
Advancing SPIR-V Backend Stability:
Navigating GlobalISel Compromises
Vyacheslav Levytskyy

Michal Paszkowski

LLVM Developers' Meeting 2024

Intel ConfidentialDepartment or Event Name 2LLVM Developers' Meeting 2024 2

Agenda
• Brief recap of key concepts

• The key challenges in mapping LLVM IR to SPIR-V

• Reflecting on technical problems

• Correctness maintenance

• Future work

Intel ConfidentialDepartment or Event Name 3LLVM Developers' Meeting 2024 3

Immediate Takeaways
• SPIR-V backend got a serious uplift! ~500 LITs, OpenCL 3.0 conformant,

nearly SYCL conformant (93-99% depending on optimization level), and
massive improvements in code generation correctness and validity!

• Work in progress support for Vulkan and HLSL, 26 SPIR-V extensions
implemented, and better compatibility with Khronos LLVM/SPIR-V Translator.

• Integration with external tools and libraries.

0% 20% 40% 60% 80% 100%

GPU

CPU

98%

99%

2%

1%

SYCL/DPC++ E2E (SPIR-V Backend w/ –O0 LLVM IR)

Failing Passing

Intel ConfidentialDepartment or Event Name 4LLVM Developers' Meeting 2024 4

Why SPIR-V and SPIR-V backend matter

• SPIR-V is both an IR and portable binary format
serving as a programming interface for
heterogeneous accelerators.

• Rich ecosystem of high-level languages and APIs
(e.g. OpenCL, SYCL, GLSL, HLSL)

• A SPIR-V module is always consumed under a
specific environment. The core specification is
defined by Khronos Group, vendors define client
API environment which can apply more
restrictions or provide spec extensions.

• This makes SPIR-V a great cross-vendor unifying
IR!

• SPIR-V backend is developed by many Khronos
member companies (Intel, Microsoft, Google, …)

HLSL

LLVM IR

SYCL

OpenCL
C

GLSL

Optimizations

Codegen

SPIR-V

Accelerators/GPUs

MLIR SPV

Intel ConfidentialDepartment or Event Name 5LLVM Developers' Meeting 2024 5

Challenges in Mapping LLVM IR to SPIR-V

SPIR-V is a semantically rich language!

• While semantically rich languages make it easy to lower to low-level
representations, SPIR-V is nearly at the same (or sometimes
higher) level than LLVM IR.

• SPIR-V concepts cannot be easily represented in Machine IR or
translated following standard GlobalISel translation schema with
the condition of meeting Machine Verifier requirements.

Intel ConfidentialDepartment or Event Name 6LLVM Developers' Meeting 2024 6

Challenges in Mapping LLVM IR to SPIR-V

• No real accelerator hardware
• portable, hardware and vendor agnostic

• the SPIR-V target (behavior/properties) and the SPIR-V representation
(format) are matching products of the SPIR-V specification

• There will be a reverse translation from SPIR-V to an accelerator
instruction set (FPGA, GPU, NPU), for example, via back encoding
into LLVM IR
• there will be a hardware-dependent optimization

• no need to reason in terms of physical registers, allocation, scheduling, etc.

• LLT types are not enough

Intel ConfidentialDepartment or Event Name 7LLVM Developers' Meeting 2024 7

How does it map to technical problems
• Types in general and definition scope

• virtual registers and SPIRV identifiers

• low-level types are very far from being able to express SPIRV types

• Before LLVM 17, IR pointer types contained an element type
• SPIR-V pointers are always typed!

• Schrödinger’s TypedPointerType

• Control flow
• structured control flow graph

• a label is an instruction that starts a logical basic block

• Semantics of statements / instructions
• subtle differences between LLVM IR and SPIRV; GISel’s MIR and SPIRV

• e.g.: phi and bitcast

Intel ConfidentialDepartment or Event Name 8LLVM Developers' Meeting 2024 8

Type Inference

• Mismatch between LLVM notion of a valid virtual register and
SPIR-V concept of <id>
• GISel virtual registers do not perfectly match SPIRV notion of identifier

• GISel does not keep track of how newly created virtual registers are related
to original LLVM IR values

• SPIR-V backend needs to do this however, to conform with the
requirement to track types in general (not LLT types)

• SPIR-V backend needs to calculate (infer) types

Intel ConfidentialDepartment or Event Name 9LLVM Developers' Meeting 2024 9

Type Inference

• Sometimes it is possible to infer types in a Module pass
• look for known patterns in Instruction values

• result element type of GEP, allocated type of alloca, pointer op of addrspacecast, …

• set result by an argument in a well-known function, by incoming values of phi, …

• deduce nested types of composites

• deduce pointer operand types or insert a bitcast for known patterns
• pointer ops of LoadInst, StoreInst, AtomicRMWInst, AtomicCmpXchgInst

• align value types for ReturnInst, incoming values of phi, ICmpInst

• use well-known builtins information in CallInst: OpGroupAsyncCopy, OpAtomic*

• function parameters: analyze function's call sites

• keep record of unknown types and re-visit them after all functions in the
module are processed

Intel ConfidentialDepartment or Event Name 10LLVM Developers' Meeting 2024 10

Aggregates Lowering Mechanism

• GlobalISel facilitates code lowering when we are thinking in terms
of instruction selection and real hardware
• we don’t expect a physical register to be able to store an arbitrary

aggregate

• SPIR-V doesn’t represent any actual instruction set architecture
• we expect to see aggregate types and constants

• explicitly preserved

• listed in the module scope

• not disintegrated by GlobalISel pipeline into low-level types and registers

Intel ConfidentialDepartment or Event Name 11LLVM Developers' Meeting 2024 11

Aggregates Lowering Mechanism
• Initial approach: remove aggregates from calls to avoid a crash

• Mutate a function with aggregates in the signature
• Replace aggregates with i32

• The change in types is noted in metadata for later restoration
• This helps survive IRTranslator

• During call lowering the original function signature is restored

• Drawbacks
• Impossible to deduce and store a correct type before IRTranslator

• spirv-val reports invalid SPIR-V
• A mismatch of object/ptr types in OpStore: incorrect aggregate types tracing

• Upgrade of the “remove aggregates” approach
• Register the mutation and access original function type

Intel ConfidentialDepartment or Event Name 12LLVM Developers' Meeting 2024 12

Aggregates Lowering Mechanism
• Root cause

• SPIR-V: use a single identifier (virtual register) per an aggregate value

• IRTranslator: Aggregates get flattened

• Troubles with intrinsics after optimization
• no place to rewrite function signature

• translate call » not a known intrinsic » create v-regs » fail on multiple v-regs

• Problems with explicitly called intrinsics
• call { i32, i1 } @llvm.uadd.with.overflow.i32(i32 %e, i32 1)

• if rewrite return type: Machine Verifier fails due to wrong function signature, because it
expects it to be {i32, i1} not i32

• if do not rewrite return type: fail at IRTranslator on multiple v-regs

Intel ConfidentialDepartment or Event Name 13LLVM Developers' Meeting 2024 13

Aggregates Lowering Mechanism
• Options

• SPIRV-specific unfolding/lowering; reinventing the wheel

• Changes in GlobalISel logic would be too intrusive, chances are slim

• Translating function calls inside GlobalISel
• Rewrite to an internal __spirv_ builtin and try a custom call lowering

• Improve existing approach and stop struggling with GlobalISel

• How to make friends with IRTranslator
• Clearly communicate objectives

• void @llvm.fake.use(...) to map virtual registers to the original value

• void @llvm.spv.value.md(metadata valAttrs) to preserve name and data type

• Reuse general logic of the shared code and lessen maintenance burden
for target-independent changes

Intel ConfidentialDepartment or Event Name 14LLVM Developers' Meeting 2024 14

Control Flow

• Like LLVM IR: Modules of Functions, Functions of BBs, BBs of
Instructions, and BB is terminated by a control flow instruction

• Unlike LLVM IR
• GPU-specific compilers would like to see an information being structured

• computational flavor figures this out by itself (OpenCL)

• shaders require that their control flow is structured (Vulkan)

• OpLoopMerge declare a structured loop

• OpSelectionMerge declares a structured selection

• In SPIR-V a label is an instruction that starts a logical basic block

• It's not possible to delete instructions after the unconditional branch,
because this instruction must be the last instruction in a block

• There is no instruction to encode “if (Cond) then Stmt” logic
• OpBranchConditional is a full if-then-else

• No optimization of branching like Branch Folding and If Conversion

Intel ConfidentialDepartment or Event Name 15LLVM Developers' Meeting 2024 15

Example 1: SPIR-V Control Flow Meets AsmPrinter
#107013

• AsmPrinter is hardcoded to always create a symbol for the end of a
function if valid debug info is present

• needFuncLabels() is a static function inside OR and returns true because

• hasDebugInfo() is inside OR and returns true because

• DbgInfoAvailable is a private class member and it's true because

• valid debug info is present in the Module

• In SPIR-V each label is an instruction
• a block always starts with an OpLabel instruction

• Solution

https://github.com/llvm/llvm-project/pull/107013

Intel ConfidentialDepartment or Event Name 16LLVM Developers' Meeting 2024 16

Example 2: Machine Verifier, G_BITCAST and G_PHI
#110270

define void @foo(i1 %arg) {
entry:
 %r1 = tail call ptr @f1()
 %r2 = tail call ptr @f2()
 br i1 %arg, label %l1, label %l2
l1:
 br label %exit
l2:
 br label %exit
exit:
 %ret = phi ptr [%r1, %l1], [%r2, %l2]
 ret void
}
define ptr @f1() {
entry:
 %p = alloca i8
 store i8 8, ptr %p
 ret ptr %p
}
define ptr @f2() {
entry:
 %p = alloca i32
 store i32 32, ptr %p
 ret ptr %p
}

%r1 = OpFunctionCall %_ptr_Function_uchar %f1

 %16 = OpFunctionCall %_ptr_Function_uint %f2

 %r2 = OpBitcast %_ptr_Function_uchar %16

 OpBranchConditional %arg %24 %25

 %24 = OpLabel

 OpBranch %26

 %25 = OpLabel

 OpBranch %26

 %26 = OpLabel

%ret = OpPhi %_ptr_Function_uchar %r1 %24 %r2 %25

...

 %f1 = OpFunction %_ptr_Function_uchar None %8

 %27 = OpLabel

 %p = OpVariable %_ptr_Function_uchar Function

 OpStore %p %uchar_8 Aligned 1

...

 %f2 = OpFunction %_ptr_Function_uint None %10

 %28 = OpLabel

%p_0 = OpVariable %_ptr_Function_uint Function

 OpStore %p_0 %uint_32 Aligned 4

...

https://github.com/llvm/llvm-project/pull/110270

Intel ConfidentialDepartment or Event Name 17LLVM Developers' Meeting 2024 17

Example 3: Building my own PHI
#110019 and #110507

• OpPhi in SPIR-V is a PHI node
• starts BB, pairs of incoming value

and labels, etc.

• A subtle difference
• OpPhi: exactly one entry for each

parent block of the current block in
the CFG

• phi: one entry for each instance of
the predecessor

%r = phi i32 [0, %l1], [1, %l2], [1, %l2]

but one record per 2 original %l2 predecessors:

%r = OpPhi %uint %const_0 %l1 %const_1 %l2

• Machine Verifier does not
recognize OpPhi as PHI

bb.1.entry:
 successors: %bb.2, %bb.3
 OpBranchConditional %5:iid, %bb.2, %bb.3

bb.2.true_label:
; predecessors: %bb.1
 successors: %bb.4(0x80000000); %bb.4(100.00%)
 %12:iid = OpFunctionCall %2:type, @foo
 OpBranch %bb.4

bb.3.false_label:
; predecessors: %bb.1
 successors: %bb.4(0x80000000); %bb.4(100.00%)
 %8:iid = OpFunctionCall %2:type, @bar
 [...]
 OpBranch %bb.4

bb.4.merge_label:
; predecessors: %bb.3, %bb.2
 %15:id = OpPhi %2:type, %12:iid, %bb.2, %8:iid,

%bb.3

*** Bad machine code: Virtual register defs don't
dominate all uses. ***
- v. register: %8
- v. register: %12

https://github.com/llvm/llvm-project/pull/110019
https://github.com/llvm/llvm-project/pull/110507

Intel ConfidentialDepartment or Event Name 18LLVM Developers' Meeting 2024 18

Discussion of Examples
• AsmPrinter: labels against OpLabel

• Discussed and change merged, adding a hardcoded condition to the hardcoded if

• Machine Verifier’s Procrustean bed of G_BITCAST & G_PHI
• Suggested to generate OpBitcast immediately, without re-using G_BITCAST
• OpBitcast is not a no-op bitcast

• Machine Verifier does not recognize OpPhi as a PHI
• Suggested to re-use a general opcode to denote SPIR-V phi-node all along the way

until a late final encoding when it may get converted to OpPhi

• SPIR-V backend’s approach…
• OpBitcast and OpPhi are generated where they are supposed to be, during

instruction selection, and conform to the principle of reusing shared code inside
GlobalISel

• Walls vs. Bridges
• A time to guard the library and a time to refrain from overprotecting
• Be more open to non-invasive cases? Allow to override default behavior?
• The higher-level backend has also less trivial needs

Intel ConfidentialDepartment or Event Name 19LLVM Developers' Meeting 2024 19

Opaque Pointers: Challenges
• The transition from typed to opaque pointers in LLVM 17 simplified some

aspects of LLVM IR but presented challenges for SPIR-V backend which
requires pointer types for code generation.

• Before, pointer element types were used not only for emitting required type
declarations, but also lowering nested types (structs or arrays), creating
function declarations, resolving OpenCL builtin calls, creating pointer casts,
and emitting SPIR-V/OpenCL builtin types.

• Now, SPIR-V backend needs to correctly deduce types early in the pipeline.

define void @foo(ptr %a) {
 %gep = getelementptr inbounds i32, ptr %a, i64 0
 ret void
}

define void void @bar(ptr %b) {
 call spir_func void @foo(ptr %b)
 ret void
}

%s = type { i32 }
%w = type { [7 x %s] }

define void @foo(ptr noundef byval(%w) align 4 %a) {
 %val = load i32, ptr %a
 ret void
}

Intel ConfidentialDepartment or Event Name 20LLVM Developers' Meeting 2024 20

Opaque Pointers: Solution
Three passes work together to assign (pointer) types: 1. SPIRVEmitIntrinsics,
2. SPIRVCallLowering, and 3. SPIRVPreLegalizer

First, SPIRVEmitIntrinsics tries to infer and assign the relevant pointer types in
LLVM IR using target intrinsics:

• This is a non-linear, nested, and often recursive process.

• Calls complicate type inference (e.g. function pointers and indirect calls must
be resolved solely through uses, some builtin functions have well-known/set
return or argument types and are hard-coded)

• PHI nodes can have incoming values with different pointer element types (if
types differ, the most frequently occurring one is assigned).

The pass assigns all SSA values a type with assign_ptr_type (or assign_ptr_type
in case of SPIR-V/OpenCL types) or replaces their uses with a ptrcast intrinsic.

Deduce types from
common instructions

Emit intrinsics
assigning types

Adjust types for
operands and emit

pointer casting
intrinsics

Deduce types for
function parameters

Revisit assignments
and fix inconsistencies

in the function return
types

Intel ConfidentialDepartment or Event Name 21LLVM Developers' Meeting 2024 21

Opaque Pointers: Solution
Second, SPIRVCallLowering creates function declarations and lowers formal
arguments. SPIR-V function and parameter declarations also contain types:

If a call argument is of a pointer type in LLVM IR, the lowering takes a type from
(in the order of precedence): byval/byref attributes, assign_type call (hence it
must be a SPIR-V builtin type), or assign_ptr_type intrinsic call.

OpenCL/GLSL/… builtin function calls are lowered differently and have their
types hard coded and/or parsed with TableGen definitions (SPIRVBuiltins.td):

Itanium mangling does not encode return type information!

%foo = OpFunction %float None %1
%bar = OpFunctionParameter %ptr_float
...

%baz = OpLoad %float %bar

defm : DemangledConvertBuiltin<"convert_char", OpenCL_std>;
...

class ConvertBuiltin<string name, InstructionSet set> {

 bit IsDestinationSigned = !eq(!find(name, "convert_u"), -1);
...

Intel ConfidentialDepartment or Event Name 22LLVM Developers' Meeting 2024 22

Opaque Pointers: Solution
Third, SPIRVPreLegalizer removes all assign_ptr_type/assign_type intrinsic
calls and assigns each MIR register relevant types. The mappings between
registers and types are stored in GlobalRegistry to ensure each type declaration
is printed once per module.

Intel ConfidentialDepartment or Event Name 23LLVM Developers' Meeting 2024 23

TargetExtType
SPIR-V has a family of types (such as OpTypeImage, OpTypeEvent…) which
were previously represented as pointers-to-opaque-structs:

In LLVM 16, a new TargetExtType was added for types that need to be
preserved, but otherwise are not introspectable by target-independent
optimizations (used by SPIR-V, DX, RISC-V, AArch64…):

Unfortunately, this means that SPIR-V backend is not compatible with IR coming
from older versions of LLVM due to the opaque pointer transition!

To reduce complexity, TargetExtType is also used as a substitute for
TypedPointerType to represent nested types deduced in SPIRVEmitIntrinsics
(LLVM values of TypedPointerType cannot be created!)

%opencl.event_t = type opaque
define void @foo(i8 addrspace(1)* noundef %src) {
...

define void @foo(target("spirv.Event") %src) {
...

Intel ConfidentialDepartment or Event Name 24LLVM Developers' Meeting 2024 24

Testing, Conformance, and Quality

• LIT remains our most important method for catching regressions quickly and
sketching easy to follow test cases – in contrast to complex external
conformance test suites often requiring specific hardware and driver stack.

• Most of our LITs have been extended with additional spirv-val runs checking
that the output SPIR-V binary adheres to the specification (using external
Khronos SPIR-V Tools)

• Google has contributed spirv-sim tool for testing the SPIR-V structurizer as it
is developed (control-flow and basic cross-lane interactions).
• The tool provides more flexibility and is not as fragile as simple FileCheck lines.

• FileCheck could be used for these tests, but the order of the CHECK lines must match the
output CFG, not the input IR. The potential contributor would have to be knowledgeable
and correct to make modifications to the tests.

• spirv-sim helps avoid having a “ripple effect” of some change reaching the backend and
necessitating modifications to the tests.

Intel ConfidentialDepartment or Event Name 25LLVM Developers' Meeting 2024 25

Future work

• SPIR-V has matured as a target in the last two years and more
often is a better alternative to Khronos LLVM/SPIR-V Translator
(which is bi-directional!)

• LLVM and many dependent project would benefit from having a
SPIR-V consumer in tree as well.
• Much of the code could be shared between the SPIR-V backend and

consumer.

• Could be used as a testing and production solution for the upstreamed
SYCL/DPC++ project.

Intel ConfidentialDepartment or Event Name 26LLVM Developers' Meeting 2024 26

Thank you!
Questions?

	Slide 1: Advancing SPIR-V Backend Stability: Navigating GlobalISel Compromises
	Slide 2: Agenda
	Slide 3: Immediate Takeaways
	Slide 4: Why SPIR-V and SPIR-V backend matter
	Slide 5: Challenges in Mapping LLVM IR to SPIR-V
	Slide 6: Challenges in Mapping LLVM IR to SPIR-V
	Slide 7: How does it map to technical problems
	Slide 8: Type Inference
	Slide 9: Type Inference
	Slide 10: Aggregates Lowering Mechanism
	Slide 11: Aggregates Lowering Mechanism
	Slide 12: Aggregates Lowering Mechanism
	Slide 13: Aggregates Lowering Mechanism
	Slide 14: Control Flow
	Slide 15: Example 1: SPIR-V Control Flow Meets AsmPrinter #107013
	Slide 16: Example 2: Machine Verifier, G_BITCAST and G_PHI #110270
	Slide 17: Example 3: Building my own PHI #110019 and #110507
	Slide 18: Discussion of Examples
	Slide 19: Opaque Pointers: Challenges
	Slide 20: Opaque Pointers: Solution
	Slide 21: Opaque Pointers: Solution
	Slide 22: Opaque Pointers: Solution
	Slide 23: TargetExtType
	Slide 24: Testing, Conformance, and Quality
	Slide 25: Future work
	Slide 26: Thank you!

