
Beyond RAII: Implementing
Linear / Explicitly Destroyed
Types in Vale and Mojo

Evan Ovadia

// Remember to call .join() or .detach() on this thread before it goes out of scope.

// The caller is responsible for calling thePromise.set_value(…)

// Remember to decelerate the car before you stop driving.

// Before the entity is destroyed, remove its ID from the location map.

Can you spot the problem with these comments?

1

// Remember to call .join() or .detach() on this thread before it goes out of scope.

// The caller is responsible for calling thePromise.set_value(…)

// Remember to decelerate the car before you stop driving.

// Before the entity is destroyed, remove its ID from the location map.

Problem: they rely on us to remember to do something!

Can you spot the problem with these comments?

1

In this talk

02 How it prevents bugs

03 Linear types' hidden superpower

04
Mojo implementation, in the
CheckLifetimes MLIR pass

01 What's a linear type?

05
Vale implementation, including
conditionally linear types

2

Usual de�nition:
A linear object must eventually be

consumed, exactly once.

My de�nition:
A linear object can't just go out of scope,

you must eventually explicitly destroy it

in a speci�c way.

What's "linear"?

3

•

•

If you own a std::thread, either:

Call .join() on it
Call .detach() on it

…before it goes out of scope.

If you forget, your program crashes.

Partial solution: std::jthread

void foo() {

 auto t = std::thread{...};

 ...

 // bug: t goes out of scope, we haven't

 // called .join() or .detach(), so it

 // calls std::terminate()

}

(C++)

Example:
join() or detach() a thread

4

•

•

If you own a Thread, either:

Call .join() on it
Call .detach() on it

…before it goes out of scope.

Mojo can check this at compile time.

A struct with @explicit_destroy is

never automatically deleted.

fn foo():

 t = Thread(...)

 ...

 Error: Can't delete `t`: Must call join() or detach()

@explicit_destroy(

 "Must call join() or detach()")

struct Thread:

 ...

 fn join(owned self):

 ...

 destroy self

 fn detach(owned self):

 ...

 destroy self

(Mojo)

Example:
join() or detach() a thread

5

fn foo():

 t = Thread(...)

 ...

 Error: Can't delete `t`: Must call join() or detach()

@explicit_destroy(

 "Must call join() or detach()")

struct Thread:

 ...

 fn join(owned self):

 ...

 destroy self

 fn detach(owned self):

 ...

 destroy self

(Mojo)

•

•

•

•

One must either:

Call a method that takes owned self
Postpone by moving it, either:

into another function:

 someList.append(t^)

to the caller via a return:

 return t^

 (but will still have the same rules)

Example:
join() or detach() a thread

6

fn foo():

 t = Thread(...)

 ...

 t^.detach()

@explicit_destroy(

 "Must call join() or detach()")

struct Thread:

 ...

 fn join(owned self):

 ...

 destroy self

 fn detach(owned self):

 ...

 destroy self

(Mojo)

Example:
join() or detach() a thread

•

•

•

•

One must either:

Call a method that takes owned self
Postpone by moving it, either:

into another function:

 someList.append(t^)

to the caller via a return:

 return t^

 (but will still have the same rules)

6

fn foo(inout threads: List[Thread]):

 t = Thread(...)

 ...

 threads.append(t^)

@explicit_destroy(

 "Must call join() or detach()")

struct Thread:

 ...

 fn join(owned self):

 ...

 destroy self

 fn detach(owned self):

 ...

 destroy self

(Mojo)

Example:
join() or detach() a thread

•

•

•

•

One must either:

Call a method that takes owned self
Postpone by moving it, either:

into another function:

 someList.append(t^)

to the caller via a return:

 return t^

 (but will still have the same rules)

6

fn foo() -> Thread:

 t = Thread(...)

 ...

 return t^

@explicit_destroy(

 "Must call join() or detach()")

struct Thread:

 ...

 fn join(owned self):

 ...

 destroy self

 fn detach(owned self):

 ...

 destroy self

(Mojo)

Example:
join() or detach() a thread

•

•

•

•

One must either:

Call a method that takes owned self
Postpone by moving it, either:

into another function:

 someList.append(t^)

to the caller via a return:

 return t^

 (but will still have the same rules)

6

Partial solution: std::jthread, which

automatically calls .join() when it

goes out of scope.

The problem: it went out of scope

too early, and serialized our loop!

void foo() {

 std::vector<std::jthread> threads;

 // Parallel, hopefully

 for (int i = 0; i < 10; i++) {

 auto t = std::jthread{...};

 // Forgot to add to list!

 }

 // All threads' destructors will join

}

(C++)
Example:
join() or detach() a thread

7

Linear types help us:
•
•
•
•
•
•
•
•
•
•
•
•
•
•

.join() or .detach() a thread

.set_value(result) on a promise

.get() a future
Decelerate before you stop driving
Keep a rocket booster �ring
Handle failed requests
Prevent "hanging" database rows
Prevent "handle leaks", orphan nodes
Ensure another thread handles a message
Prevent inconsistent state
Solve lookup-after-remove
"Linear static reference counting"
Get an error from close(fd)
and more!

8

One should put a value in the

std::promise so that the other thread

can see it.

If we forget to call set_value, then

the other thread won't work.

void foo() {

 std::promise<Result> p = ...

 ...

 // bug: p goes out of scope, we haven't

 // called p.set_value(result), receiving

 // thread has a problem.

}

(C++)

Example:
Forgotten promises

9

fn foo():

 p: Promise<Result> = ...

 ...

 Error: Can't delete `p`: Use set_value()

(Mojo)

Example:
Forgotten promises

Mojo can check this at compile time.

10

fn foo():

 p: Promise<Result> = ...

 ...

 Error: Can't delete `p`: Use set_value()

@explicit_destroy("Use set_value")

struct Promise[T]:

 ...

 fn set_value(owned self, value: T):

 ...

 destroy self

(Mojo)

Example:
Forgotten promises

Mojo can check this at compile time.

A struct with @explicit_destroy is

never automatically deleted.

10

fn foo():

 p: Promise<Result> = ...

 ...

 Error: Can't delete `p`: Use set_value()

@explicit_destroy("Use set_value")

struct Promise[T]:

 ...

 fn set_value(owned self, value: T):

 ...

 destroy self

(Mojo)

Example:
Forgotten promises

•

•

•

•

One must either:

Call a method that takes owned self
Postpone by moving it, either:

into another function:

 someList.append(t^)

to the caller via a return:

 return t^

 (but will still have the same rules)

11

fn foo():

 p: Promise<Result> = ...

 ...

 p^.set_value()

@explicit_destroy("Use set_value")

struct Promise[T]:

 ...

 fn set_value(owned self, value: T):

 ...

 destroy self

(Mojo)

Example:
Forgotten promises

•

•

•

•

One must either:

Call a method that takes owned self
Postpone by moving it, either:

into another function:

 someList.append(t^)

to the caller via a return:

 return t^

 (but will still have the same rules)

11

fn foo():

 p: Promise<Result> = ...

 myResult = ...

 p^.set_value(myResult)

@explicit_destroy("Use set_value")

struct Promise[T]:

 ...

 fn set_value(owned self, value: T):

 ...

 destroy self

(Mojo)

Example:
Forgotten promises

•

•

•

•

One must either:

Call a method that takes owned self
Postpone by moving it, either:

into another function:

 someList.append(t^)

to the caller via a return:

 return t^

 (but will still have the same rules)

11

fn foo():

 f: Future[ImportantLinearThing] = ...

 ...

 Error: Can't delete `f`: Use get()

(Mojo)

Example:
Dropped futures

A container might have an

important linear type in it.

We should extract it before

destroying the container.

12

(Mojo)

Example:
Dropped futures

A container might have an

important linear type in it.

We should extract it before

destroying the container.

Mojo can check this at compile time.

A struct with @explicit_destroy is

never automatically deleted.

fn foo():

 f: Future[ImportantLinearThing] = ...

 ...

 Error: Can't delete `f`: Use get()

@explicit_destroy("Use get()")

struct Future[T]:

 ...

 fn get(owned self) -> T:

 self.wait()

 v = self.value^

 destroy self

 return v^

12

(Mojo)

Example:
Dropped futures

A container might have an

important linear type in it.

We should extract it before

destroying the container.

Mojo can check this at compile time.

A struct with @explicit_destroy is

never automatically deleted.

fn foo():

 f: Future[ImportantLinearThing] = ...

 ...

 thing = f^.get()

@explicit_destroy("Use get()")

struct Future[T]:

 ...

 fn get(owned self) -> T:

 self.wait()

 v = self.value^

 destroy self

 return v^

13

•

•

•

•

They ensured we eventually made a decision:
t^.join()
t^.detach()

They ensured we eventually calculated and gave a value:
p^.set_value(myResult)

They ensured we eventually took a value:
value = f^.get()

A pattern emerges

14

You can craft a linear type's methods (which take owned self) to help enforce what will

eventually happen:

Multiple methods: a decision to eventually make.

Arguments: data to eventually calculate and give.

Return values: data to eventually take.

You can combine these!

With linear types, you control the future.

15

Linear types help us:
•
•
•
•
•
•
•
•
•
•
•
•
•
•

.join() or .detach() a thread

.get() a future

.set_value(result) on a promise
Decelerate before you stop driving
Keep a rocket booster �ring
Handle failed requests
Prevent "hanging" database rows
Prevent "handle leaks", orphan nodes
Ensure another thread handles a message
Prevent inconsistent state
Solve lookup-after-remove
"Linear static reference counting"
Get an error from close(fd)
and more!

16

•

•

Add an entity to the LiveEntityList to

get some LiveEntityHandles.

These handles can go in e.g.:

A location-to-entity-handle map

A faction-to-entity-handle map

Remove an Entity from the

LiveEntityList by giving back the two

LiveEntityHandles.

Can only be created by LiveEntityList

@explicit_destroy(

 "Use LiveEntityList's remove")

struct LiveEntityHandle:

 var index: Int

struct LiveEntityList:

 var entities: List[Entity]

 fn add(owned e: Entity) ->

 (LiveEntityHandle, LiveEntityHandle):

 …

 fn remove(

 owned h1: LiveEntityHandle,

 owned h2: LiveEntityHandle) -> Entity:

 …

Example: Prevent
inconsistent state

17

•

•

Add an entity to the LiveEntityList to

get some LiveEntityHandles.

These handles can go in e.g.:

A location-to-entity-handle map

A faction-to-entity-handle map

Remove an Entity from the

LiveEntityList by giving back the two

LiveEntityHandles.

Can only be created by LiveEntityList

@explicit_destroy(

 "Use LiveEntityList's remove")

struct LiveEntityHandle:

 var index: Int

struct LiveEntityList:

 var entities: List[Entity]

 fn add(owned e: Entity) ->

 (LiveEntityHandle, # for location map

 LiveEntityHandle): # for faction map

 …

 fn remove(

 owned h1: LiveEntityHandle,

 owned h2: LiveEntityHandle) -> Entity:

 …

Example: Prevent
inconsistent state

17

•

•

•

•

If you have a LiveEntityHandle, you

know it's still in the LiveEntityList.

"Dangling" LiveEntityHandles are

impossible!

Must take the handles from the

maps before you can remove the

entity from the LiveEntityList

Maps can never get out of sync!

Example: Prevent
inconsistent state # Can only be created by LiveEntityList

@explicit_destroy(

 "Use LiveEntityList's remove")

struct LiveEntityHandle:

 var index: Int

struct LiveEntityList:

 var entities: List[Entity]

 fn add(owned e: Entity) ->

 (LiveEntityHandle, # for location map

 LiveEntityHandle): # for faction map

 …

 fn remove(

 owned h1: LiveEntityHandle,

 owned h2: LiveEntityHandle) -> Entity:

 … 18

Example: Prevent
inconsistent state # Can only be created by LiveEntityList

@explicit_destroy(

 "Use LiveEntityList's remove")

struct LiveEntityHandle:

 var index: Int

struct LiveEntityList:

 var entities: List[Entity]

 fn add(owned e: Entity) ->

 (LiveEntityHandle, # for location map

 LiveEntityHandle): # for faction map

 …

 fn remove(

 owned h1: LiveEntityHandle,

 owned h2: LiveEntityHandle) -> Entity:

 …

•

•

•

•

If you have a LiveEntityHandle, you

know it's still in the LiveEntityList.

"Dangling" LiveEntityHandles are

impossible!

Must take the handles from the

maps before you can remove the

entity from the LiveEntityList

Maps can never get out of sync!

"Non-scoped borrowing"?
"Linear compile-time ref-counting"?

18

struct Ship:

 var hp: Int

fn main():

 ship = Ship(42)

 x = ship.hp

 print(x)

Normal structs in Mojo use "ASAP destruction".

The __del__ call is inserted as early as possible.

Context: ASAP Destruction

19

struct Ship:

 var hp: Int

fn main():

 ship = Ship(42)

 x = ship.hp

 ship^.__del__()

 print(x)

Normal structs in Mojo use "ASAP destruction".

The __del__ call is inserted as early as possible.

Context: ASAP Destruction

19

•

•

CheckLifetimes pass will:

Finds lifetime starts and ends.

Insert any __del__ destructor calls.

CheckLifetimes MLIR Pass

20

lit.func @"main()"() -> !kgen.none {
 %x = decl "x" …
 %ship = decl "ship" …
 %0 = constant 42 …
 %1 = call @"Ship::__init__"(%ship, %0) …
 %2 = ger %ship[hp] …
 %3 = load %2 …
 store %3, %x …
 %5 = immut %x …
 %7 = call @"print[Int]"(%5) …
}

CheckLifetimes MLIR Pass
fn main():

 ship = Ship(42)

 x = ship.hp

 print(x)

21

lit.func @"main()"() -> !kgen.none {
 %x = decl "x" …
 %ship = decl "ship" …
 %0 = constant 42 …
 %1 = call @"Ship::__init__"(%ship, %0) {start ship} …
 %2 = ger %ship[hp] {use ship} …
 %3 = load %2 {use ship} …
 store %3, %x {start x} …
 %5 = immut %x {use x} …
 %7 = call @"print[Int]"(%5) {use x} …
}

CheckLifetimes MLIR Pass
fn main():

 ship = Ship(42)

 x = ship.hp

 print(x)

21

lit.func @"main()"() -> !kgen.none {
 %x = decl "x" …
 %ship = decl "ship" …
 %0 = constant 42 …
 %1 = call @"Ship::__init__"(%ship, %0) {start ship} …
 %2 = ger %ship[hp] {use ship} …
 %3 = load %2 {use ship} …
 store %3, %x {start x} …
 %5 = immut %x {use x} …
 %7 = call @"print[Int]"(%5) {use x} …
}

CheckLifetimes MLIR Pass
fn main():

 ship = Ship(42)

 x = ship.hp

 print(x)

21

lit.func @"main()"() -> !kgen.none {
 %x = decl "x" …
 %ship = decl "ship" …
 %0 = constant 42 …
 %1 = call @"Ship::__init__"(%ship, %0) {start ship} …
 %2 = ger %ship[hp] {use ship} …
 %3 = load %2 {use ship} …
 store %3, %x {start x} …
 %5 = immut %x {use x} …
 %7 = call @"print[Int]"(%5) {use x} …
 lifetime.end %x …
}

CheckLifetimes MLIR Pass
fn main():

 ship = Ship(42)

 x = ship.hp

 print(x)

21

lit.func @"main()"() -> !kgen.none {
 %x = decl "x" …
 %ship = decl "ship" …
 %0 = constant 42 …
 %1 = call @"Ship::__init__"(%ship, %0) {start ship} …
 %2 = ger %ship[hp] {use ship} …
 %3 = load %2 {use ship} …
 lifetime.start %x
 store %3, %x {start x} …
 %5 = immut %x {use x} …
 %7 = call @"print[Int]"(%5) {use x} …
 lifetime.end %x …
}

CheckLifetimes MLIR Pass
fn main():

 ship = Ship(42)

 x = ship.hp

 print(x)

21

lit.func @"main()"() -> !kgen.none {
 %x = decl "x" …
 %ship = decl "ship" …
 %0 = constant 42 …
 %1 = call @"Ship::__init__"(%ship, %0) {start ship} …
 %2 = ger %ship[hp] {use ship} …
 %3 = load %2 {use ship} …
 lifetime.end %ship
 lifetime.start %x
 store %3, %x {start x} …
 %5 = immut %x {use x} …
 %7 = call @"print[Int]"(%5) {use x} …
 lifetime.end %x …
}

CheckLifetimes MLIR Pass
fn main():

 ship = Ship(42)

 x = ship.hp

 print(x)

21

lit.func @"main()"() -> !kgen.none {
 %x = decl "x" …
 %ship = decl "ship" …
 %0 = constant 42 …
 %1 = call @"Ship::__init__"(%ship, %0) {start ship} …
 %2 = ger %ship[hp] {use ship} …
 %3 = load %2 {use ship} …
 %8 = call @"Ship::__del__"(%ship)
 lifetime.end %ship
 lifetime.start %x
 store %3, %x {start x} …
 %5 = immut %x {use x} …
 %7 = call @"print[Int]"(%5) {use x} …
 lifetime.end %x …
}

CheckLifetimes MLIR Pass
fn main():

 ship = Ship(42)

 x = ship.hp

 print(x)

21

lit.func @"main()"() -> !kgen.none {
 %x = decl "x" …
 %ship = decl "ship" …
 %0 = constant 42 …
 lifetime.start %ship
 %1 = call @"Ship::__init__"(%ship, %0) {start ship} …
 %2 = ger %ship[hp] {use ship} …
 %3 = load %2 {use ship} …
 %8 = call @"Ship::__del__"(%ship)
 lifetime.end %ship
 lifetime.start %x
 store %3, %x {start x} …
 %5 = immut %x {use x} …
 %7 = call @"print[Int]"(%5) {use x} …
 lifetime.end %x …
}

CheckLifetimes MLIR Pass
fn main():

 ship = Ship(42)

 x = ship.hp

 print(x)

21

fn main():

 ship = Ship(42)

 hp = ship.hp

 landing_zone = ...

 ship^.land(landing_zone)

 print(hp)

This is the correct code.

CheckLifetimes
with linear types

22

fn main():

 ship = Ship(42)

 hp = ship.hp

 landing_zone = ...

 ship^.land(landing_zone)

 print(hp)

@explicit_destroy("Use land()")

struct Ship:

 var hp: Int

 ...

 fn land(owned self, landing_zone: Loc):

 ...

 destroy self

This is the correct code.

CheckLifetimes
with linear types

22

fn main():

 ship = Ship(42)

 hp = ship.hp

 Error: Can't delete `ship`: Use land()

 # landing_zone = ...

 # ship^.land(landing_zone)

 print(hp)

@explicit_destroy("Use land()")

struct Ship:

 var hp: Int

 ...

 fn land(owned self, landing_zone: Loc):

 ...

 destroy self

CheckLifetimes
with linear types

22

lit.func @"main()"() -> !kgen.none {
 %x = decl "x" …
 %ship = decl "ship" …
 %0 = constant 42 …
 %1 = call @"Ship::__init__"(%ship, %0) {start ship} …
 %2 = ger %ship[hp] {use ship} …
 %3 = load %2 {use ship} …
 lifetime.end %ship
 lifetime.begin %x
 store %3, %x {start x} …
 %5 = immut %x {use x} …
 %7 = call @"print[Int]"(%5) {use x} …
 lifetime.end %x …
}

CheckLifetimes (with linear types)
fn main():

 ship = Ship(42)

 x = ship.hp

 print(x)

23

lit.func @"main()"() -> !kgen.none {
 %x = decl "x" …
 %ship = decl "ship" …
 %0 = constant 42 …
 %1 = call @"Ship::__init__"(%ship, %0) {start ship} …
 %2 = ger %ship[hp] {use ship} …
 %3 = load %2 {use ship} …
 Error: Can't delete `ship`: Use land()
 lifetime.end %ship
 lifetime.begin %x
 store %3, %x {start x} …
 %5 = immut %x {use x} …
 %7 = call @"print[Int]"(%5) {use x} …
 lifetime.end %x …
}

fn main():

 ship = Ship(42)

 x = ship.hp

 print(x)

CheckLifetimes (with linear types)

23

struct Box[T: AnyType]:

 var value: T

 # auto-generated

 fn __del__(owned self):

 Error: Can't delete `self.value`: No __del__

 self.value^.__del__()

Can't assume T has a destructor.

If T doesn't have a destructor, what

does Box[T]'s destructor call?

24

The Container Problem

struct Box[T: AnyType]:

 var value: T

 fn __del__(owned self)

 where exists T::__del__():

 self.value^.__del__()

Can't assume T has a destructor.

If T doesn't have a destructor, what

does Box[T]'s destructor call?

Vale's Conditionally
Linear Types

25

(Vale, using Mojo-ish syntax)

•

•

•

•

•

•

Basic compiler support (Done)

Conditionally linear types

Update standard library: Dict, List, Box, Variant, etc.

Launch behind a compiler �ag, e.g. —enable_explicit_destroy

Get community feedback

If it all looks good, enable by default!

Roadmap

26

Questions

Open roles at Modular ⬆

•

•

•

•

•

•

Some good unanswered ones:

Can we have linear types in C++?

Compared to RAII

Compared to [[nodiscard]]

How strong of a guarantee is it?

Where can/can't we have linear types?

How are these linear types?

∞

•

•

•

Di�cult in C++ because of exceptions, stack unwinding.

Mojo doesn't have exceptions / stack unwinding, so not a problem.

Same with Vale, no stack unwinding.

Vale hopes/dreams: onPanic function, region-based software transactional memory

Almost there: C++ has private destructors, but std::move doesn't actually destroy its source.

More powerful than [[nodiscard]]; follows the type through the codebase, past this function.

Linear types in C++?

30

•

•

Answer: pretty strong.

Except:

Memory leaks

exit() before destroying linear types

How strong of a guarantee is this?

31

•

•

•

•

Answer: Yes, occasionally.

Reference counted objects normally require a zero-arg destructor. Some possibilities:

Just require all reference counted things to have a zero-arg destructor.

One linear OwningRef<Thing>, multiple RefCounted<Optional<Thing>>

Globals might require a zero-arg destructor, run after main. Some possibilities:

Just require all globals to have a zero-arg destructor.

Explicitly initialize and destroy all globals.

Are there places that can't hold linear types?

32

•

•

•

RAII can call one destructor, with zero arguments, and no return.

Linear types can help us remember to call:

A function with many arguments: p^.set_value(result)

A function with a return value: value = f^.get()

One of many valid options: t^.join() vs t^.detach()

A more flexible, super-powered RAII

29

