DDDDDDDD
RRRRRRRR
CCCCCCCC
EEEEEEEE
SSSSSSSS
FFFFFFFF

ACCESS SOFTEK, INC
WWW.SOFTEK-TOOLCHAINS.COM

POINTER AUTHENTICATION ABI
I

ELF-BASED PLATFORMS

ANTON KOROBEYNIKOV

CODE POINTERS AND THEIR LIFECYCLES

CODE POINTERS AND THEIR LIFECYCLES

R/O MEMORY

POINTER

CODE POINTERS AND THEIR LIFECYCLES

REGISTER

POINTER

R/O MEMORY

POINTER

CODE POINTERS AND THEIR LIFECYCLES

REGISTER

POINTER

Spill

R/ W MEMORY

Load POINTER

R/O MEMORY

POINTER

CODE POINTERS AND THEIR LIFECYCLES

REGISTER

POINTER

Spill

R/ W MEMORY

POINTER

REGISTER

POINTER

Reload

R/O MEMORY

POINTER

CODE POINTERS AND THEIR LIFECYCLES

CALL / JUMP

POINTER

REGISTER

POINTER

R/ W MEMORY

POINTER

REGISTER

POINTER

Reload

DATA ACCESS

POINTER

R/O MEMORY

POINTER

SUBSTITUTION ATTACKS

CALL / JUMP

POINTER

REGISTER

POINTER

Spill

R/ W MEMORY

REGISTER

POINTER

Load POINTER Reload

Memory Write
DATA ACCESS

POINTER

R/O MEMORY

POINTER ATTACKER

SUBSTITUTION ATTACKS

REGISTER CALL / JUMP
S
Spill
R/W MEMORY REGISTER

Memory Write
R/O MEMORY DATA ACCESS

POINTER AUTHENTICATION

CALL / JUMP

POINTER

REGISTER

POINTER PACIA X16, X17 AUTIA X16, X17

Sign

REGISTER

POINTER POINTER

Spill Reload

REGISTER

POINTER

REGISTER

Load

DATA ACCESS

POINTER

R/O MEMORY R/ W MEMORY

POINTER POINTER

HOW DOES IT WORK?

Modifier

PACKK X16, X17

P01nter
Key Selection

ComputePAC

POINTER

Signed Pointer

POINTER AUTHENTICATION: ISA

Armv8.3: signed pointers
Additional changes in Armv8.5 and Armv8.6
Overall: 48 instructions

Some of them in HINT space: nops are on older CPU cores

ISA VS HIGH-LEVEL-LANGUAGES

PACXX
AUT XX

XPACXX

ISA VS HIGH-LEVEL-LANGUAGES

class B : public A {

public:
PACXX void foo() const override;
void bar() const override;
¥
AUT XX VS
int test(const A &obj) {
obj.bar();
XPAC XX return 0;

ISA VS HIGH-LEVEL-LANGUAGES

B object Class B
instance virtual table

top offset

+0 :

typeinfo
+8 : object +16: ZN1B3fooEv |—» B::foo() code
fields +24: 7ZN1B3barkEv |—— B::bar() code

POINTER AUTHENTICATION C++ ABI

Developed by Apple to use on Mac hardware

Presented on LLVM US Developers Meeting 2019
armé4de: An ABI for Pointer Authentication — Ahmed Bougacha, John McCall

Available as armé4e architecture since Apple A12 (~2018)

Until recently was only available in Apple downstream clang fork.

ELEMENTS OF C++ PAUTH ABI

Sources of indirect branches:

returns
switches .
B object Class B
symbol imports (GOT) instance virtual table
C function pointers +0: ZTV1B|[—»|+0: top offset
. . +8: typeinfo

C++ virtual functions other . /P N

+8: object +16: ZN1B3fooEv |— B::foo() code
C++ member pointers fields +24: ZN1B3barEv |—— B::bar() code

static object constructors

computed gotos

ABI rule (signing scheme) specifies key and how to compute the modifier

DIVERSITY

Armv8.3 allows arbitrary 64-bit moditfiers to be useo

Address diversity: can use storage address of a pointer as modifier

Copying of pointer requires resigning

Semantic diversity: can use semantics of the pointed code/data as a moditier

Derived trom declaration, type, or particular usage ...

Top 16 bits of address is usually reserved

Can combine address and semantic diversity (small constant discriminator)

10

PAU T H

PAuth ABI

+ ELF

—xtension to

Currently in Alpha state
https://qithub.com/ARM-software/abi-aa/blob/main/pauthabielté4/pauthabielté4.rst

=i

- for the Arm® 64-bit Architecture (pauthabielf64)

Set of ELF-specitfic relocations & relocation operations

Marking schema

Entry in .note.gnu.property section

Platform decisions

NRNOXCION]
PLT GOT signing

https://github.com/ARM-software/abi-aa/blob/main/pauthabielf64/pauthabielf64.rst

LLVM 19: STATUS

The majority of required frontend patches were ported from Apple clang

Thanks to Ahmed, John, Akira, Oliver et al!

Generic pauth codegen support ported tfrom Apple clang

Implemented ELF-specific pauth codegen

Implemented object file & linker support for pauth relocations

Added experimental pauthtest ABI for AArché4/Linux

12

PAUTHTEST

ABI to test pointer authentication on AArch64 Linux

Mostly follows Apple arméde for signing schema, etc.

—nable via -mabi=pauthtest or pauthest environment in target triple

(e.g. aarch64-gnu-linux-pauthtest)

-mabi is normalized to environment in triple, similar to eabihf on 32-bit ARM.

—|LF marking:
"LLVM Linux” test vendor (0x10000002)

Encodes entire signing schema in place of version making catching mismatches easier

Requires pauth-enabled standard library

13

KNOWN ISSUES

Few corner cases with no-op casts (mostly around noexcept)

No diagnostics for some unsupported computed gotos (code will crash though)

ibunwind might materialize pointers in not very secure way across exceptions
being thrown

Enabling pauth for platform is manual: no hooks for signing schema, etc.

14

1BD

PRs under review

Signed GOT support
TLS support

__ptrauth qualitier

See RFC: https://discourse.llvm.org/t/rfc-ptrauth-qualifier/

Optimizations & relaxations

Some already available in Apple downstream tree

Some code unification & cleanup

Documentation!

15

https://discourse.llvm.org/t/rfc-ptrauth-qualifier/

NEW PLATFORM

Pointer Authentication ABI is an ABI:

Cannot safely mix code that uses different ABls

Could be deployed on bare-metal platform as detfault ABI

Could be deployed on commodity platform as an isolated part
OS kernel

System-critical process

16

COMPONENTS OF PAUTH SUPPORT

Kernel support
Signing schema
Marking and versioning

Runtime libraries

17

KERNEL SUPPORT

Key allocation & management
Set of 5 128-bit keys

Some of them are expected to be process-dependent

Key preservation during context switches
Protect values of X16 / X17

Do you have fork()?

18

SIGNING SCHEMA

Lots of variations and customizations in signing scheme:

Discriminator usage

Objects to sign, etc.

Every variation effectively
Cannot safely mix code that uses different ABls

Default set (aka armé64e or pauthtest) is good enough to start

Decide about function pointer type discrimination

Do you want to expose all options and knobs that may change ABI?

19

VERSION & MARKING

https://github.com/ARM-software/abi-aa/blob/main/pauthabielté4/pauthabielté4. rstielt-marking
Uses .note.gnhu.property section

Need to define plattform

Need to define ABI version

Might want to encode some additional metadata in the version

See it base compatibility mode is enough for plattorm’s purposes

20

LIBRARIES

Compiler runtime:

ibc++, libunwind and compiler-rt should work out of the box

Dynamic loader:

Support for pauth relocations

Shared libraries, lazy symbol resolution and interop with unsigned code
GOT and PLT GOT choices

C stanaard library:

Static constructors / destructors (including e.g. atexit)
setjmp / longjmp

signals

21

https://github.com/access-softek/musl/pulls

TESTING

Testing security-related code is non-trivial

Matching tfor expected code sequences

Checking final binaries

Crashing testsuite

Try to perform a pointer substitution in different contexts
PAuth works: substitution fails => test crashes

PAuth does not work: substitution success => no crash

WIP. to be released soon

Maybe a way to extend BOLIT-based analysis tools?

FuroLLVM 2024: Does LLVM implement security hardenings correctly? A BOLT-based static
analyzer to the rescue? — Kristof Beyls

Q&A

