Niodular

Beyond RAll: Implementing
Linear / Explicitly Destroyed
Types In Vale ana IMojo

Y
Can you spot the problem with these comments?

/| Remember to call .join() or .detach() on this thread before it goes out of scope.
/| The caller is responsible for calling thePromise.set_value(...)
/| Remember to decelerate the car before you stop driving.

/| Before the entity is destroyed, remove its ID from the location map.

Y
Can you spot the problem with these comments?

/| Remember to call .join() or .detach() on this thread before it goes out of scope.
/| The caller is responsible for calling thePromise.set_value(...)
/| Remember to decelerate the car before you stop driving.

/| Before the entity is destroyed, remove its ID from the location map.

Problem: they rely on us to remember to do something!

In this talk

O1

02

03

04

05

What's a linear type?

How it prevents bugs

Linear types' hidden superpower

Mojo implementation, in the
CheckLifetimes MLIR pass

Vale implementation, including
conditionally linear types

What's "linear™?

Usual definition:
A linear object must eventually be
consumed, exactly once.

My definition:

A linear object can't just go out of scope,
you must eventually explicitly destroy it
INn a specific way.

Example:

join() or detach() a thread

(C++)
void foo() {

If you own a std::thread, either:
auto t = std::thread{...};

. Call join() on it

- Call .detaCh() on it // bug: t goes out of scope, we haven't

..before it goes out of scope. // called .join() or .detach(), so it
// calls std::terminate()

If you forget, your program crashes. ’

Partial solution: std::jthread

Example:

join() or detach() a thread

If you own a Thread, either:

Ca
Ca

Join() on it
detach() on it

..pefore it goes out of scope.

Mojo can check this at compile time.

A struct with @explicit_destroy is
never automatically deleted.

(Mojo)
fn foo():
t = Thread(...)

Error: Can't delete t': Must call join() or detach()

@explicit destroy(
"Must call join() or detach()")
struct Thread:

fn join(owned self):

destroy self
fn detach(owned self):

destroy self

Example: v
join() or detach() a thread (oo

fn foo():

One must either: t = Thread(...)

- Call a method that takes owned self Error: Can't delete t: Must call join() or detach()

- Postpone by moving it, either:

e into another function: @explicit_destroy(

SomeList.append(t/\) Must call join() or detach()")

. struct Thread:
e tothe callerviaareturn:

return tA fn join(owned self):

(but will still have the same rules)
destroy self

fn detach(owned self):

destroy self

Example:
join() or detach() a thread (oo

fn foo():

One must either: t = Thread(...)

. Call a method that takes owned self
tA.detach()

- Postpone by moving it, either:

e into another function: @explicit_destroy(

somelList. append(t/\) "Must call join() or detach()")

. struct Thread:
e tothe callerviaareturn:

return tA fn join(owned self):

(but will still have the same rules)
destroy self

fn detach(owned self):

destroy self

Example:
join() or detach() a thread (oo

fn foo(inout threads: List[Thread]):

One must either: t = Thread(...)

- Call a method that takes owned self
threads.append(tA?)

- Postpone by moving it, either:

e into another function: @explicit_destroy(

SomeList.append(t/\) Must call join() or detach()")

. struct Thread:
e tothe callerviaareturn:

return tA fn join(owned self):

(but will still have the same rules)
destroy self

fn detach(owned self):

destroy self

Example:
join() or detach() a thread (oo

fn foo() -> Thread:

One must either: t = Thread(...)

. Call a method that takes owned self

return tA

- Postpone by moving it, either:

e into another function: @explicit_destroy(

SomeList.append(t/\) Must call join() or detach()")

. struct Thread:
e tothe callerviaareturn:

return tA fn join(owned self):

(but will still have the same rules)
destroy self

fn detach(owned self):

destroy self

Example:
join() or detach() a thread I (e

std: :vector<std::jthread> threads;

Partial solution: std:;jthread, which
. .. . // Parallel, hopefully
automatically calls .join() when it e | |
for (int i = 0; 1 < 10; i++) {

goeS out of SCOpe' auto t = std::jthread{...};
// Forgot to add to list!

The problem: it went out of scope
too early, and serialized our loop!

// All threads' destructors will join

Linear types help us:

join() or .detach() a thread
set_value(result) on a promise

.get() a future

Decelerate before you stop driving
Keep a rocket booster firing

Handle failed requests

Prevent "hanging” database rows
Prevent "handle leaks”, orphan nodes
Ensure another thread handles a message
Prevent inconsistent state

Solve lookup-after-remove

"Linear static reference counting”
Get an error from close(fd)

and more!

Example: |
Forgotten promises

One should put a value in the
std::promise so that the other thread

can see |t.

If we forget to call set_value, then
the other thread won't work.

(C++)

void foo() {

¥

std: :promise<Result> p = ...

// bug: p goes out of scope, we haven't

// called p.set value(result),
// thread has a problem.

receiving

Example: |
Forgotten promises

(Mojo)
: : : : fn foo():
Mojo can check this at compile time.

p: Promise<Result> = ...

Error: Can't delete p: Use set_value()

Example:
Forgotten promises

(Mojo)

Mojo can check this at compile time. fn £oo():

p: Promise<Result> = ...

A struct with @explicit_destroy is Error: Can't delete 'p’: Use set value()
never automatically deleted.

@explicit_destroy("Use set_value")

struct Promise[T]:
fn set value(owned self, value: T):

destroy self

Example: |
Forgotten promises

(Mojo)

I fn £ :
One must either: n foo()

. Call a method that takes owned self

p: Promise<Result> = ...

. Postpone by moving it, either: Error: Can't delete 'p’: Use set value()

e Into another function:

] @explicit_destroy('"Use set_value")
someList.append(t*) 5 — y

struct Promise[T]:
e tothe callerviaareturn:

return tA fn set value(owned self, value: T):

(but will still have the same rules)
destroy self

Example: |
Forgotten promises

(Mojo)

I fn £ :
One must either: n foo()

. Call a method that takes owned self

p: Promise<Result> = ...

- Postpone by moving it, either: pA.set_value()

e Into another function:

] @explicit_destroy('"Use set_value")
someList.append(t*) 5 — y

struct Promise[T]:
e tothe callerviaareturn:

return tA fn set value(owned self, value: T):

(but will still have the same rules)
destroy self

Example: |
Forgotten promises

(Mojo)

I fn £ :
One must either: n foo()

. Call a method that takes owned self

p: Promise<Result> = ...

myResult = ...
. POStpOne by moving it, either: pA.set _value(myResult)

e Into another function:

] @explicit_destroy('"Use set_value")
someList.append(t*) 5 — y

struct Promise[T]:
e tothe callerviaareturn:

return tA fn set value(owned self, value: T):

(but will still have the same rules)
destroy self

Example:
Dropped futures

A container might have an
important linear type in it.

We should extract it before
destroying the container.

(Mojo)
fn foo():

f: Future[ImportantLinearThing]

Error: Can't delete f: Use get()

Example:
Dropped futures

A container might have an
important linear type in it.

We should extract it before
destroying the container.

Mojo can check this at compile time.

A struct with @explicit_destroy is
never automatically deleted.

(Mojo)
fn foo():

f: Future[ImportantLinearThing]

Error: Can't delete f: Use get()

@explicit destroy("Use get()")
struct Future[T]:

fn get(owned self) -> T:
self.wait()
v = self.value”
destroy self

return vA

Example:
Dropped futures

A container might have an
important linear type in it.

We should extract it before
destroying the container.

Mojo can check this at compile time.

A struct with @explicit_destroy is
never automatically deleted.

(Mojo)
fn foo():

f: Future[ImportantLinearThing]

thing = fA.get()

@explicit destroy("Use get()")
struct Future[T]:

fn get(owned self) -> T:
self.wait()
v = self.value”
destroy self

return vA

A pattern emerges

They ensured we eventually made a decision:
- tA.join()
- tA.detach()

They ensured we eventually calculated and gave a value:
- pr.set _value(myResult)

They ensured we eventually took a value:
- value = fAr.get()

With linear types, you control the future.

You can craft a linear type's methods (which take owned self) to help enforce what will
eventually happen:

Multiple methods: a decision to eventually make.
Arguments: data to eventually calculate and give.
Return values: data to eventually take.

You can combine these!

Linear types help us:

join() or .detach() a thread

.get() a future

set_value(result) on a promise
Decelerate before you stop driving
Keep a rocket booster firing

Handle failed requests

Prevent "hanging” database rows
Prevent "handle leaks”, orphan nodes
Ensure another thread handles a message
Prevent inconsistent state

Solve lookup-after-remove

"Linear static reference counting”
Get an error from close(fd)

and more!

Example: Prevent W
IhCOﬂSlStent State # Can only be created by LiveEntityList

@explicit destroy(

"Use LiveEntityList's remove")

Add an entlty to the LIVGEntItyLISt to struct LiveEntityHandle:
get some LiveEntityHandles. var index: Int

_ struct LiveEntityList:
These handles can goine.g.

- A location-to-entity-handle map

- A faction-to-entity-handle map fn add(owned e: Entity) ->
(LiveEntityHandle, LiveEntityHandle):

var entities: List[Entity]

Remove an Entity from the

_iveEntityList by giving back the two
_iveEntityHandles.

fn remove(

owned hl: LiveEntityHandle,
owned h2: LiveEntityHandle) -> Entity:

Example: Prevent W
IhCOﬂSlStent State # Can only be created by LiveEntityList

@explicit destroy(

"Use LiveEntityList's remove")

Add an entlty to the LIVGEntItyLISt to struct LiveEntityHandle:
get some LiveEntityHandles. var index: Int

_ struct LiveEntityList:
These handles can goine.g.

- A location-to-entity-handle map

var entities: List[Entity]

- A faction-to-entity-handle map fn add(owned e: Entity) ->
(LiveEntityHandle, # for location map
Demove an Entlty from the LiveEntityHandle): # for faction map

_iveEntityList by giving back the two
_iveEntityHandles.

fn remove(

owned hl: LiveEntityHandle,
owned h2: LiveEntityHandle) -> Entity:

Example: Prevent
INnconsistent state

- If you have a LiveEntityHandle, you
know it's still in the LiveEntityList.

- "Dangling” LiveEntityHandles are
impossible!

- Must take the handles from the
maps before you can remove the
entity from the LiveEntityList

Maps can never get out of syncl!

\V

Can only be created by LiveEntityList
@explicit destroy(

"Use LiveEntityList's remove")
struct LiveEntityHandle:

var 1ndex: Int

struct LiveEntityList:

var entities: List[Entity]

fn add(owned e: Entity) ->
(LiveEntityHandle, # for location map
LiveEntityHandle): # for faction map

fn remove(
owned hl: LiveEntityHandle,
owned h2: LiveEntityHandle) -> Entity:

Example: Prevent
INnconsistent state

- If you have a LiveEntityHandle, you
know it's still in the LiveEntityList.

- "Dangling” LiveEntityHandles are
impossible!

- Must take the handles from the
maps before you can remove the
entity from the LiveEntityList

- Maps can never get out of syncl!

"Non-scoped borrowing"?
"Linear compile-time ref-counting™?

\V

Can only be created by LiveEntityList
@explicit destroy(

"Use LiveEntityList's remove")
struct LiveEntityHandle:

var 1ndex: Int

struct LiveEntityList:

var entities: List[Entity]

fn add(owned e: Entity) ->
(LiveEntityHandle, # for location map
LiveEntityHandle): # for faction map

fn remove(
owned hi: LiveEntityHandle,
owned h2: LiveEntityHandle) -> Entity:

Context: ASAP Destruction

Normal structs in Mojo use "ASAP destruction®.

The

del callisinserted as early as possible.

struct Ship:
var hp: Int

fn main():
ship = Ship(42)
X = ship.hp
print(x)

19

Context: ASAP Destruction

Normal structs in Mojo use "ASAP destruction®.

The

del callisinserted as early as possible.

struct Ship:
var hp: Int

fn main():
ship = Ship(42)
X = ship.hp

——————Jp shipr.__del_ ()

print(x)

19

CheckLifetimes MLIR Pass

CheckLifetimes pass will:
* Finds lifetime starts and ends.
* Insert any __del destructor calls.

CheckLifetimes MLIR Pass

lit.func @"main()"() -> !kgen.none { fn main():
%x = decl "x" ..
%ship = decl "ship" ..
%0 = constant 42 ..

%1 = call @"Ship:: 1init "(%ship, %0) .. ship = Ship(42)
%2 = ger %shipl[hp] ..
%3 = load %2 ..
store %3, %X .. X = ship.hp
%5 = i1mmut %x ..
%7 = call @"print[Int]"(%5) .. print(x)

2]

CheckLifetimes MLIR Pass

lit.func @"main()"() -> !kgen.none { fn main():
%x = decl "x" ..
%ship = decl "ship" ..

= constant 42 ..

o®
o

%1 = call @"Ship:: init "(%ship, %0) {start ship} .. ship = Ship(42)
%2 = ger %ship[hp] {use ship} ..
%3 = load %2 {use ship} ..
store %3, %x {start x} .. X = ship.hp
%5 = 1mmut %x {use x} ..
%7 = call @"print[Int]"(%5) {use x} .. print(x)

2]

CheckLifetimes MLIR Pass

lit.func @"main()"() -> !kgen.none { fn main():

(¢

X = decl "x" ..

o

o

ship = decl "ship" ..
= constant 42 ..

o®
o

%1 = call @"Ship:: init "(%ship, %0) {start ship} .. ship = Ship(42)
%2 = ger %ship[hp] {use ship} ..
%3 = load %2 {use ship} ..
store %3, %x {start x} .. X = ship.hp
%5 = 1mmut %x {use x} ..
call @"print[Int]"(%5) {use x} .. print(x)

\-Y-J |
of
~
1

2]

CheckLifetimes MLIR Pass

lit.func @"main()"() -> !kgen.none { fn main():
%x = decl "x" ..

%ship = decl "ship" ..

o®
o

= constant 42 ..

%1 = call @"Ship:: init "(%ship, %0) {start ship} .. ship = Ship(42)
%2 = ger %ship[hp] {use ship} ..
%3 = load %2 {use ship} ..

—} store %3, %x {start x} .. X = ship.hp

o
Ul
Il

immut %x {use x} ..
call @"print[Int]"(%5) {use x} .. print(x)
lifetime.end %x ..

o®
~
Il

2]

o®
w

CheckLifetimes MLIR Pass

lit.func @"main()"() -> !kgen.none { fn main():
%x = decl "x" ..

%ship = decl "ship" ..

o®
o

= constant 42 ..

%1 = call @"Ship:: init "(%ship, %0) {start ship} .. ship = Ship(42)
%2 = ger %ship[hp] {use ship} ..
= load %2 {use ship} ..
lifetime.start %x X = ship.hp
store %3, %x {start x} ..
%5 = immut %x {use x} .. print(x)

o®
~
Il

call @"print[Int]"(%5) {use x} ..
lifetime.end %x ..

2]

o®
w

CheckLifetimes MLIR Pass

lit.func @"main()"() -> !kgen.none { fn main():
%x = decl "x" ..

%ship = decl "ship" ..

o®
o

= constant 42 ..

%1 = call @"Ship:: init "(%ship, %0) {start ship} .. ship = Ship(42)
%2 = ger %ship[hp] {use ship} ..
= load %2 {use ship} ..
lifetime.end %ship X = ship.hp
lifetime.start %x
store %3, %x {start x} .. print(x)

oX
Ul
1l

immut %x {use x} ..
call @"print[Int]"(%5) {use x} ..
lifetime.end %x ..

o
~
Il

2]

CheckLifetimes MLIR Pass

lit.func @"main()"() -> !kgen.none { fn main():

%x = decl "x" ..

%ship = decl "ship" ..

%0 = constant 42 ..

—} %1 = call @"Ship:: 1init "(%ship, %0) {start ship} .. ship = Ship(42)

%2 = ger %ship[hp] {use ship} ..

%3 = load %2 {use ship} ..

%8 = call @"Ship:: del "(%ship) X = ship.hp
lifetime.end %ship
lifetime.start %x print(x)
store %3, %x {start x} ..

%5 = 1mmut %x {use x} ..

%7 = call @"print[Int]"(%5) {use x} ..

lifetime.end %x ..

2]

CheckLifetimes MLIR Pass

lit.func @"main()"() -> !kgen.none { fn main():
%x = decl "x" ..

%ship = decl "ship" ..

o®
o

= constant 42 ..

—} lifetime.start %ship ship = Ship(42)
%1 = call @"Ship:: 1init "(%ship, %0) {start ship} ..
%2 = ger %ship[hp] {use ship} ..
%3 = load %2 {use ship} .. X = ship.hp
%8 = call @"Ship:: del "(%ship)
lifetime.end %ship print(x)

lifetime.start %x
store %3, %x {start x} ..

o

5 = immut %x {use x} ..
call @"print[Int]"(%5) {use x} ..
lifetime.end %x ..

o®
~
Il

CheckLifetimes

Wlth |Inear types fn main():
ship = Ship(42)
This is the correct code. AP = ship-hp

landing zone = ...

ship”.land(landing zone)

print(hp)

CheckLifetimes v
with linear types fn main():

ship = Ship(42)

.. hp = ship.h
This is the correct code. P = SHIP-AP

landing zone = ...
ship”.land(landing zone)

print(hp)
@explicit_destroy("Use land()")

struct Ship:
var hp: Int

fn land(owned self, landing zone: Loc):

destroy self

CheckLifetimes
with linear types fn main():

ship = Ship(42)

hp = ship.hp

Error: Can't delete ship: Use land()
landing zone = ...

ship”.land(landing zone)
print(hp)

@explicit _destroy("Use land()")
struct Ship:
var hp: Int

fn land(owned self, landing zone: Loc):

destroy self

22

o®
w

CheckLifetimes (with linear types)

lit.func @"main()"() -> !kgen.none { fn main():

(&)

X = decl "x" ..

o

o

ship = decl "ship" ..

o®
o

= constant 42 ..

%1 = call @"Ship:: init "(%ship, %0) {start ship} .. ship = Ship(42)
%2 = ger %ship[hp] {use ship} ..
= load %2 {use ship} ..
lifetime.end %ship X = ship.hp
lifetime.begin %x
store %3, %x {start x} .. print(x)

o®
Ul
1l

immut %x {use x} ..
call @"print[Int]"(%5) {use x} ..
lifetime.end %x ..

X
~
Il

23

o®
w

CheckLifetimes (with linear types)

lit.func @"main()"() -> !kgen.none { fn main():
%x = decl "x" ..
%ship = decl "ship" ..

= constant 42 ..

o®
o

%1 = call @"Ship:: init "(%ship, %0) {start ship} .. ship = Ship(42)
%2 = ger %ship[hp] {use ship} ..
= load %2 {use ship} ..
Error: Can't delete “ship ™ : Use land() x = ship.hp
lifetime.end %ship
lifetime.begin %x print(x)

store %3, %x {start x} ..

immut %x {use x} ..

7 = call @"print[Int]"(%5) {use x} ..
lifetime.end %x ..

oX
Ul
Il

o

23

The Container Problem

I t t B T: AnyT :
Can't assume T has a destructor. struct Box[T: AnyType]

var value: T

auto-generated

If T doesn’'t have a destructor, what fn del (owned self):

does BOX[T 's destructor call? Error: Can't delete ‘self.value™ No _del__
self.valuer. del ()

Vale's Conditionally
Linear Types

Can't assume T has a destructor.

If T doesn't

nave a destructor, what

does Box|[T

's destructor call?

fn

var value: T

struct Box[T: AnyType]:

del (owned self)

where exists T:: del

self.value”.

__del ()

(Vale, using Mojo-ish syntax)

O):

29

Roadmap

* Basic compiler support (Done)

* Conditionally linear types

* Update standard library: Dict, List, Box, Variant, etc.

* Launch behind a compiler flag, e.g. —enable_explicit_destroy
* Get community feedback

* If it all looks good, enable by default!

Questions

Some good unanswered ones:

* Can we have
* Compared to
* Compared to

inear types in C++?
RAII

[nodiscard]]

* How strong of a guarantee is it?
* Where can/can't we have linear types?
* How are these linear types”?

[a]

Open roles at Modular |/

Linear types in C++7?

Difficult in C++ because of exceptions, stack unwinding.

* Mojo doesn't have exceptions / stack unwinding, so not a problem.

* Same with Vale, no stack unwinding.

* Vale hopes/dreams: onPanic function, region-based software transactional memory

Almost there: C++ has private destructors, but std::move doesn't actually destroy its source.

More powerful than [[nodiscard]]; follows the type through the codebase, past this function.

How strong of a guarantee is this?

Answer: pretty strong.

Except:
* Memory leaks
* exit() before destroying linear types

Are there places that can't hold linear types”?

Answer: Yes, occasionally.

Reference counted objects normally require a zero-arg destructor. Some possibilities:
* Just require all reference counted things to have a zero-arg destructor.
* One linear OwningRef<Thing>, multiple RefCounted<Optional<Thing>>

Globals might require a zero-arg destructor, run after main. Some possibilities:
* Just require all globals to have a zero-arg destructor.
* Explicitly initialize and destroy all globals.

A more flexible, super-powered RAll

RAIl can call one destructor, with zero arguments, and no return.

Linear types can help us remember to call:
* A function with many arguments. p~.set_value(result)

* Afunction with a return value: value = fA.get()
* One of many valid options: t~.join() vs t~.detach()

