
P O I N T E R A U T H E N T I C AT I O N A B I
+

E L F - B A S E D P L AT F O R M S

A N T O N K O R O B E Y N I K O V

W W W. S O F T E K - T O O L C H A I N S . C O M

C O D E P O I N T E R S A N D T H E I R L I F E C Y C L E S

2

C O D E P O I N T E R S A N D T H E I R L I F E C Y C L E S

R / O M E M O R Y

P O I N T E R

2

C O D E P O I N T E R S A N D T H E I R L I F E C Y C L E S

R E G I S T E R

P O I N T E R

R / O M E M O R Y

P O I N T E R

Load

2

C O D E P O I N T E R S A N D T H E I R L I F E C Y C L E S

R E G I S T E R

P O I N T E R

R / O M E M O R Y

P O I N T E R

R / W M E M O R Y

P O I N T E RLoad

Spill

2

C O D E P O I N T E R S A N D T H E I R L I F E C Y C L E S

R E G I S T E R

P O I N T E R

R / O M E M O R Y

P O I N T E R

R / W M E M O R Y

P O I N T E R

R E G I S T E R

P O I N T E RReloadLoad

Spill

2

C O D E P O I N T E R S A N D T H E I R L I F E C Y C L E S

R E G I S T E R

P O I N T E R

R / O M E M O R Y

P O I N T E R

R / W M E M O R Y

P O I N T E R

R E G I S T E R

P O I N T E R

C A L L / J U M P

P O I N T E R

D ATA A C C E S S

P O I N T E R

ReloadLoad

Spill

2

R E G I S T E R

P O I N T E R

R / O M E M O R Y

P O I N T E R

R / W M E M O R Y

P O I N T E R

R E G I S T E R

P O I N T E R

C A L L / J U M P

P O I N T E R

D ATA A C C E S S

P O I N T E R

ReloadLoad

Spill

S U B S T I T U T I O N AT TA C K S

R E G I S T E R

P O I N T E R

R / O M E M O R Y

P O I N T E R

Load

Spill

AT TA C K E R

P O I N T E R *

Memory	Write

3

S U B S T I T U T I O N AT TA C K S

R E G I S T E R

P O I N T E R

R / O M E M O R Y

P O I N T E R

R / W M E M O R Y

P O I N T E R *

R E G I S T E R

P O I N T E R *

C A L L / J U M P

P O I N T E R *

D ATA A C C E S S

P O I N T E R *

ReloadLoad

Spill

AT TA C K E R

P O I N T E R *

Memory	Write

3

P O I N T E R A U T H E N T I C AT I O N

R E G I S T E R

P O I N T E R

R / O M E M O R Y

P O I N T E R

R E G I S T E R

P O I N T E R

C A L L / J U M P

P O I N T E R

D ATA A C C E S S

P O I N T E R

Reload

Load

Spill

R E G I S T E R

P O I N T E RPA C

R / W M E M O R Y

P O I N T E RPA C

R E G I S T E R

P O I N T E RPA C

PACIA	X16,	X17 AUTIA	X16,	X17

Sign

Auth

4

H O W D O E S I T W O R K ?

PA C K K X 1 6 , X 1 7

I A
I B

D A
D B

P PAC PAC			POINTERKey	Selection

Key

Modifier

Pointer

ComputePAC AddPAC

Signed	Pointer

5

P O I N T E R A U T H E N T I C AT I O N : I S A

• Armv8.3: signed pointers

• Additional changes in Armv8.5 and Armv8.6

• Overall: 48 instructions

• Some of them in HINT space: nops are on older CPU cores

6

I S A V S H I G H - L E V E L - L A N G U A G E S

PACxx	

AUTxx	

XPACxx

7

I S A V S H I G H - L E V E L - L A N G U A G E S

PACxx	

AUTxx	

XPACxx

class	B	:	public	A	{	
public:	
				void	foo()	const	override;	
				void	bar()	const	override;	
};	

int	test(const	A	&obj)	{	
				obj.bar();	
				return	0;	
}	

vs

7

I S A V S H I G H - L E V E L - L A N G U A G E S

+8:
other	
object	
fields

+0: _ZTV1B +0:	
+8:	
+16:	
+24:

top	offset
typeinfo
_ZN1B3fooEv
_ZN1B3barEv

B::foo()	code
B::bar()	code

B	object		
instance

Class	B	
virtual	table

7

P O I N T E R A U T H E N T I C AT I O N C + + A B I

• Developed by Apple to use on Mac hardware

• Presented on LLVM US Developers Meeting 2019
• arm64e: An ABI for Pointer Authentication – Ahmed Bougacha, John McCall

• Available as arm64e architecture since Apple A12 (~2018)

• Until recently was only available in Apple downstream clang fork.

https://github.com/swiftlang/llvm-project/blob/next/clang/docs/PointerAuthentication.rst
8

E L E M E N T S O F C + + PA U T H A B I

Sources of indirect branches:
• returns

• switches

• symbol imports (GOT)

• C function pointers

• C++ virtual functions

• C++ member pointers

• static object constructors

• computed gotos

• …

ABI rule (signing scheme) specifies key and how to compute the modifier

+8:
other	
object	
fields

+0: _ZTV1B +0:	
+8:	
+16:	
+24:

top	offset
typeinfo
_ZN1B3fooEv
_ZN1B3barEv

B::foo()	code
B::bar()	code

B	object		
instance

Class	B	
virtual	table

9

D I V E R S I T Y

• Armv8.3 allows arbitrary 64-bit modifiers to be used

• Address diversity: can use storage address of a pointer as modifier

• Copying of pointer requires resigning

• Semantic diversity: can use semantics of the pointed code/data as a modifier

• Derived from declaration, type, or particular usage …

• Top 16 bits of address is usually reserved

• Can combine address and semantic diversity (small constant discriminator)

10

PA U T H + E L F

• PAuth ABI Extension to ELF for the Arm® 64-bit Architecture (pauthabielf64)
• Currently in Alpha state

• https://github.com/ARM-software/abi-aa/blob/main/pauthabielf64/pauthabielf64.rst

• Set of ELF-specific relocations & relocation operations

• Marking schema
• Entry in .note.gnu.property section

• Platform decisions
• RELRO GOT

• PLT GOT signing

11

https://github.com/ARM-software/abi-aa/blob/main/pauthabielf64/pauthabielf64.rst

L LV M 1 9 : S TAT U S

• The majority of required frontend patches were ported from Apple clang

• Thanks to Ahmed, John, Akira, Oliver et al!

• Generic pauth codegen support ported from Apple clang

• Implemented ELF-specific pauth codegen

• Implemented object file & linker support for pauth relocations

• Added experimental pauthtest ABI for AArch64/Linux

LLVM testsuite passes on AArch64/Linux with pauthtest ABI
12

PA U T H T E S T

• ABI to test pointer authentication on AArch64 Linux

• Mostly follows Apple arm64e for signing schema, etc.

• Enable via -mabi=pauthtest or pauthest environment in target triple

(e.g. aarch64-gnu-linux-pauthtest)

• -mabi is normalized to environment in triple, similar to eabihf	on 32-bit ARM.

• ELF marking:
• “LLVM Linux” test vendor (0x10000002)

• Encodes entire signing schema in place of version making catching mismatches easier

• Requires pauth-enabled standard library

13

K N O W N I S S U E S

• Few corner cases with no-op casts (mostly around noexcept)

• No diagnostics for some unsupported computed gotos (code will crash though)

• libunwind might materialize pointers in not very secure way across exceptions
being thrown

• Enabling pauth for platform is manual: no hooks for signing schema, etc.

14

T B D

• PRs under review
• Signed GOT support

• TLS support

• __ptrauth qualifier

• See RFC: https://discourse.llvm.org/t/rfc-ptrauth-qualifier/

• Optimizations & relaxations
• Some already available in Apple downstream tree

• Some code unification & cleanup

• Documentation!

15

https://discourse.llvm.org/t/rfc-ptrauth-qualifier/

N E W P L AT F O R M

• Pointer Authentication ABI is an ABI:
• Cannot safely mix code that uses different ABIs

• Could be deployed on bare-metal platform as default ABI

• Could be deployed on commodity platform as an isolated part
• OS kernel

• System-critical process

16

C O M P O N E N T S O F PA U T H S U P P O R T

• Kernel support

• Signing schema

• Marking and versioning

• Runtime libraries

17

K E R N E L S U P P O R T

• Key allocation & management
• Set of 5 128-bit keys

• Some of them are expected to be process-dependent

• Key preservation during context switches

• Protect values of X16 / X17

• Do you have fork()?

18

S I G N I N G S C H E M A

• Lots of variations and customizations in signing scheme:
• Discriminator usage

• Objects to sign, etc.

• Every variation effectively defines a new ABI

• Cannot safely mix code that uses different ABIs

• Default set (aka arm64e or pauthtest) is good enough to start

• Decide about function pointer type discrimination

Do you want to expose all options and knobs that may change ABI?
19

V E R S I O N & M A R K I N G

• Uses .note.gnu.property section

• Need to define platform

• Need to define ABI version

• Might want to encode some additional metadata in the version

• See if base compatibility mode is enough for platform’s purposes

https://github.com/ARM-software/abi-aa/blob/main/pauthabielf64/pauthabielf64.rst#elf-marking

Both static linker and dynamic loader are expected to check ABI compatibility
20

L I B R A R I E S

• Compiler runtime:
• libc++, libunwind and compiler-rt should work out of the box

• Dynamic loader:
• Support for pauth relocations

• Shared libraries, lazy symbol resolution and interop with unsigned code

• GOT and PLT GOT choices

• C standard library:
• Static constructors / destructors (including e.g. atexit)
• setjmp	/	longjmp	

• signals

Can use musl+pauth PoC implementation from https://github.com/access-softek/musl/
21

https://github.com/access-softek/musl/pulls

T E S T I N G

• Testing security-related code is non-trivial
• Matching for expected code sequences

• Checking final binaries

• Crashing testsuite
• Try to perform a pointer substitution in different contexts

• PAuth works: substitution fails => test crashes

• PAuth does not work: substitution success => no crash

• WIP, to be released soon

• Maybe a way to extend BOLT-based analysis tools?
• EuroLLVM 2024: Does LLVM implement security hardenings correctly? A BOLT-based static

analyzer to the rescue? – Kristof Beyls

22

Q & A

