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Agenda

• Overview of SYCL offloading
• Highlight some of its important features

• Proposed design to use the new offloading model

• Deviations from existing community flow
• Motivation and proposed changes

• Work done so far

• What next?
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SYCL Offloading

• SYCL is designed for data parallel 
programming and heterogenous 
computing, and provides a 
consistent programming 
language (C++) and APIs across 
CPU, GPU, FPGA, and AI 
accelerators.

• Compiler enables multiple 
toolchains (one for host and one 
each for the targets provided)

clang++ -fsycl –fsycl-targets=intel-gpu-YYY, 
intel-gpu-XXX test.cpp

sycl::ext::oneapi::experimental::device_global<int> dev_var;

void func(sycl::queue q) {
  int val = 42;
  q.copy(&val, dev_var).wait();      
  // The 'dev_var' parameter is by reference
  q.submit([&](sycl::handler &cgh) {

cgh.single_task([=] {
for (int i = 0; i < 10; ++i)

dev_var += i;
});

  });
}

SYCL 
kernel
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SYCL offloading and supported AOT/JIT targets

SYCL

SPIR-V

(JIT target)

Intel GPU AOT

Intel FPGA AOT

OpenCL CPU AOT

PTX AOT

AMDHSA AOT
AOT – Ahead-Of-Time compilation
JIT     -   Just-In-Time compilation
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Overview of SYCL compiler - Using new offloading model

SYCL
program

Device 
LLVM IR

Host Object with 
embedded device 

code

Packaged 
Device 
object

Uses -fembed-offload-object

Clang

Clang offload 
packager

COMPILATION 
STAGE

Compilation step

Input OR Output OR 
Intermediate Representation

Legend
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Overview of SYCL compiler - Using new offloading model
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Overview of SYCL compiler - Using new offloading model
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Overview of SYCL compiler - Using new offloading model
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Overview of SYCL compiler - Using new offloading model

dev1.bc dev2.bc …..devN.bc

Bundled  .o output

clang++ dev1.bc dev2.bc 
–target=spirv  
--sycl-link
-Xlinker <SYCL Link Options>
-o out.o

This invokes the linking job of 
SPIR-V device toolchain.
‘—sycl-link’ directs the job to 
invoke a new tool called
‘clang-sycl-linker’ which 
performs device code linking.

[Clang][SYCL] Introduce clang-sycl-linker to link SYCL 
offloading device code (Part 1 of many)
→ Discussion ongoing if this should be a llvm tool instead.

https://github.com/llvm/llvm-project/pull/112245
https://github.com/llvm/llvm-project/pull/112245
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Deviations from existing OpenMP offloading flow
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Variation #1: Device code linking

Device code linking is performed at LLVM IR level as there is no 
‘mature’ SPIR-V IR linker available.

Current status: llvm-link is used for device code linking.

Final goal: Once SPIR-V backend is available, linking can be 
performed using LTO (full or thin). 
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Variation #2: Linking of SYCL device libraries

Several SYCL device compilation use cases require SYCL device 
libraries to be linked into the device IR.

Current status: llvm-link (with –only-needed option) is used for 
linking device libraries.

Final goal: To be incorporated into the LTO pipeline once SPIR-V 
backend is available.
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Variation #3: Transmission of user specified data from 
SYCL compilation phase to SYCL runtime

struct OffloadingImage {
// LLVM BC, PTX, Object, SPIR-V etc.
ImageKind TheImageKind;
// OpenMP, CUDA, SYCL, etc.
OffloadKind TheOffloadKind;
uint32_t Flags;
// Used to store metadata supposedly required 
by runtime (triple, arch)
MapVector<StringRef, StringRef> StringData;
// actual target code
std::unique_ptr<MemoryBuffer> Image;

}

For some use cases, it is expected that some of 
the compilation flags provided by the user need 
to be propagated to the SYCL runtime

For instance, if a program is compiled using –O0, 
the flag should be propagated to the SYCL 
runtime.

StringData[“compiler options”] = “-O0”;
StringData[“linker options”] = “-O0”;

Goal: Use StringData map to store this information.



Intel ConfidentialDepartment or Event Name 14LLVM Dev Mtg ’24 14

Variation #3: Transmission of SYCL specific data from 
SYCL compilation phase to SYCL runtime

Device image properties
Each device image is accompanied by a ‘property set’ listing device requirements

Example: Optional kernel features (aspect::fp16; aspect::fp64)
queue q;
q.single_task([=]() {

// kernel uses aspect::fp64
double pi = 3.14;

});
// single_task is expected to throw feature_not_supported exception 
during runtime if it is run on a device that does not support fp64.

struct __device_image_property {
char *Name;
void *Value;
// Type is uint32 or byte array
uint32_t Type; uint64_t ValueSize;

} 

Goal: Use StringData map to store this information.
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Variation #4: Device code splitting

module.bc

kernel_with_fp64

SYCL/device requirements
aspects=fp64

kernel_without_fp64

SYCL/device requirements
aspects=

queue q;

if (q.get_device().has(aspect::fp64))

  q.single_task<kernel_with_fp64>([=]() {

    // kernel uses fp64

    double pi = 3.14;

  });

else

  q.single_task<kernel_without_fp64>([=]()

    // kernel *does not* use fp64

    float pi = 3.14f;

  });

Motivation #1: Per used optional feature; For SYCL 2020 
conformance
Motivation #2: Per kernel; To reduce JIT overhead
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Variation #5: LLVM to SPIR-V IR translation

Backend compilation flow for Intel targets require the code to be 
available in SPIR-V format.

Current status: llvm-spirv (an external tool) is used for LLVM to 
SPIR-V translation

Final goal: Once SPIR-V backend is made available for use in 
compilation flows, translation can be performed using the backend 
passes.
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Work done so far

• Top level RFC submitted during end of 2023
• [RFC] Add Full Support for the SYCL Programming Model - Link
• [RFC] Offloading design for SYCL offload kind and SPIR targets - Link

• Initial analysis presented during the EuroLLVM 2024 conference (Thanks Alexey 
Sachkov)
• https://www.youtube.com/watch?v=uhNHlytKX4c

• Initial sets of changes are currently being made upstream (Two PRs under review)
• [SYCL][LLVM] Adding property set I/O library for SYCL
• [Clang][SYCL] Introduce clang-sycl-linker to link SYCL offloading device code (Part 1 of many)
• Special thanks to Joseph Huber for kind guidance on enhancing SYCL offloading flow to use the 

new offload model
• Special thanks to Matt Arsenault, Chris B, and Tom Honermann for great feedback thus far. 

https://discourse.llvm.org/t/rfc-add-full-support-for-the-sycl-programming-model/74080
https://discourse.llvm.org/t/rfc-offloading-design-for-sycl-offload-kind-and-spir-targets/74088
https://github.com/llvm/llvm-project/pull/110771
https://github.com/llvm/llvm-project/pull/112245
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Next Steps

• More PRs to complete the support to add SYCL offloading flow 
to the new offloading model.

1. SYCL finalization steps that will run after llvm-link will be added to the linking flow inside clang-
sycl-linker. One of the finalization steps is device code splitting.

2. Changes to clang-linker-wrapper to invoke the clang-sycl-linker (via the clang driver call) for 
SYCL offloading case.

3. Add SYCL offload wrapping logic to clang-linker-wrapper

4. AOT compilation support for Intel, AMD and NVidia GPUs

• Once SPIR-V backend is available, update the implementation 
to use LTO.
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