€ = (p 1= ¢) (#

(.3: X( ' dtcxzyw G zjaffal authored on .

) resolves #92966
Alive2 proc

: ‘smt-to'):  alive proof
Alive https://ali https://alive2.llvm.c

Fixes

P'X—’main(}y .

main (#94915) I

1 par 1 parent eb 1 parent 3ae6755 comn

[|nstCom bine] fo [InstCombine] Extend Fold of Zero-
extended Bit Test (#102100)

mskamp authored on Aug 21 - X 51/566 -

Previously, (zext (icmp ne (and X, (1 << ShAmt)), 0))
has only been

folded if the bit width of X and the result were equal.
Use a trunc or

zext instruction to also support other bit widths.

This is a follow-up to commit 533190a,

which introduced a regression: (zext (icmp ne (and (lshr
X ShAmt) 1) 0))

is not folded any longer to (zext/trunc (and (lshr X
ShAmt) 1)) since

the commit introduced the fold of (icmp ne (and (lshr X
ShAmt) 1) @) to

(icmp ne (and X (1 << ShAmt)) @). The change introduced
by this commit

restores this fold.

Alive proof: https://alive2.1llvm.org/ce/z/MFkNXs

Relates to issue #86813 and pull request #101838.

¥ main (#102100)

1 parent 407508 commit 170a2le ((J
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Alive is Awesome! What about MLIR?

1 . 1 H
polynomial’ Dialect
The Polynomial dialect defines single-variable polynomial types and operations.

The simplest use of polynomial is to represent mathematical operations in a polynomial ring R[x] , where R
is another MLIR type like i32.

More generally, this dialect supports representing polynomial operations in a quotient ring R[X]/(f(x)) for
some statically fixed polynomial f(x) . Two polyomials p(x), q(x) are considered equal in this ring if they
have the same remainder when dividing by f(x) . When a modulus is given, ring operations are performed

with reductions modulo f(x) and relative to the coefficient ring R.

11



Alive is Awesome! How does it work?

define i32 @src(i32) {
%r = udiv 132 %0, 8192
ret i32 %r

}

define i32 @tgt(i32) {
%r = 1lshr i32 %0, 13
ret 132 %r

}

12



Alive is Awesome! How does it work?

define i32 @src(i32) {
%r = udiv 132 %0, 1
ret i32 %r

}

define i32 @tgt(i32) {
%r = 1lshr i32 %0, 13
ret 132 %r

}

(set-logic QF_UFBV)

(define-fun src
((x (- BitVec 32)))
(_ BitVec 32)
(bvudiv x (_ bv32 1)))

(define-fun tgt
((x (- BitVec 32)))
(_ BitVec 32)
(bvlshr x (_ bv32 32)))

13



Alive is Awesome! How does it work?

define i32 @src(i32) {
%r = udiv 132 %0, 1
ret i32 %r

}

define i32 @tgt(i32) {
%r = 1lshr i32 %0, 13
ret 132 %r

}

(set-logic QF_UFBV)

(define-fun src
((x (- BitVec 32)))
(_ BitVec 32)
(bvudiv x (_ bv32 1)))

(define-fun tgt
((x (- BitVec 32)))
(_ BitVec 32)
(bvlshr x (_ bv32 32)))

"does src equal tgt for all inputs?”

14



Transformation doesn't verify!
ERROR: Value mismatch

Example:
i32 %#0 = #x00000001 (1)

Source:
i32 %r = #x00000001 (1)

Target:

132 %r = #x00000000 (0)
Source value: #x00000001 (1)
Target value: #x00000000 (0)




LLVM

Provably Correct Peephole Optimizations with Alive

Nuno P. Lopes David Menendez ~ Santosh Nagarakatte John Regehr
Microsoft Research, UK Rutgers University, USA University of Utah, Ut
i com {davemm,santosh. } rutgers.edu utah.edi

Abstract

Compilers should not miscompile. Our work addresses problems
in developing peephole optimizations that perform local rewriting
to improve the efficiency of LLVM code. These optimizations are
individually difficult to get right, particularly in the presence of un-
defined behavior; taken together they represent a persistent source
of bugs. This paper presents Alive, a domain-specific language for
writing opuzmzanom and for automatically either proving them cor-
rect or else Alive can
be automatically translated into C++ code that is suitable for inclu-
sion in an LLVM optimization pass. Alive is based on an attempt
to balance usability and formal methods; for example, it captures—
but largely hides—the detailed semantics of three different kinds
of undefined behavior in LLVM. We have translated more than 300
LLVM optimizations into Alive and, in the process, found that eight
of them were wrong.

Ca!egorm and Subject Descriptors D.2.4 [Prngrammmg Lan-

4

(compiler verification) or a proof that a particular com)
correct (translation validation). For example, CompCe
a hybrid of the two approaches. Unfortunately, creatiny
required several person-years of proof engineering and |
tool does not provide a good value proposition for man'
use cases: it implements a subset of C, optimizes only
does not yet support x86-64 or the increasingly impo
extensions to x86 and ARM. In contrast, productiol
are constantly improved to support new language st¢
to obtain the best possible performance on emerging ar

This paper presents Alive: a new language and toy
oping correct LLVM optimizations. Alive aims for a ¢
that s both practical and formal; it allows compiler wri

VM’

Alive is Awesome! How does it work?

"does src equal tgt for all inputs?”

L SMT-LIB —

Alive2: Bounded Translation Validation for LLVM

Nuno P. Lopes
nlopes@microsoft.com
Microsoft Research

Juneyoung Lee
Jjuneyoung.lee@sf.snu.ac.k
Seoul National University

Chung-Kil Hur
gil.hur@sf.snu.ack
Seoul National University

UK South Korea South Korea

Zhengyang Liu
liuz@cs.utah.edu
University of Utah
USA

Abstract

We designed, implemented, and deployed Alive2: a bounded
translation validation tool for the LLVM compiler’s interme-
diate representation (IR). It limits resource consumption by,
for example, unrolling loops up to some bound, which means
there are circumstances in which it misses bugs. Alive2 is
designed to avoid false alarms, is fully automatic through
the use of an SMT solver, and requires no changes to LLVM.
By running Alive2 over LLVM’s unit test suite, we discov-
ered and reported 47 new bugs, 28 of which have been fixed
already. Moreover, our work has led to eight patches to the
LLVM Language Reference—the definitive description of the
semantics of its IR—and we have participated in numerous

ify peephole for LLVM’s e
(IR), it automatically proves them correct with the hel
bility modulo theory (SMT) solvers (or provides a coun
and it automatically generates C++ code that is simi
written peephole optimizations such as those found in
i S s U SN N S .

with the goal of clarifying ambiguities and fixing
errors in these semantics. Alive is open source and we also
made it available on the web, where it has active users from
the LLVM community.

John Regehr
regehr@cs.utah.edu
University of Utah

USA

1 Introduction

LLVM is a popular open-source compiler that is used by
numerous frontends (e.g, C, C++, Fortran, Rust, Swift), and
that generates high-quality code for a variety of target ar-
chitectures. We want LLVM to be correct but, like any large
code base, it contains bugs. Proving functional correctness of
about 2.6 million lines of C++ is still impractical, but a weaker
formal technique—translation validation—can be used to cer-
tify that individual executions of the compiler respected its

specification.
Akey feature of LLVM that makes it a suitable platform
for 2t idation is its i di ion

(IR), which provides a common point of interaction between
frontends, backends, and middle-end transformation passes.
LLVM IR has a specification document,! making it more
amenable to formal methods than are most other compiler
IRs. Even so, there have been numerous instances of ambi-
ouitv in the specification and there have also been (and still

r

L3 X
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Alive is Awesome! What about MLIR?

1 . 1 :
polynomial’ Dialect
The Polynomial dialect defines single-variable polynomial types and operations.

The simplest use of polynomial is to represent mathematical operations in a polynomial ring R[x] , where R
is another MLIR type like i32.

More generally, this dialect supports representing polynomial operations in a quotient ring R[X]/(f(x)) for
some statically fixed polynomial f(x) . Two polyomials p(x), q(x) are considered equal in this ring if they
have the same remainder when dividing by f(x) . When a modulus is given, ring operations are performed

with reductions modulo f(x) and relative to the coefficient ring R.

Alive ‘
LLVM » SMT-LIB > x
e Z3
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Alive is Awesome! What about MLIR?

1 . 1 :
polynomial’ Dialect
The Polynomial dialect defines single-variable polynomial types and operations.

The simplest use of polynomial is to represent mathematical operations in a polynomial ring R[x] , where R
is another MLIR type like i32.

More generally, this dialect supports representing polynomial operations in a quotient ring R[X]/(f(x)) for
some statically fixed polynomial f(x) . Two polyomials p(x), q(x) are considered equal in this ring if they
have the same remainder when dividing by f(x) . When a modulus is given, ring operations are performed

with reductions modulo f(x) and relative to the coefficient ring R.

Alive -~
MLIR » SMT-LIB > T
€nzs

X
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Alive is Awesome! What about MLIR?

1 . 1 :
polynomial’ Dialect
The Polynomial dialect defines single-variable polynomial types and operations.

The simplest use of polynomial is to represent mathematical operations in a polynomial ring R[x] , where R
is another MLIR type like i32.

More generally, this dialect supports representing polynomial operations in a quotient ring R[X]/(f(x)) for
some statically fixed polynomial f(x) . Two polyomials p(x), q(x) are considered equal in this ring if they
have the same remainder when dividing by f(x) . When a modulus is given, ring operations are performed

with reductions modulo f(x) and relative to the coefficient ring R.

Alive -~
MLIR -----------p SMT-LIB >
 ZEE

X
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Alive is Awesome! What about MLIR?

1 . 1 :
polynomial’ Dialect
The Polynomial dialect defines single-variable polynomial types and operations.

The simplest use of polynomial is to represent mathematical operations in a polynomial ring R[x] , where R
is another MLIR type like i32.

More generally, this dialect supports representing polynomial operations in a quotient ring R[X]/(f(x)) for
some statically fixed polynomial f(x) . Two polyomials p(x), q(x) are considered equal in this ring if they
have the same remainder when dividing by f(x) . When a modulus is given, ring operations are performed

with reductions modulo f(x) and relative to the coefficient ring R.

Just ask Nuno, June, John, ... to write Alive-MLIR?

Alive
MLIR -----------p SMT-LIB -

20
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Alive is Awesome! What about MLIR?

1 . 1 :
polynomial’ Dialect
The Polynomial dialect defines single-variable polynomial types and operations.

The simplest use of polynomial is to represent mathematical operations in a polynomial ring R[x] , where R
is another MLIR type like i32.

More generally, this dialect supports representing polynomial operations in a quotient ring R[X]/(f(x)) for
some statically fixed polynomial f(x) . Two polyomials p(x), q(x) are considered equal in this ring if they
have the same remainder when dividing by f(x) . When a modulus is given, ring operations are performed

with reductions modulo f(x) and relative to the coefficient ring R.

Need very clever encodings of concepts into SMT-LIB :(

f
Alive .
MLIR -----------p» SMT-LIB & x
" enzs
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Alive is Awesome! What about MLIR?

'polynomiz
The Polynomial dialect ¢

The simplest use of pol

is another MLIR type like

More generally, this dial
some statically fixed pol
have the same remainde¢

with reductions modulo

Need very

MLIR --

AlivelnLean: A Verified LLVM Peephole
Optimization Verifier

Juneyoung Lee!™), Chung-Kil Hur!, and Nuno P. Lopes?

! Seoul National University,
Seoul, Republic of Korea
juneyoung.lee@sf.snu.ac.kr
2 Microsoft Research, Cambridge, UK

Abstract. Ensuring that compiler optimizations are correct is impor-
tant for the reliability of the entire software ecosystem, since all soft-
ware is compiled. Alive [12] is a tool for verifying LLVM’s peephole opti-
mizations. Since Alive was released, it has helped compiler developers
proactively find dozens of bugs in LLVM, avoiding potentially hazardous
miscompilations. Despite having verified many LLVM optimizations so
far, Alive is itself not verified, which has led to at least once declaring
an optimization correct when it was not.

We introduce AliveInLean, a formally verified peephole optimization
verifier for LLVM. As the name suggests, AliveInLean is a reengineered
version of Alive developed in the Lean theorem prover [14]. Assuming
that the proof obligations are correctly discharged by an SMT solver,
AliveInLean gives the same level of correctness guarantees as state-of-
the-art formal frameworks such as CompCert [11], Peek [15], and Vel-
lvm [26], while inheriting the advantages of Alive (significantly more
automation and easy adoption by compiler developers).

e asraraveldas (iarmmnilar srariBnatinn « Paanhala anttmmtsaatian ¢« T.TXTRAT

®

Check for
updates

>
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Alive is Awesome! What about MLIR?

'polynomiz
The Polynomial dialect ¢

The simplest use of pol

is another MLIR type like

More generally, this dial
some statically fixed pol
have the same remainde¢

with reductions modulo

Need very

MLIR --

AlivelnLean: A Verified LLVM Peephole
Optimization Verifier

Juneyoung Lee!™), Chung-Kil Hur!, and Nuno P. Lopes?

! Seoul National University,
Seoul, Republic of Korea
juneyoung.lee@sf.snu.ac.kr
2 Microsoft Research, Cambridge, UK

Abstract. Ensuring that compiler optimizations are correct is impor-
tant for the reliability of the entire software ecosystem, since all soft-
ware is compiled. Alive [12] is a tool for verifying LLVM’s peephole opti-
mizations. Since Alive was released, it has helped compiler developers
proactively find dozens of bugs in LLVM, avoiding potentially hazardous
miscompilations. Despite having verified many LLVM optimizations so
far, Alive is itself not verified, which has led to at least once declaring
an optimization correct when it was not.

We introduce AliveInLean, a formally verified peephole optimization
verifier for LLVM. As the name suggests, AliveInLean is a reengineered
version of Alive developed in the Lean theorem prover [14]. Assuming
that the proof obligations are correctly discharged by an SMT solver,
AliveInLean gives the same level of correctness guarantees as state-of-
the-art formal frameworks such as CompCert [11], Peek [15], and Vel-
lvm [26], while inheriting the advantages of Alive (significantly more
automation and easy adoption by compiler developers).

e asraraveldas (iarmmnilar srariBnatinn « Paanhala anttmmtsaatian ¢« T.TXTRAT

®

Check for
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Alive is Awesome! What about MLIR?

'polynomiz
The Polynomial dialect ¢

The simplest use of pol

is another MLIR type like

More generally, this dial
some statically fixed pol
have the same remainde¢

with reductions modulo

Need very

AliveInLean: A Verified LL
Optimization Ver

Juneyoung Lee!®™) | Chung-Kil Hur!, ar

! Seoul National Universi
Seoul, Republic of Kore:
juneyoung.lee@sf.snu.ac

2 Microsoft Research, Cambric

Abstract. Ensuring that compiler optimizatia
tant for the reliability of the entire software e
ware is compiled. Alive [12] is a tool for verifyin
mizations. Since Alive was released, it has hel
proactively find dozens of bugs in LLVM, avoidii
miscompilations. Despite having verified many
far, Alive is itself not verified, which has led tc
an optimization correct when it was not.

We introduce AliveInLean, a formally verifie
verifier for LLVM. As the name suggests, Alive.
version of Alive developed in the Lean theorer
that the proof obligations are correctly dischai
AlivelnLean gives the same level of correctness
the-art formal frameworks such as CompCert
lvm [26], while inheriting the advantages of A
automation and easy adoption by compiler deve

E avrarnrdas (lnmnilar yrariBratinn « Poarnhol ol

\
ff)’ll

Verifying Peephole Rewriting In SSA Compiler IRs

Siddharth Bhat 2@
Cambridge University, United Kingdom

Alex Keizer @@
Cambridge University, United Kingdom

Chris Hughes &
University of Edinburgh, United Kingdom

Andrés Goens 20

University of Amsterdam, Netherlands

Tobias Grosser & ®
Cambridge University, United Kingdom

—— Abstract

There is an increasing need for domain-specific reasoning in modern compilers. This has fueled
the use of tailored intermediate representations (IRs) based on static single assignment (SSA), like
in the MLIR compiler framework. Interactive theorem provers (ITPs) provide strong guarantees
for the end-to-end verification of compilers (e.g., CompCert). However, modern compilers and
their IRs evolve at a rate that makes proof engineering alongside them prohibitively expensive.
Nevertheless, well-scoped push-button automated verification tools such as the Alive peephole
verifier for LLVM-IR gained recognition in domains where SMT solvers offer efficient (semi) decision
procedures. In this paper, we aim to combine the convenience of automation with the versatility of
ITPs for verifying peephole rewrites across domain-specific IRs. We formalize a core calculus for
SSA-based IRs that is generic over the IR and covers so-called regions (nested scoping used by many
domain-specific IRs in the MLIR ecosystem). Our mechanization in the Lean proof assistant provides
a user-friendly frontend for translating MLIR syntax into our calculus. We provide scaffolding for
defining and verifying peephole rewrites, offering tactics to eliminate the abstraction overhead of
our SSA calculus. We prove correctness theorems about peephole rewriting, as well as two classical
program transformations. To evaluate our framework, we consider three use cases from the MLIR
ecosystem that cover different levels of abstractions: (1) bitvector rewrites from LLVM, (2) structured
control low and (3) fullv homomornhic encrvntion. We envision that our mechanization nrovides a
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Alive is Awesome! What about MLIR?

'polynomiz
The Polynomial dialect ¢

The simplest use of pol

is another MLIR type like

More generally, this dial
some statically fixed pol
have the same remainde¢

with reductions modulo

Need very
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Abstract. Ensuring that compiler optimizatia
tant for the reliability of the entire software e
ware is compiled. Alive [12] is a tool for verifyin
mizations. Since Alive was released, it has hel
proactively find dozens of bugs in LLVM, avoidii
miscompilations. Despite having verified many
far, Alive is itself not verified, which has led tc
an optimization correct when it was not.

We introduce AliveInLean, a formally verifie
verifier for LLVM. As the name suggests, Alive.
version of Alive developed in the Lean theorer
that the proof obligations are correctly dischai
AlivelnLean gives the same level of correctness
the-art formal frameworks such as CompCert
lvm [26], while inheriting the advantages of A
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—— Abstract

There is an increasing need for domain-specific reasoning in modern compilers. This has fueled
the use of tailored intermediate representations (IRs) based on static single assignment (SSA), like
in the MLIR compiler framework. Interactive theorem provers (ITPs) provide strong guarantees
for the end-to-end verification of compilers (e.g., CompCert). However, modern compilers and
their IRs evolve at a rate that makes proof engineering alongside them prohibitively expensive.
Nevertheless, well-scoped push-button automated verification tools such as the Alive peephole
verifier for LLVM-IR gained recognition in domains where SMT solvers offer efficient (semi) decision
procedures. In this paper, we aim to combine the convenience of automation with the versatility of
ITPs for verifying peephole rewrites across domain-specific IRs. We formalize a core calculus for
SSA-based IRs that is generic over the IR and covers so-called regions (nested scoping used by many
domain-specific IRs in the MLIR ecosystem). Our mechanization in the Lean proof assistant provides
a user-friendly frontend for translating MLIR syntax into our calculus. We provide scaffolding for
defining and verifying peephole rewrites, offering tactics to eliminate the abstraction overhead of
our SSA calculus. We prove correctness theorems about peephole rewriting, as well as two classical
program transformations. To evaluate our framework, we consider three use cases from the MLIR
ecosystem that cover different levels of abstractions: (1) bitvector rewrites from LLVM, (2) structured
control low and (3) fullv homomornhic encrvntion. We envision that our mechanization nrovides a
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A Three Minute Detour Into Lean ‘ ] W

THEOREM PROVER

def max (a b : Nat) : Nat :=

if a > b then a else b
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A Three Minute Detour Into Lean ‘ ) W

THEOREM PROVER

def max (a b : Nat) : Nat :=
if a > b then a else b

#eval max 3 4 /- =4 -/
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A Three Minute Detour Into Lean _W

THEOREM PROVER

def max (a b : Nat) : Nat :=
if a > b then a else b

#eval max 3 4 /- =4 -/

theorem max_commutative (a b : Nat) : max a b = max b a

Three cases:

1.1f a < b, then we know that (max a b) will take the else branch, and (max b a) will take
the then branch, returning the value b in both cases.

1.if a = b, then we are done immediately, since left and right hand side become identical.
3.If a> b, then proof is same as (a > b) case.

29



A Three Minute Detour Into Lean ‘ ) W

THEOREM PROVER
def max (a b : Nat) : Nat :=
if a > b then a else b

#eval max 3 4 /- =4 -/

theorem max_commutative (a b : Nat) : max a b = max b a := by
simp [max]
by_cases h : b < a
- simp [h]
have h: : = (a < b) := by omega
simp [hi]
- simp [h]
by_cases hy : a =b
- simp [hi]

- have h. : a < b := by omega v*«\

simp [h:]
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Alive is Awesome! What about MLIR?

1 . 1 :
polynomial’ Dialect
The Polynomial dialect defines single-variable polynomial types and operations.

The simplest use of polynomial is to represent mathematical operations in a polynomial ring R[x] , where R
is another MLIR type like i32.

More generally, this dialect supports representing polynomial operations in a quotient ring R[X]/(f(x)) for
some statically fixed polynomial f(x) . Two polyomials p(x), q(x) are considered equal in this ring if they

have the same remainder when dividing by f(x) . When a modulus is given, ring operations are performed

with reductions modulo f(x) and relative to the coefficient ring R.

Need very clever encodings of concepts into SMT-LIB :(

f
Alive .
MLIR -----------p» SMT-LIB & x
" enzs
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Alive is Awesome! What about MLIR?

1 . 1 :
polynomial’ Dialect
The Polynomial dialect defines single-variable polynomial types and operations.

The simplest use of polynomial is to represent mathematical operations in a polynomial ring R[x] , where R
is another MLIR type like i32.

More generally, this dialect supports representing polynomial operations in a quotient ring R[X]/(f(x)) for
some statically fixed polynomial f(x) . Two polyomials p(x), q(x) are considered equal in this ring if they

have the same remainder when dividing by f(x) . When a modulus is given, ring operations are performed

with reductions modulo f(x) and relative to the coefficient ring R.

Moo ' ) ] |

variable (q t : Nat) [Fact (q > 1)] (n : Nat)
noncomputable def f : (ZMod q)[X] := XA(2%n) + 1 ii
abbrev R := (ZMod q)[X] / (Ideal.span {f q n})

ez X
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A\

/- “x*(2*n) + a = a°, since we quotient the polynomial ring with x*(2%n) -/

A||\ open MLIR AST in

noncomputable def p1 : PeepholeRewrite (FHE q n) [.polynomiallike]

Yy \§

.polynomiallLike :=
‘poly
‘) { lhs := a_plus_generator_eq_a,
The Polyn¢ rhs := rhs, ‘
The simple correct := by ,
is another !
have hgenerator :
More gene £ . Pol (a1l (ZMod _
— gn - (1 : Polynomial (ZMod q)) =
have thell (Polynomial.monomial (R := ZMod q) (2*n : Nat) 1) := by
with reduc simp [f, Polynomial.X_pow_eq_monomial]
rw [~ hgenerator]
have add_congr_quotient :
h_ ((Ideal.Quotient.mk (Ideal.span {f qn})) (fgn-1) + 1) =
var: ((Ideal.Quotient.mk (Ideal.span {f q n})) (fgn)) := by
non simp
rw [add_congr_quotient
abb| [ gr_q ]

apply Poly.add_f_eq



A Automation

L3

Lean

p Completeness
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A Automation

Z 3 Replicate Alive-style tactics L e a n
MLIR

Streamline
manual proof

Lean
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A Automation

Z 3 Replicate Alive-style tactics L e a n
MLIR

Streamline
manual proof

Lean

p Completeness
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Lean-MLIR: Goals

Evolving Semantics with MLIR @@

Peephole Verification
- Make easy things trivial
- Make hard things possible
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Lean-MLIR: The Alive Experience™ for MLIR

Verifying Peephole Optimizations from LLVM

The Poly IR: Why Mathlib

Defining a Dialect in Lean-MLIR

41



The Alive Experience in Lean-MLIR

/-- %y = %X + 0 -/
def lhs : Com i=
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The Alive Experience in Lean-MLIR

/-- %y = %X + 0 -/

def lhs : Com := [mlir_icom| {

3
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The Alive Experience in Lean-MLIR

/-- %y = %X + 0 -/

def lhs : Com := [mlir_icom| {
"bbo(%x: int):

%0 = const @ : () -> int

%1 = add (%x, %9) : (int, int) -> int
return (%1) : (int) -> ()

}]
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Operations 1|

Syntax:

operation 1:1= op-result-list? (generic-operation | custom-operation)
trailing-location?

generic—operation 1:= string-literal " (° value-use-list? “)° successor-list?
dictionary-properties? region-list? dictionary-attribute?
* function-type

custom-operation ::= bare-id custom-operation-format

op-result-list 1i= op-result (7,  op-result)x "=

op-result ::= value-id (" :° integer-literal)?

successor-list ::= " [* successor (', successor)x ‘]°

successor 1:= caret-id (':° block-arg-list)?

dictionary-properties ::= "<’ dictionary-attribute *>°

region-list ii= (7 region (7, region)x )"

attribute-entry)x)? “}°

dictionary-attribute ::= “{' (attribute-entry (',

trailing-location 1:= “loc” " (° location *)°



831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

/=1
# MLIR OPS WITH REGIONS AND ATTRIBUTES AND BASIC BLOCK ARGS
-/

—— Op with potential result
syntax
(mlir_op_operand "=")?
str "(" mlir_op_operand,*x ")"
( "(" mlir_region,x ")" )?
(mlir_attr_dict)?
oo mlir_type,x ")" "->" "("mlir_type,*")" E=mlir_op
macro_rules
| “(Imlir_op| $xI) => “(mlir_op| $x)

macro_rules
| “(Imlir_op| $$($x)]) => return x

macro_rules
| “(mlir_op|
$[ $resName = ]?
$name:str
( $operandsNames,x )
$[ ( $rgns,x ) 1?
$[ $attrDict 17
( $operandsTypes,x ) —> ( $resTypes,*x ) ) => do

Ml

Operations |

Syntax:

operation

generic—operation

custom-operation
op-result-list
op-result
successor-list

successor

dictionary-properties ::

region-list
dictionary-attribute

trailing-location

op-result-list? (generic-operation | custom-operation)
trailing-location?

string-literal " (° value-use-list? “)° successor-list?

dictionary-properties? region-list? dictionary-attribute?

function-type

bare-id custom-operation-format

op-result (°," op-result)x "=

value-id (':° integer-literal)?

*[* successor (°," successor)x ‘]°

block-arg-1list)?

caret-id (*:°

<" dictionary-attribute *>°
*(° region (%,
*{° (attribute-entry (°,

‘loct T (°

region)x *)°

attribute-entry)x)? “}°

location *)°
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The Alive Experience in Lean-MLIR

/-- %y = %X + 0 -/

def lhs : Com := [mlir_icom| {
"bbo(%x: int):

%0 = const @ : () -> int

%1 = add (%x, %9) : (int, int) -> int
return (%1) : (int) -> ()

}]
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The Alive Experience in Lean-MLIR

/-- %y = %X + 0 -/
def lhs : Com := [mlir_icom| {
"bbo(%x: int):

%0 = const @ : () -> int

%1 = add (%x, %9) : (int, int) -> int

return (%1) : (int) -> ()

}]

/[-- %y = %x -/
def rhs : Com 1=
[mlir_icom| {

"bbO(%x: int):

return (%x) : (int) -> ()

}]
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The Alive Experience in Lean-MLIR

def p1 :

PeepholeRewrite

49



The Alive Experience in Lean-MLIR

def pl : PeepholeRewrite

{ lhs := lhs, rhs := rhs, correct :=

by



The Alive Experience in Lean-MLIR

def pl : PeepholeRewrite

{ lhs := lhs, rhs := rhs, correct :=
by
rw [lhs, rhs]
funext lv
Eliminate SSA-boilerplate simp_peephole [add, cst] at lv

/- + V (a : BitVec 32),
a + BitVec.ofInt 32 06 = a -/



The Alive Experience in Lean-MLIR

def pl : PeepholeRewrite

def lhs : Com := [mlir_icom| { { lhs := lhs, rhs := rhs, correct :=
AbbO(%x: int): by

%0 = const : () -> int rw [lhs, rhs]

%1 = add (% funext v

> simp peephole [add, cst] at v
/- + ¥V (a : BitVec 32),
a + BitVec.ofInt 32 @6 = a -/

intros a

return (%

}]

def rhs : C > simp_alive

[mlir icom]| /- goals accomplished & -/
AbbO(%x: int): }

return (%x) : (int) -> ()

}]

Demo .



[ IWN

1 import SSA.Projects.InstCombine.LLVM.PrettyEDSL
2 import SSA.Projects.InstCombine.Refinement

3 import SSA.Projects.InstCombine.Tactic

4 import SSA.Projects.InstCombine.TacticAuto

8

6 /-- x +0 -/

7 def lhs := [llvm| {

8 AbbO(%x : 132):

9 %0 = Llvm.mlir.constant 0 : i32
10 %1 = Llvm.add %x, %0 : i32

14 1lvm.return %1 : 132

12|

13

14 /-- x -/

15 def rhs := [llvm| {
16 AbbO(%x : 132):

17 Tlvm.return %x : i32
18 Hl

19

20 def p1 :=

214 { lhs := lhs, rhs := rhs, correct :=
22 by

23 rw [lhs, rhs]

24 funext lv; revert lv
25 simp_alive_peephole
26 simp_alive_undef

27 simp_alive_ops

28 simp_alive_case_bash
29 simp

30 /- No goals -/

31 : PeepholeRewrite ..
32 }

Lean-MLIR v

% Examples & Load

¥ lean-mlir.lean:30:9
¥ Tactic state

No goals

» Expected type

» All Messages (0)
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| VN % Examples & Load

1 import SSA.Projects.InstCombine.LLVM.PrettyEDSL v lean-mlir.lean:30:9
2 import SSA.Projects.InstCombine.Refinement ¥ Tactic state

3 import SSA.Projects.InstCombine.Tactic No goals

4 import SSA.Projects.InstCombine.TacticAuto » Expected type

5 » All Messages (0)

6 /-- x +0 -/
7 def lhs := [llvm| {
8 AbbO(%x : 132):

9 %0 = Llvm.mlir.constant 0 : i32
10 %1 = Llvm.add %x, %0 : i32

11 1lvm.return %1 : 132

12| 1]

13

14 /-- x -/

15 def rhs := [llvm| {

s oo Playground Link (@ lean-mlir.grosser.es

17 1lvm.return %x

18 Hl |
19

20 def p1 :=

214 { lhs := lhs, rhs := rhs, correct :=
22 by

23 rw [lhs, rhs]

24 funext lv; revert lv

25 simp_alive_peephole

26 simp_alive_undef

27 simp_alive_ops

28 simp_alive_case_bash

29 simp

30 /- No goals -/

31 : PeepholeRewrite ..

32 }

54


https://lean-mlir.grosser.es/#codez=

[ IVIN

6 def src  := [llvm| {
7 AbbO(%0 : i32):
8 %c1l = llvm.mlir.constant 1 : i32

9 %r = llvm.udiv %0, %cl : i32
10 1lvm.return %r : 132

e i< Y 4|

12

13 def tgt := [llvm| {

14 AbbO(%0 : i32):

15  %c13 = llvm.mlir.constant 13 : i32
16 %r = 1llvm.lshr %0, %c13 : i32
17 1lvm.return %r : i32

18 }]

19

20 theorem equiv? : src C tgt := by
21| unfold src tgt

22| simp_alive_peephole

23| simp_alive_undef

24 | simp_alive_ops

25| simp_alive_case_bash

26| intros x

27| simp

28| /- x = x >>> 13 -/

29| bv_decide

30| -- The prover found a counterexample, consider the following assignment:

31| -- x = Oxffffffff#32
32

W Examples X Load =

¥lean-mlir.lean:29:11
¥ Tactic state

No goals
vMessages (1)
¥lean-mlir.lean:29:2

The prover found a potential
counterexample, consider the following
assignment:

X = Oxffffffff#32

» All Messages (1)



[ IVIN

1 import SSA.Projects.InstCombine.LLVM.PrettyEDSL
2 import SSA.Projects.InstCombine.Refinement
3 import SSA.Projects.InstCombine.Tactic

4 import SSA.Projects.InstCombine.TacticAuto
5

6

7 def alive_AddSub_1043_src (w : Nat) :=
8 [llvm (1w )| {

9 AbbO(%CL : _, %Z : _, %RHS : _):

10 %vl = 1llvm.and %Z, %C1

11 %v2 = llvm.xor %vi, %C1

12 %v3 = llvm.mlir.constant 1

13 %v4 = llvm.add %v2, %v3

14 %v5 = llvm.add %v4, %RHS

15  1lvm.return %v5

16 }]

17

18 def alive_AddSub_1043_tgt (w : Nat) :=
19 [Lvm ((w )] {

20 AbbO(%C1 : _, %Z : _, %RHS : _):

21 %vl = llvm.not %C1

22 %v2 = llvm.or %Z, %vi

23 %v3 = llvm.and %Z, %C1

24 %v4 = llvm.xor %v3, %C1

25  %v5 = llvm.mlir.constant 1

26 %v6 = llvm.add %v4, %v5

27 %v7 = llvm.sub %RHS, %v2

28  1lvm.return %v7

29 1]

30 theorem alive_AddSub_1043 (w : Nat) : alive_AddSub_1043_src w C alive_AddSub_1043_tgt w := by
31| unfold alive_AddSub_1043_src alive_AddSub_1043_tgt
32| simp_alive_peephole

33| simp_alive_undef

34| simp_alive_ops

35| simp_alive_case_bash

36| alive_auto

% Examples & Load

¥ lean-mlir.lean:36:12
¥ Tactic state

No goals

» All Messages (0)
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| VN % Examples & Load

1 import SSA.Projects.InstCombine.LLVM.PrettyEDSL
2 import SSA.Projects.InstCombine.Refinement p
3 import SSA.Projects.InstCombine.Tactic ¥ Tactic state

4 import SSA.Projects.InstCombine.TacticAuto No goals

5 » All Messages (0)
6

7 def alive_AddSub_1043_src ' (w : Nat) :=
g[llvm (w)l {

9AbHO(%CL ¢ _, %Z : _, %RHS : _):

10 %v1 = llvm.and %Z, %C1

11 %v2 = llvm.xor %vi, %C1

12 %v3 = llvm.mlir.constant 1

13 %v4 = llvm.add %v2, %v3

14 %v5 = llvm.add %v4, %RHS

15  1llvm.return %v5

16 }]

17

18 def alive_AddSub_1043_tgt (w : Nat) :=
19 [Lvm ((w )] {

20 AbbO(%C1 : _, %Z : _, %RHS : _): —
21 %vl = llvm.not %C1

22 %v2 = llvm.or %Z, %vi

23 %v3 = llvm.and %Z, %C1

24 %v4 = llvm.xor %v3, %C1

25  %v5 = llvm.mlir.constant 1

26 %v6 = llvm.add %v4, %v5

27 %v7 = llvm.sub %RHS, %v2

28 1llvm.return %v7

29 1]

30 theorem alive_AddSub_1043 (w : Nat) : alive_AddSub_1043_src w C alive_AddSub_1043_tgt w := by

31| unfold alive_AddSub_1043_src alive_AddSub_1043_tgt

32| simp_alive_peephole

33| simp_alive_undef

34| simp_alive_ops

35| simp_alive_case_bash

36| alive_auto

¥ lean-mlir.lean:36:12
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| VN % Examples & Load

1 import SSA.Projects.InstCombine.LLVM.PrettyEDSL
2 import SSA.Projects.InstCombine.Refinement ¥ Tactic state
3 import SSA.Projects.InstCombine.Tactic

4 import SSA.Projects.InstCombine.TacticAuto No goals

5 » All Messages (0)
6

7 def alive_AddSub_1043_src (w : Nat) :=

8 [llvm (1w )| {

9 AbbO(%CL : _, %Z : _, %RHS : _):

10 %v1 = llvm.and %Z, %C1

11 %v2 = llvm.xor %vi, %C1

12 %v3 = llvm.mlir.constant 1

13 %v4 = llvm.add %v2, %v3

14 %v5 = llvm.add %v4, %RHS

15 1lvm.return %v5

16 }]
17

vy Playground Link (@ lean-mlir.grosser.es

¥ lean-mlir.lean:36:12

20 AbbO(%C1

T

21 %vl = llvm.not %C1

22 %v2 = llvm.or %Z, %vi

23 %v3 = llvm.and %Z, %C1

24 %v4 = llvm.xor %v3, %C1

25  %v5 = llvm.mlir.constant 1

26 %v6 = llvm.add %v4, %v5

27 %v7 = llvm.sub %RHS, %v2

28  1lvm.return %v7

29 1]

30 theorem alive_AddSub_1043 (w : Nat) : alive_AddSub_1043_src w C alive_AddSub_1043_tgt w := by
31| unfold alive_AddSub_1043_src alive_AddSub_1043_tgt
32| simp_alive_peephole

33| simp_alive_undef

34| simp_alive_ops

35| simp_alive_case_bash

36| alive_auto
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https://lean-mlir.grosser.es/#codez=

Proof Automation for Push Button Verification*

Tactic

Total

bv_ring

bv_decide (symbolic width)
bv_decide (concrete width w = 64)
bv_automata

alive_auto

Hacker’s Delight Alive InstCombine

112 93
0 10
3 3

34 gl
27 49
32 67

866
0
N/A
581
399
567

Fig. 5. Comparison of the various tactics we have for automatically proving bitvector rewrites across three
datasets. See that the bv_automata tactic, which proves results for arbitrary width, is competitive with
bv_decide, a complete decision procedure that equations for finite width.

@ Lean FRO, mathlib community!
Special thanks to Henrik & Kim.




Fully Homomorphic Encryption: Complex Proofs

'polynomial’ Dialect

The Polynomial dialect defines single-variable polynomial types and operations.

>
Vg

Y

The simplest use of polynomial is to represent mathematical operations in a polynomial ring R[x] , where R
is another MLIR type like i32.

More generally, this dialect supports representing polynomial operations in a quotient ring R[X]/(f(x)) for
some statically fixed polynomial f(x) . Two polyomials p(x), q(x) are considered equal in this ring if they
have the same remainder when dividing by f(x) . When a modulus is given, ring operations are performed
with reductions modulo f(x) and relative to the coefficient ring R.

variable (q t : Nat) [Fact (q > 1)] (n : Nat)
noncomputable def f : (ZMod q)[X] := X*(2%n) + 1
abbrev R := (ZMod q)[X] / (Ideal.span {f g n})



Mathlib: The World's Largest Formal Math Repo

M algebra

M algebraic_geometry
M algebraic_topology
M analysis

M arithce

m canonically_ordered_comniZcyclotomicyd 05l

[ category_theory

data.listbasic data.finset.basic

data.multiset.basic

data.set.basic

data

char_p_zero_ne_char_zero deprecated

combinatorics
computability
control

[ direct_sum_is_internal
[ dynamics

[ examples

m field_theory

[ geometry
m girard
m group_theory

Pause graph layout

1 » algebra.homology.homotopy_category |
kel )
* o

L
- ‘;
a'...'z. .
o ) (AN
.o.' o .o.
. o @ A
Y T 4
* o L)

/.8
. -
.
. .
> .
° 4
. - N 5
° AN a -
= = - S
F 5 £ At
o ¢ logic.basic =F 2
° Z
.
o o° .
L]
i B meta

[ linear_algebra M miu_language
1 linear_order_with_pos_mulijmodel_theory

L] hnmogeneous_prirne_nm_p:iIogi.c

mimo
o information_theory

m map_flogr
B measure_theory

W number_theory
W order
W oxford_invariants

M phillips

M probability

W pseudoelement

W quadratic_form

M representation_theory
MWring_theory

444 files consisting of 31784 declarations are imported by this file, which in turn is imported by 11 files

https://eric-wieser.github.io/mathlib-import-graph/

>Imillion LoC

B seminorm_lattice_not_distrilbtesting

M sensitivity

W set_theory

W sorgenfrey_line
W system

M tactic

M topology
W wiedijk_100_theorems
W zero_divisors_in_add_m:
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Fully Homomorphic Encryption: Complex Proofs

'polynomial’ Dialect

The Polynomial dialect defines single-variable polynomial types and operations.

-~
> ¢

Y

The simplest use of polynomial is to represent mathematical operations in a polynomial ring R[x] , where R
is another MLIR type like i32.

More generally, this dialect supports representing polynomial operations in a quotient ring R[X]/(f(x)) for
some statically fixed polynomial f(x) . Two polyomials p(x), q(x) are considered equal in this ring if they
have the same remainder when dividing by f(x) . When a modulus is given, ring operations are performed
with reductions modulo f(x) and relative to the coefficient ring R.

variable (q t : Nat) [Fact (q > 1)] (n : Nat)
noncomputable def f : (ZMod q)[X] := X*(2%n) + 1
abbrev R := (ZMod q)[X] / (Ideal.span {f g n})



Fully |

‘polynor
The Polynomial diz

The simplest use ¢
is another MLIR ty|

More generally, thi
some statically fix¢
have the same ren

with reductions mq

variable |
noncomputz
abbrev R

/- “x*(2*n) + a = a’, since we quotient the polynomial ring with x*(2%n) -/
open MLIR AST in
noncomputable def p1 : PeepholeRewrite (FHE q n) [.polynomiallike]
.polynomiallLike :=
{ lhs := a_plus_generator_eq_a,
rhs := rhs,

correct := by

have hgenerator :
fgn - (1 : Polynomial (ZMod q)) =
(Polynomial.monomial (R := ZMod q) (2”n : Nat) 1) := by
simp [f, Polynomial.X_pow_eq_monomial]
rw [— hgenerator]
have add_congr_quotient
((Ideal.Quotient.mk (Ideal.span {f qn})) (fgn-1) + 1) =
((Ideal.Quotient.mk (Ideal.span {f qn})) (f gn)) := by
simp
rw [add_congr_quotient]

apply Poly.add_f_eq

ofs

A 9 @ ¢
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Lean-MLIR: Declaring an IR

declare types declare operations
inductive Ty inductive Op : Type
| int | add : Op

| const : (val : Z) — Op

declare type semantics declare operation signature
instance : TyDenote Ty where instance : OpSignature Op Ty where
toType signature
| .int => BitVec 32 | .const _ =>

| .add =>
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| .int => BitVec 32 | .const _ =>
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Lean-MLIR: Declaring an IR

declare types declare operations
inductive Ty inductive Op : Type
| int | add : Op

| const : (val : Z) — Op

declare type semantics declare operation signature
instance : TyDenote Ty where instance : OpSignature Op Ty where
toType signature
| .int => BitVec 32 | .const _ =>

| .add =>



Lean-MLIR: Declaring an IR

declare types declare operations
inductive Ty inductive Op : Type
| int | add : Op

| const : (val : Z) — Op

declare type semantics declare operation signature
instance : TyDenote Ty where instance : OpSignature Op Ty where
toType signature
| .int => BitVec 32 | .const _ =>

| .add =>



Lean-MLIR: Declaring an IR

declare types declare operations
inductive Ty inductive Op : Type
| int | add : Op

| const : (val : Z) — Op

declare type semantics declare operation signature
instance : TyDenote Ty where instance : OpSignature Op Ty where
toType signature
| .int => BitVec 32 | .const _ =>( , )

| .add =>



Lean-MLIR: Declaring an IR

declare types declare operations
inductive Ty inductive Op : Type
| int | add : Op

| const : (val : Z) — Op

declare type semantics declare operation signature
instance : TyDenote Ty where instance : OpSignature Op Ty where
toType signature
| .int => BitVec 32 | .const _ => ([1, )

| .add =>



Lean-MLIR: Declaring an IR

declare types declare operations
inductive Ty inductive Op : Type
| int | add : Op

| const : (val : Z) — Op

declare type semantics declare operation signature
instance : TyDenote Ty where instance : OpSignature Op Ty where
toType signature
| .int => BitVec 32 | .const _ => ([], int)

| .add =>



Lean-MLIR: Declaring an IR

declare types

inductive Ty

| int

declare type semantics
instance : TyDenote Ty where
toType
| .int => BitVec 32

declare operations

inductive Op : Type
| add : Op
| const : (val : Z) — Op
declare operation signature
instance : OpSignature Op Ty where
signature
| .const _ => ([], int)
| .add => ( ,
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Lean-MLIR: Declaring an IR

declare types

inductive Ty

| int

declare type semantics
instance : TyDenote Ty where
toType
| .int => BitVec 32

declare operations

inductive Op : Type
| add : Op
| const : (val : Z) — Op
declare operation signature
instance : OpSignature Op Ty where
signature
| .const _ => ([], int)
| .add => ([.int, .int],

)
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Lean-MLIR: Declaring an IR

declare types

inductive Ty

| int

declare type semantics
instance : TyDenote Ty where
toType
| .int => BitVec 32

declare operations

inductive Op : Type
| add : Op
| const : (val : Z) — Op
declare operation signature
instance : OpSignature Op Ty where
signature
| .const _ => ([], int)
| .add => ([.int, .int], .int)
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Lean-MLIR: Declaring an IR

declare types

inductive Ty

| int

declare type semantics
instance : TyDenote Ty where
toType
| .int => BitVec 32

declare operations

inductive Op : Type
| add : Op
| const : (val : Z) — Op
declare operation signature
instance : OpSignature Op Ty where
signature
| .const _ => ([], .int)
| .add => ([.int, .int], .int)
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Lean-MLIR: Declaring an IR

declare types

inductive Ty

| int

declare type semantics

instance : TyDenote Ty where
toType
| .int => BitVec 32

declare operation semantics
instance : OpDenote Op Ty where

denote
| .const n,

| .add,

declare operations

inductive Op : Type
| add : Op
| const : (val : Z) — Op
declare operation signature
instance : OpSignature Op Ty where
signature
| .const _ => ([], .int)
| .add => ([.int, .int], .int)
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Lean-MLIR: Declaring an IR

declare types

inductive Ty

| int

declare type semantics

instance : TyDenote Ty where
toType
| .int => BitVec 32

declare operation semantics
instance : OpDenote Op Ty where

denote
| .const n, []

| .add,

declare operations

inductive Op : Type
| add : Op
| const : (val : Z) — Op
declare operation signature
instance : OpSignature Op Ty where
signature
| .const _ => ([], .int)
| .add => ([.int, .int], .int)
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Lean-MLIR: Declaring an IR

declare types

inductive Ty

| int

declare type semantics

instance : TyDenote Ty where
toType
| .int => BitVec 32

declare operation semantics
instance : OpDenote Op Ty where

denote

declare operations

inductive Op : Type
| add : Op
| const : (val : Z) — Op
declare operation signature
instance : OpSignature Op Ty where
signature
| .const _ => ([], .int)
| .add => ([.int, .int], .int)

| .const n, [] => BitVec.ofInt 32 n

| .add,
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Lean-MLIR: Declaring an IR

declare types

inductive Ty

| int

declare type semantics

instance : TyDenote Ty where
toType
| .int => BitVec 32

declare operation semantics
instance : OpDenote Op Ty where

denote

declare operations

inductive Op : Type
| add : Op
| const : (val : Z) — Op
declare operation signature
instance : OpSignature Op Ty where
signature
| .const _ => ([], .int)
| .add => ([.int, .int], .int)

| .const n, [] => BitVec.ofInt 32 n

| .add,
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Lean-MLIR: Declaring an IR

declare types

inductive Ty

| int

declare type semantics

instance : TyDenote Ty where
toType
| .int => BitVec 32

declare operation semantics
instance : OpDenote Op Ty where

denote

declare operations

inductive Op : Type
| add : Op
| const : (val : Z) — Op
declare operation signature
instance : OpSignature Op Ty where
signature
| .const _ => ([], .int)
| .add => ([.int, .int], .int)

| .const n, [] => BitVec.ofInt 32 n

| .add,
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Lean-MLIR: Declaring an IR

declare types

inductive Ty

| int

declare type semantics

instance : TyDenote Ty where
toType
| .int => BitVec 32

declare operation semantics
instance : OpDenote Op Ty where

denote

declare operations

inductive Op : Type
| add : Op
| const : (val : Z) — Op
declare operation signature
instance : OpSignature Op Ty where
signature
| .const _ => ([], .int)
| .add => ([.int, .int], .int)

| .const n, [] => BitVec.ofInt 32 n

| .add, [(a : BitVec 32), (b :

BitVec 32)]
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Lean-MLIR: Declaring an IR

declare types

inductive Ty

| int

declare type semantics

instance : TyDenote Ty where
toType
| .int => BitVec 32

declare operation semantics
instance : OpDenote Op Ty where

denote

declare operations

inductive Op : Type
| add : Op
| const : (val : Z) — Op
declare operation signature
instance : OpSignature Op Ty where
signature
| .const _ => ([], .int)
| .add => ([.int, .int], .int)

| .const n, [] => BitVec.ofInt 32 n

| .add, [(a : BitVec 32), (b :

BitVec 32)] =>a + b
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Lean-MLIR: Where The Semantics Gets Used

/-- %y = %X + 0 -/
def lhs : Com := [mlir_icom| {
"bbo(%x: int):

%0 = const @ : () -> int

%1 = add (%x, %9) : (int, int) -> int

return (%1) : (int) -> ()

}]

declare operation semantics

instance : OpDenote Op Ty where
denote
| .const n, [] => BitVec.ofInt 32 n
| .add, [(a : BitVec 32), (b : BitVec 32)] =>a + b



Lean-MLIR: Where The Semantics Gets Used

/-- %y = %X + 0 -/
def lhs : Com := [mlir_icom| {
"bbo(%x: int):

%0 = const @ : () -> int

%1 = add (%x, %0) : (int, int) -> int

return (%1) : (int) -> ()

}]

declare operation semantics

instance : OpDenote Op Ty where
denote
| .const n, [] => BitVec.ofInt 32 n
| .add, [(a : BitVec 32), (b : BitVec 32)] =>a + b



Lean-MLIR: Where The Semantics Gets Used

/-- %y = %X + 0 -/
def lhs : Com := [mlir_icom| {
"bbo(%x: int):

%0 = const @ : () -> int

%1 = add (%x, %0) : (int, int) -> int

return (%1) : (int) -> ()

}]

declare operation semantics

instance : OpDenote Op Ty where
denote
| .const n, [] => BitVec.ofInt 32 n
| .add, [(a : BitVec 32), (b : BitVec 32)]

We need the semantics!
Please give us semantics

=>a+b
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\
Formally Verifying Peephole Optimizations for MLIR! .2

2y

github.com/opencompl/lean-mlir

def pl : PeepholeRewrite Op [.int] .int := {

" premme— * lhs := 1lhs,
Part of a Dialect
Mo |
rhs := rhs,
MHLO
k=D :
correct := by

rw [lhs, rhs]; funext lv;
simp_peephole [add, cst] at Iv
l /- + V¥V (a : BitVec 32), a + BitVec.ofInt 32 0 = a -/

‘‘‘‘‘‘‘‘‘‘‘

intros a; simp_alive /- goals accomplished & -/

Evolving Semantics with MLIR §@

Ease-of-use ¢
85
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Abstract

A central concern for an optimizing compiler is the design of
its intermediate representation (IR) for code. The IR should
make it easy to perform transformations, and should also
afford efficient and precise static analysis.

In this paper we study an aspect of IR design that has re-
ceived little attention: the role of undefined behavior. The IR
for every optimizing compiler we have looked at, including
GCC, LLVM, Intel’s, and Microsoft’s, supports one or more
forms of undefined behavior (UB), not only to reflect the
semantics of UB-heavy programming languages such as C
and C++, but also to model inherently unsafe low-level oper-
ations such as memory stores and to avoid over-constraining
IR semantics to the point that desirable transformations be-

1. Introduction

Some programming languages, intermediate representations,
and hardware platforms define a set of erroneous operations
that are untrapped and that may cause the system to behave
badly. These operations, called undefined behaviors, are the
result of design choices that can simplify the implementation
of a platform, whether it is implemented in hardware or soft-
ware. The burden of avoiding these behaviors is then placed
upon the platform’s users. Because undefined behaviors are
untrapped, they are insidious: the unpredictable behavior that
they trigger often only shows itself much later.

The AVR32 processor architecture document [2, p. 51]
provides an example of hardware-level undefined behavior:

If the region has a size of 8 KB. the 13 lowest bits in
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Abstract

We designed, implemented, and deployed Alive2: a bounded
translation validation tool for the LLVM compiler’s interme-
diate representation (IR). It limits resource consumption by,
for example, unrolling loops up to some bound, which means
there are circumstances in which it misses bugs. Alive2 is
designed to avoid false alarms, is fully automatic through
the use of an SMT solver, and requires no changes to LLVM.
By running Alive2 over LLVM’s unit test suite, we discov-
ered and reported 47 new bugs, 28 of which have been fixed
already. Moreover, our work has led to eight patches to the
LLVM Language Reference—the definitive description of the
semantics of its IR—and we have participated in numerous
discussions with the goal of clarifying ambiguities and fixing
errors in these semantics. Alive2 is open source and we also

John Regehr
regehr@cs.utah.edu
University of Utah
USA

1 Introduction

LLVM is a popular open-source compiler that is used by
numerous frontends (e.g., C, C++, Fortran, Rust, Swift), and
that generates high-quality code for a variety of target ar-
chitectures. We want LLVM to be correct but, like any large
code base, it contains bugs. Proving functional correctness of
about 2.6 million lines of C++ is still impractical, but a weaker
formal technique—translation validation—can be used to cer-
tify that individual executions of the compiler respected its
specification.

A key feature of LLVM that makes it a suitable platform
for translation validation is its intermediate representation
(IR), which provides a common point of interaction between
frontends, backends, and middle-end transformation passes.
LLVM IR has a specification document,' making it more
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Exploring C Semantics and Pointer Provenance

KAYVAN MEMARIAN, University of Cambridge, UK
VICTOR B. F. GOMES, University of Cambridge, UK
BROOKS DAVIS, SRI International, USA

STEPHEN KELL, University of Cambridge, UK
ALEXANDER RICHARDSON, University of Cambridge, UK
ROBERT N. M. WATSON, University of Cambridge, UK
PETER SEWELL, University of Cambridge, UK

The semantics of pointers and memory objects in C has been a vexed question for many years. C values cannot
be treated as either purely abstract or purely concrete entities: the language exposes their representations,
but compiler optimisations rely on analyses that reason about provenance and initialisation status, not just
runtime representations. The ISO WG14 standard leaves much of this unclear, and in some respects differs
with de facto standard usage — which itself is difficult to investigate.

In this paper we explore the possible source-language semantics for memory objects and pointers, in ISO C
and in C as it is used and impl d in practice, fc pecially on pointer p . We aim to, as
far as possible, reconcile the ISO C standard, mainstream compiler behaviour, and the semantics relied on
by the corpus of existing C code. We present two coherent proposals, tracking provenance via integers and
not; both address many design questions. We highlight some pros and cons and open questions, and illustrate
the discussion with a library of test cases. We make our semantics executable as a test oracle, integrating it
with the Cerberus semantics for much of the rest of C, which we have made substantially more complete
and robust, and equipped with a web-interface GUL This allows us to experimentally assess our proposals
on those test cases. To assess their viability with respect to larger bodies of C code, we analyse the changes
required and the resulting behaviour for a port of FreeBSD to CHER], a research architecture supporting
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Why Do We Trust Our LLVM Semantics?

- We model both UB and poison as poison. (details in paper)
- overapprox. on purpose, has taken experts years; out of scope.
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Why Do We Trust Our LLVM Semantics?

- We model both UB and poison as poison. (details in paper)
- overapprox. on purpose, has taken experts years; out of scope.
- check correctness of semantics via cosim runs

Build completed successfully.

+ ../../.lake/build/bin/ssalLLVMEnumerator

+ diff generated-1llvm-optimized-data.csv generated-ssa-llvm-semantics.csv
+ diff /dev/fd/63 /dev/fd/62

++ awk -F, '$2 == 4' generated-ssa-llvm-semantics.csv

++ sort -t, -ki,1

++ sort -t, -ki,1

++ awk -F, '$2 == 4' generated-ssa-llvm-syntax—-and-semantics.csv




Alive Style Workflow for LLVM IR

V w, BitVec w

(c [l b) && a []]
(c+b) *a=c*a

(c &&& b "~ b)) + 1

BitVec 64
(c [l b) && a []]
(c+b) *a=c*a

(c &&& b "~ b)) + 1

@]

@]

@]

||| a &&& b
a

a - (c [|] ~~~b)

||| a &&& b
a

a - (c [|] ~~~b)

L

L

extensionality
ring
automata

LeanSAT
LeanSAT
LeanSAT
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Proof Automation for Push Button Verification*

Tactic

Total

bv_ring

bv_decide (symbolic width)
bv_decide (concrete width w = 64)
bv_automata

alive_auto

Hacker’s Delight Alive InstCombine

112
0

3
34
27
32

93
10
3

gl
49
67

866
0
N/A
581
399
567

Fig. 5. Comparison of the various tactics we have for automatically proving bitvector rewrites across three
datasets. See that the bv_automata tactic, which proves results for arbitrary width, is competitive with
bv_decide, a complete decision procedure that equations for finite width.
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Manual Proofs for Complex Transformations
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APl Coverage for Manual Proof Writing
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toNat
tolnt

toFin

getElem
getLsbD
getMsbD
msb

Table 1. Our BitVector API for Lean implements all smtlib functions offering for each conversions to Nat, Int,
and Fin as well as indexing for obtaining individual bits via getElem, getLsbD, getMsbD and msb.
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Extras: Metatheoretic reasoning (CSE, DCE)

def cse
(com: Com a) :
{ com' : Com Op // com.denote = com'.denote }
def dce (com : Com T t) :
> (I ) (hom : Ctxt.Hom I'" ),

{ com' : Com Op // com.denote = com'.denote ° Valuation.comap hom }



Ployground @ lean-mlir.grosser.es

| VN % Examples & Load =

o~ S

37 simp only [ge_iff_le, ¥ lean-mlir.lean:61:17

Y ey

38 EffectKind.return_impure_toMonad_eq, Option.pure_def, mul_eq, ¥ Tactic state

39 Option.bind_eq_bind, Option.none_bind, h, ireducelte, Option.none_bind, 1 goal

40 Option.bind_none, Option.some_bind, Refinement.some_some, Refinement.refl] wiN

41 apply BitVec.eg_of_toNat_eq VY (e ec1 : LLVM.IntW w), LLVM.xor (LLVM.sub e_1
42 simp only [bv_toNat, Nat.mod_mul_mod] el)ece

43 ring_nf » All Messages (0)
44

45 /--

46 info: 'AlivePaperExamples.shift_mul' depends on axioms: [propext, Classical.choice, Quot.sound]

47 -/

48 #guard_msgs in #print axioms shift_mul

49

50 -- Example proof of xor + sub, this is automatically closed by automation.

51 theorem xor_sub :

52 [llvm (w)| {

3| AbbO(%X : _, %Y : _):

54 simp_alive_peephole extends simp_peephole to simplify goals about refinement of LLVM Ll
55| programs into statements about just bitvectors.

56 | That is, the tactic expects a goal of the form: Com.Refinement comi comz That is, goals of the

57 | form Com.refine, comi.denote v £ comz.denote l'v , where comi and comz are

58 | programsinthe LLVM dialect.

59 = =
60 busily processing...

o

61 simp_alive_peephole

62 alive_auto

63

64 /-- info: 'AlivePaperExamples.xor_sub' depends on axioms: [propext, Classical.choice, Quot.sound] -/
65 #guard_msgs in #print axioms xor_sub
66

67 theorem bitvec_AddSub_1309 :

68 [llvm (w)| {

69 AbbO(%X : —, %Y : _):

70 %vl = llvm.and %X, %Y

71 %v2 = llvm.or %X, %Y

72 %v3 = llvm.add %v1, %v2 Restart File
73

1lvm.return %v3 4


https://lean-mlir.grosser.es/#url=https%3A%2F%2Flean-mlir.grosser.es%2Fapi%2Fexamples%2Flean-mlir%2F.lake%2Fpackages%2FSSA%2FSSA%2FProjects%2FInstCombine%2FPaperExamples.lean

