
LLVM Developer Meeting ’24

Enhance SYCL offloading support
to use the new offloading model
Speaker: Ravi Narayanaswamy

Contributors: Arvind Sudarsanam, Maksim Sabianin, Nick Sarnie,
Alexey Sachkov, Mike Toguchi

Intel ConfidentialDepartment or Event Name 2LLVM Dev Mtg ’24 2

Agenda

• Overview of SYCL offloading
• Highlight some of its important features

• Proposed design to use the new offloading model

• Deviations from existing community flow
• Motivation and proposed changes

• Work done so far

• What next?

Intel ConfidentialDepartment or Event Name 3LLVM Dev Mtg ’24 3

SYCL Offloading

• SYCL is designed for data parallel
programming and heterogenous
computing, and provides a
consistent programming
language (C++) and APIs across
CPU, GPU, FPGA, and AI
accelerators.

• Compiler enables multiple
toolchains (one for host and one
each for the targets provided)

clang++ -fsycl –fsycl-targets=intel-gpu-YYY,
intel-gpu-XXX test.cpp

sycl::ext::oneapi::experimental::device_global<int> dev_var;

void func(sycl::queue q) {
 int val = 42;
 q.copy(&val, dev_var).wait();
 // The 'dev_var' parameter is by reference
 q.submit([&](sycl::handler &cgh) {

cgh.single_task([=] {
for (int i = 0; i < 10; ++i)

dev_var += i;
});

 });
}

SYCL
kernel

Intel ConfidentialDepartment or Event Name 4LLVM Dev Mtg ’24 4

SYCL offloading and supported AOT/JIT targets

SYCL

SPIR-V

(JIT target)

Intel GPU AOT

Intel FPGA AOT

OpenCL CPU AOT

PTX AOT

AMDHSA AOT
AOT – Ahead-Of-Time compilation
JIT - Just-In-Time compilation

Intel ConfidentialDepartment or Event Name 5LLVM Dev Mtg ’24 5

Overview of SYCL compiler - Using new offloading model

SYCL
program

Device
LLVM IR

Host Object with
embedded device

code

Packaged
Device
object

Uses -fembed-offload-object

Clang

Clang offload
packager

COMPILATION
STAGE

Compilation step

Input OR Output OR
Intermediate Representation

Legend

Intel ConfidentialDepartment or Event Name 6LLVM Dev Mtg ’24 6

Overview of SYCL compiler - Using new offloading model

Device
LLVM IR

Fully linked
Device LLVM IR

SYCL
Device

Libraries

Device
LLVM IR
- split #1

Device
LLVM IR
- split #N

Device
SPIR-V/AOT

- split #1

Device
SPIR-V/AOT

- split #N

Wrapped device object included in host image

Final executable

Host Object
with embedded

device code

Extract Device Inputs

llvm-link

Sycl-post-
link

llvm-spirv +
AOT (if specified)

llvm-spirv +
AOT (if specified)

Clang offload wrapper

Host linker

LINKING
STAGE

Intel ConfidentialDepartment or Event Name 7LLVM Dev Mtg ’24 7

Overview of SYCL compiler - Using new offloading model

Device
LLVM IR

Fully linked
Device LLVM IR

SYCL
Device

Libraries

Device
LLVM IR
- split #1

Device
LLVM IR
- split #N

Device
SPIR-V/AOT

- split #1

Device
SPIR-V/AOT

- split #N

Wrapped device object included in host image

Final executable

Host Object
with embedded

device code

Extract Device Inputs

llvm-link

Sycl-post-
link

llvm-spirv +
AOT (if specified)

llvm-spirv +
AOT (if specified)

Clang offload wrapper

Host linker

LINKING
STAGE

Intel ConfidentialDepartment or Event Name 8LLVM Dev Mtg ’24 8

Overview of SYCL compiler - Using new offloading model

Device
LLVM IR

Fully linked
Device LLVM IR

SYCL
Device

Libraries

Device
LLVM IR
- split #1

Device
LLVM IR
- split #N

Device
SPIR-V/AOT

- split #1

Device
SPIR-V/AOT

- split #N

Wrapped device object included in host image

Final executable

Host Object
with embedded

device code

Extract Device Inputs

llvm-link

Sycl-post-
link

llvm-spirv +
AOT (if specified)

llvm-spirv +
AOT (if specified)

Clang offload wrapper

Host linker

LINKING
STAGE

clang-
sycl-linker

Intel ConfidentialDepartment or Event Name 9LLVM Dev Mtg ’24 9

Overview of SYCL compiler - Using new offloading model

dev1.bc dev2.bc …..devN.bc

Bundled .o output

clang++ dev1.bc dev2.bc
–target=spirv
--sycl-link
-Xlinker <SYCL Link Options>
-o out.o

This invokes the linking job of
SPIR-V device toolchain.
‘—sycl-link’ directs the job to
invoke a new tool called
‘clang-sycl-linker’ which
performs device code linking.

[Clang][SYCL] Introduce clang-sycl-linker to link SYCL
offloading device code (Part 1 of many)
→ Discussion ongoing if this should be a llvm tool instead.

https://github.com/llvm/llvm-project/pull/112245
https://github.com/llvm/llvm-project/pull/112245

Intel ConfidentialDepartment or Event Name 10LLVM Dev Mtg ’24 10

Deviations from existing OpenMP offloading flow

Device
LLVM IR

Fully linked
Device LLVM IR

SYCL
Device

Libraries

Device
LLVM IR
- split #1

Device
LLVM IR
- split #N

Device
SPIR-V/AOT

- split #1

Device
SPIR-V/AOT

- split #N

Wrapped device object included in host image

Final executable

Host Object
with embedded

device code

Extract Device Inputs

llvm-link

Sycl-post-
link

llvm-spirv +
AOT (if specified)

llvm-spirv +
AOT (if specified)

Clang offload wrapper

Host linker

Use of llvm-link instead of
LTO for bitcode linking

Linking device libraries
during link-time

Device image requires extra
information to be passed to runtime

Device code gets split into
multiple chunks

External tool used for
backend code gen

Intel ConfidentialDepartment or Event Name 11LLVM Dev Mtg ’24 11

Variation #1: Device code linking

Device code linking is performed at LLVM IR level as there is no
‘mature’ SPIR-V IR linker available.

Current status: llvm-link is used for device code linking.

Final goal: Once SPIR-V backend is available, linking can be
performed using LTO (full or thin).

Intel ConfidentialDepartment or Event Name 12LLVM Dev Mtg ’24 12

Variation #2: Linking of SYCL device libraries

Several SYCL device compilation use cases require SYCL device
libraries to be linked into the device IR.

Current status: llvm-link (with –only-needed option) is used for
linking device libraries.

Final goal: To be incorporated into the LTO pipeline once SPIR-V
backend is available.

Intel ConfidentialDepartment or Event Name 13LLVM Dev Mtg ’24 13

Variation #3: Transmission of user specified data from
SYCL compilation phase to SYCL runtime

struct OffloadingImage {
// LLVM BC, PTX, Object, SPIR-V etc.
ImageKind TheImageKind;
// OpenMP, CUDA, SYCL, etc.
OffloadKind TheOffloadKind;
uint32_t Flags;
// Used to store metadata supposedly required
by runtime (triple, arch)
MapVector<StringRef, StringRef> StringData;
// actual target code
std::unique_ptr<MemoryBuffer> Image;

}

For some use cases, it is expected that some of
the compilation flags provided by the user need
to be propagated to the SYCL runtime

For instance, if a program is compiled using –O0,
the flag should be propagated to the SYCL
runtime.

StringData[“compiler options”] = “-O0”;
StringData[“linker options”] = “-O0”;

Goal: Use StringData map to store this information.

Intel ConfidentialDepartment or Event Name 14LLVM Dev Mtg ’24 14

Variation #3: Transmission of SYCL specific data from
SYCL compilation phase to SYCL runtime

Device image properties
Each device image is accompanied by a ‘property set’ listing device requirements

Example: Optional kernel features (aspect::fp16; aspect::fp64)
queue q;
q.single_task([=]() {

// kernel uses aspect::fp64
double pi = 3.14;

});
// single_task is expected to throw feature_not_supported exception
during runtime if it is run on a device that does not support fp64.

struct __device_image_property {
char *Name;
void *Value;
// Type is uint32 or byte array
uint32_t Type; uint64_t ValueSize;

}

Goal: Use StringData map to store this information.

Intel ConfidentialDepartment or Event Name 15LLVM Dev Mtg ’24 15

Variation #4: Device code splitting

module.bc

kernel_with_fp64

SYCL/device requirements
aspects=fp64

kernel_without_fp64

SYCL/device requirements
aspects=

queue q;

if (q.get_device().has(aspect::fp64))

 q.single_task<kernel_with_fp64>([=]() {

 // kernel uses fp64

 double pi = 3.14;

 });

else

 q.single_task<kernel_without_fp64>([=]()

 // kernel *does not* use fp64

 float pi = 3.14f;

 });

Motivation #1: Per used optional feature; For SYCL 2020
conformance
Motivation #2: Per kernel; To reduce JIT overhead

Intel ConfidentialDepartment or Event Name 16LLVM Dev Mtg ’24 16

Variation #5: LLVM to SPIR-V IR translation

Backend compilation flow for Intel targets require the code to be
available in SPIR-V format.

Current status: llvm-spirv (an external tool) is used for LLVM to
SPIR-V translation

Final goal: Once SPIR-V backend is made available for use in
compilation flows, translation can be performed using the backend
passes.

Intel ConfidentialDepartment or Event Name 17LLVM Dev Mtg ’24 17

Work done so far

• Top level RFC submitted during end of 2023
• [RFC] Add Full Support for the SYCL Programming Model - Link
• [RFC] Offloading design for SYCL offload kind and SPIR targets - Link

• Initial analysis presented during the EuroLLVM 2024 conference (Thanks Alexey
Sachkov)
• https://www.youtube.com/watch?v=uhNHlytKX4c

• Initial sets of changes are currently being made upstream (Two PRs under review)
• [SYCL][LLVM] Adding property set I/O library for SYCL
• [Clang][SYCL] Introduce clang-sycl-linker to link SYCL offloading device code (Part 1 of many)
• Special thanks to Joseph Huber for kind guidance on enhancing SYCL offloading flow to use the

new offload model
• Special thanks to Matt Arsenault, Chris B, and Tom Honermann for great feedback thus far.

https://discourse.llvm.org/t/rfc-add-full-support-for-the-sycl-programming-model/74080
https://discourse.llvm.org/t/rfc-offloading-design-for-sycl-offload-kind-and-spir-targets/74088
https://github.com/llvm/llvm-project/pull/110771
https://github.com/llvm/llvm-project/pull/112245

Intel ConfidentialDepartment or Event Name 18LLVM Dev Mtg ’24 18

Next Steps

• More PRs to complete the support to add SYCL offloading flow
to the new offloading model.

1. SYCL finalization steps that will run after llvm-link will be added to the linking flow inside clang-
sycl-linker. One of the finalization steps is device code splitting.

2. Changes to clang-linker-wrapper to invoke the clang-sycl-linker (via the clang driver call) for
SYCL offloading case.

3. Add SYCL offload wrapping logic to clang-linker-wrapper

4. AOT compilation support for Intel, AMD and NVidia GPUs

• Once SPIR-V backend is available, update the implementation
to use LTO.

	Slide 1: Enhance SYCL offloading support to use the new offloading model
	Slide 2: Agenda
	Slide 3: SYCL Offloading
	Slide 4: SYCL offloading and supported AOT/JIT targets
	Slide 5: Overview of SYCL compiler - Using new offloading model
	Slide 6: Overview of SYCL compiler - Using new offloading model
	Slide 7: Overview of SYCL compiler - Using new offloading model
	Slide 8: Overview of SYCL compiler - Using new offloading model
	Slide 9: Overview of SYCL compiler - Using new offloading model
	Slide 10: Deviations from existing OpenMP offloading flow
	Slide 11: Variation #1: Device code linking
	Slide 12: Variation #2: Linking of SYCL device libraries
	Slide 13: Variation #3: Transmission of user specified data from SYCL compilation phase to SYCL runtime
	Slide 14: Variation #3: Transmission of SYCL specific data from SYCL compilation phase to SYCL runtime
	Slide 15: Variation #4: Device code splitting
	Slide 16: Variation #5: LLVM to SPIR-V IR translation
	Slide 17: Work done so far
	Slide 18: Next Steps
	Slide 19

