
Confidential + Proprietary

LLVM libc math library
Current status and future directions
Tue Ly (Google)

LLVM Developers’ Meeting 2024

Confidential + Proprietary

What is LLVM libc

● Greenfield implementation of C standard library (aka libc) under LLVM umbrella
● Standards: C23, POSIX
● Language(s): C++ with some inlined assembly
● Goals:

○ Complete C23 standard
○ One libc for all:

■ OS: Linux, MacOS, Windows, Fuchsia, Android, …
■ CPU: x86-64 / i386, ARM 64/32, RISC-V 64/32
■ Embedded systems (baremetal)
■ GPUs (nVidia / AMD)

● Homepage: https://libc.llvm.org

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3096.pdf
https://libc.llvm.org

Confidential + Proprietary

LLVM libc math library (libm)

● (Re)implement all math C23 functions focusing on:
○ Accuracy
○ Performance
○ Portability
○ Configurability

● Floating point standard: IEEE 754-2019
● Homepage: https://libc.llvm.org/math

https://libc.llvm.org/math

Confidential + Proprietary

How accurate?

● As accurate as possible, with the ultimate goal to be correctly rounded for all
rounding modes:
○ FE_TONEAREST, FE_UPWARD, FE_DOWNWARD, FE_TOWARDZERO,

(to-be-added for ARM) round-to-nearest tie-away-from-zero
○ Rounding mode is decided by the floating point environment

● Correct rounding → Consistency:
○ Output bits are identical across platforms and versions
○ Reduce the toil of updating / integrating libc
○ Floating point data / model integrity to be stored / read / computed across environments

Confidential + Proprietary

Vincenzo Innocente, John Mather, and Paul Zimmermann,
“Accuracy of Mathematical Functions in Single, Double, Double
Extended, and Quadruple Precision Brian Gladman”,
(August 2024)
https://members.loria.fr/PZimmermann/papers/accuracy.pdf

https://members.loria.fr/PZimmermann/papers/accuracy.pdf

Confidential + Proprietary

Accuracy at what cost? (aka performance)

Geomean = 84.96%

Confidential + Proprietary

Performance - Reciprocal Throughput

Geomean = 75.75%

Confidential + Proprietary

Portability

● Most functions are platform-agnostic
● Can be built on platforms without floating point unit or even without floating

point support in the runtime libraries - We have all the pieces of a generic
soft-float library:
○ Integer-based implementations of basic floating point operations
○ Templated BigInt class

● Platform-dependent errno / floating-point exception can be omitted
→ standalone libm library

Confidential + Proprietary

Configurability

● Provide support for various use-cases at build time
● Pick only functions, headers, config options that you need in

config/<target>/<entrypoints/headers/config>.txt
○ LIBC_CONF_PATH

● Provide cmake config option LIBC_CONF_MATH_OPTIMIZATIONS with various
options:
○ LIBC_MATH_NO_ERRNO
○ LIBC_MATH_NO_EXCEPT
○ LIBC_MATH_DEFAULT_ROUNDING_ONLY
○ LIBC_MATH_SMALL_TABLES
○ LIBC_MATH_SKIP_ACCURATE_PASS

■ Provable upper error bounds can be provided
○ LIBC_MATH_FAST = all of the above (aka, the “real” fast math)

● Anything else?

Confidential + Proprietary

Current progress toward complete C23(++)

● New floating point types
○ Half precision (_Float16)
○ Quad precision (_Float128??)
○ Fixed point(s)

● Completed all basic math functions for
all 5 floating types (304) 🎉🎉🎉

https://en.cppreference.com/w/c/23

float 57

double 62

long double 67

float16 52

float128 66

● https://libc.llvm.org/math/index.html#basic-operations

https://en.cppreference.com/w/c/23
https://libc.llvm.org/math/index.html#basic-operations

Confidential + Proprietary

Current progress toward complete C23(++)

● Implemented 76/254 higher math functions:
○ all but 3 are correctly rounded to all rounding modes (those 3 are 1-ULP)

float 32 / 50

double 20 / 51

long double 4 / 52

float16 15 / 49

float128 5 / 52

● https://libc.llvm.org/math/index.html#higher-math-functions

https://libc.llvm.org/math/index.html#higher-math-functions

Confidential + Proprietary

New C23 type support - Half precision

● C23 type: _Float16
● Kicked off with Google Summer of Code (GSoC) 2024

○ https://blog.llvm.org/posts/2024-08-31-half-precision-in-llvm-libc/
○ Student tech talk tomorrow:

https://llvm.swoogo.com/2024devmtg/session/2512743/student-technical-talks

● Have great performance potential with future hardware.
● _Float16 runtime + built-in shenanigan:

○ Which casts / builtins work on x86-64 / aarch64 / riscv64? clang vs gcc? compiler-rt vs libgcc?
○ https://gist.github.com/overmighty/a9a9de847eb11c667ba6b257375afe83

https://blog.llvm.org/posts/2024-08-31-half-precision-in-llvm-libc/
https://llvm.swoogo.com/2024devmtg/session/2512743/student-technical-talks
https://gist.github.com/overmighty/a9a9de847eb11c667ba6b257375afe83

Confidential + Proprietary

New C23 type support - Quad precision

● C23 type: _Float128
● Long double replacement for platform consistency

○ long double = fp80 on x86 Linux
○ long double = fp64 on Windows, MacOS
○ long double = fp128 on ARM 64, RISC-V 64/32 Linux, Android (all CPUs)
○ long double = double-double on PowerPC

● Quad precision type definition shenanigan:
○ _Float128, __float128, or long double?
○ C or C++?
○ clang/clang++ vs gcc/g++
○ https://github.com/llvm/llvm-project/pull/78017

https://github.com/llvm/llvm-project/pull/78017

Confidential + Proprietary

New type support - Fixed point

● _Fract and _Accum types and the header <stdfix.h> are introduced in ISO/IEC TR
18037:2008, C extensions to support embedded processors.

● clang & LLVM libc are currently the only open source option supporting fixed
point out of the box.

● Provide significant speed up and code size reduction compared to soft floats
when applicable.
○ Replace soft floats in Pixel Bud

● Current support:
○ printf
○ abs*, exp*, round*, sqrt*, *sqrtu*

● https://libc.llvm.org/math/stdfix.html

https://www.iso.org/standard/51126.html
https://www.iso.org/standard/51126.html
https://libc.llvm.org/math/stdfix.html

Confidential + Proprietary

Near future

● Finish C23 higher math functions for (ordered by priority, highest to lowest):
○ float
○ double
○ float16 / float128
○ long double

● More fixed point math functions and fixed point configurations
● Complex support

○ Underway - https://libc.llvm.org/complex.html

● Expand platform supports:
○ Attain parity with x86-64 for i386, ARM 64/32, RISC-V 64/32, GPU nVidia/AMD, baremetal
○ More OSes: MacOS, Windows, Android, …

● Expand LIBC_MATH_* config support to more functions

https://libc.llvm.org/complex.html

Confidential + Proprietary

Near + far future

● Further optimizations:
○ Performance
○ Code size

● Vector math library (libmvec)
● Decimal floating point support
● C++17 special math functions:

○ https://en.cppreference.com/w/cpp/numeric/special_functions

● C++26 constexpr math functions (hand-in-hand++)
● Shared implementations with compiler-rt / builtins and other runtime libraries

(hand-in-hand-in-hand?)
● More (binary) floating point types?

○ bf16, _Float80, _Float256, …

https://en.cppreference.com/w/cpp/numeric/special_functions
https://discourse.llvm.org/t/rfc-project-hand-in-hand-llvm-libc-libc-code-sharing/77701

Confidential + Proprietary

Thanks

● All past and present LLVM libc contributors
● Google Summer of Code

○ https://summerofcode.withgoogle.com/

● The CORE-MATH project
○ https://core-math.gitlabpages.inria.fr/

● The RLIBM project
○ https://people.cs.rutgers.edu/~sn349/rlibm/

● You, the audience

https://summerofcode.withgoogle.com/
https://core-math.gitlabpages.inria.fr/
https://people.cs.rutgers.edu/~sn349/rlibm/

