
Shubham Rastogi

Fine-grained Compilation
Caching using llvm-cas

LLVM Dev Meeting 2024

￼1

Background

This talk is about compilation caching, using a Content Addressable
Storage (CAS)

2

Background

This talk is about compilation caching, using a Content Addressable
Storage (CAS)

Past LLVM Dev Meeting Talks
LLVM Dev 2023: Representing Debug Info in LLVM CAS
https://www.youtube.com/watch?v=VPqZ8LoM5Z8

LLVM Dev 2022: Using Content-Addressable Storage in Clang for Caching Computations and
Eliminating Redundancy

https://www.youtube.com/watch?v=E9GdNKjGZ7Y

3

https://www.youtube.com/watch?v=VPqZ8LoM5Z8
https://www.youtube.com/watch?v=E9GdNKjGZ7Y

Agenda

Content-Addressable Storage (CAS) recap

Improvements to .debug_info section representation in fine-
grained object storage

Improvements to replay speed in fine-grained object storage

Fine-grained object storage support for Swift

4

Introducing MCCAS!

One thing we are doing with a CAS is to create a build cache,
comparable to ccache

Split object files CASObjects for finer-grained object storage

5

MCCAS
• Granularity: Below Function Level
• Lower rate of growth over
incremental builds

ccache
• Granularity: Object File level
• Higher rate of growth over
incremental builds

ccache vs MCCAS

6

CAS Object Store refresher

CAS object address = hash of contents

7

CAS Object Store

CAS object address = hash of contents

1:1 mapping

Hello World! llvmcas://3a079

8

CAS Object Store

CAS object address = hash of contents

1:1 mapping

Hello World! llvmcas://3a079

Hello Again! llvmcas://a5171

9

Representation of Content in the CAS

Content is a DAG of CASObjects

Each CASObject has data and a
list of references to other
CASObjects

Data

…
CASID = llvmcas://85af96 CASID = llvmcas://aed312

Data Data

CASObject

Ref

CASID = llvmcas://45f378

Ref

CASObject CASObject

Ref RefRef Ref

10

Where we left off

11

Where we left off

llvm-project, -DCMAKE_ENABLE_LLVM_PROJECTS=‘clang’

403% increase

708% increase

0 GB

17.5 GB

35 GB

52.5 GB

70 GB

Build Number

1 2 3 4 5 6 7 8 9 10

Coarse-grained -O0 -g (GB)
MCCAS -O0 -g (GB)

65.60 GB

17.53 GB

12

Where we left off

llvm-project, -DCMAKE_ENABLE_LLVM_PROJECTS=‘clang’

403% increase

708% increase

0 GB

17.5 GB

35 GB

52.5 GB

70 GB

Build Number

1 2 3 4 5 6 7 8 9 10

Coarse-grained -O0 -g (GB)
MCCAS -O0 -g (GB)
ccache -O0 -g (GB)

65.60 GB

17.53 GB

733% increase

15.42 GB

13

Improvements since last year

Improvements since last year 14

.debug_info section
>50% of the total CAS size

Improvements since last year

Si
ze

 (G
B)

0

4.5

9

13.5

18

Size of CAS Size of Debug Info

9.87

17.53

15

.debug_info representation

int func(int x) {
 return x+1;
}

int func2(int x) {
 return x+1;
}

16

dwarfdump a.o —debug-info -f func2

0x41: DW_TAG_subprogram
 DW_AT_low_pc	(0x…)
 DW_AT_high_pc	(0x…)
 DW_AT_linkage_name	("_Z5func2i")
 DW_AT_name	("func2")
 DW_AT_decl_file	("a.cpp")
 DW_AT_decl_line	(5)
 DW_AT_type	(“int”)

dwarfdump a.o —debug-info -f func

0x25: DW_TAG_subprogram
 DW_AT_low_pc	(0x…)
 DW_AT_high_pc	(0x…)
 DW_AT_linkage_name	("_Z4funci")
 DW_AT_name	("func")
 DW_AT_decl_file	("a.cpp")
 DW_AT_decl_line	(1)
 DW_AT_type	(“int”)

.debug_info representation

17

dwarfdump a.o —debug-info -f func2

0x41: DW_TAG_subprogram
 DW_AT_low_pc	(0x…)
 DW_AT_high_pc	(0x…)
 DW_AT_linkage_name	("_Z5func2i")
 DW_AT_name	("func2")
 DW_AT_decl_file	("a.cpp")
 DW_AT_decl_line	(5)
 DW_AT_type	(“int”)

dwarfdump a.o —debug-info -f func

0x25: DW_TAG_subprogram
 DW_AT_low_pc	(0x…)
 DW_AT_high_pc	(0x…)
 DW_AT_linkage_name	("_Z4funci")
 DW_AT_name	("func")
 DW_AT_decl_file	("a.cpp")
 DW_AT_decl_line	(1)
 DW_AT_type	(“int”)

.debug_info representation

Debug information is represented by Debug Information Entries or DIEs
18

dwarfdump a.o —debug-info -f func2

0x41: DW_TAG_subprogram
 DW_AT_low_pc	(0x…)
 DW_AT_high_pc	(0x…)
 DW_AT_linkage_name	("_Z5func2i")
 DW_AT_name	("func2")
 DW_AT_decl_file	("a.cpp")
 DW_AT_decl_line	(5)
 DW_AT_type	(“int”)

dwarfdump a.o —debug-info -f func

0x25: DW_TAG_subprogram
 DW_AT_low_pc	(0x…)
 DW_AT_high_pc	(0x…)
 DW_AT_linkage_name	("_Z4funci")
 DW_AT_name	("func")
 DW_AT_decl_file	("a.cpp")
 DW_AT_decl_line	(1)
 DW_AT_type	(“int”)

.debug_info representation

Some data in a DIE does not deduplicate, this goes into a separate CAS block called DistinctData
19

dwarfdump a.o —debug-info -f func2 -c

0x41: DW_TAG_subprogram
 DW_AT_low_pc	(0x…)
 …
0x51: DW_TAG_formal_parameter
 DW_AT_location(…)
 DW_AT_name(“x”)
 DW_AT_decl_file(“a.cpp”)
 DW_AT_decl_line(1)
 DW_AT_type(“int”)

dwarfdump a.o —debug-info -f func -c

0x25: DW_TAG_subprogram
 DW_AT_low_pc	(0x…)
 …
0x35: DW_TAG_formal_parameter
 DW_AT_location(…)
 DW_AT_name(“x”)
 DW_AT_decl_file(“a.cpp”)
 DW_AT_decl_line(1)
 DW_AT_type(“int”)

.debug_info representation

DIEs can have children DIEs
20

dwarfdump a.o —debug-abbrev

[2] DW_TAG_subprogram	
DW_CHILDREN_yes
 DW_AT_low_pc	 DW_FORM_addrx
 DW_AT_high_pc	 DW_FORM_data4
	 DW_AT_linkage_name	 DW_FORM_strx1
 DW_AT_name	 DW_FORM_strx1
 DW_AT_decl_file	 DW_FORM_data1
 DW_AT_decl_line 	DW_FORM_data1
 DW_AT_type	 DW_FORM_ref4

.debug_abbrev can be
thought of as the “type” of a
DIE

.debug_abbrev

21

Debug Information representation during LLVM Dev Meeting 2023

debug_info

DistinctData Abbrevs DIEData1

DIEData1Child1 DIEData1Child2

DIEData2

DIEData1Child2Child1

22

.debug_info representation improvements

Two main improvements in .debug_info representation

Flattening of the .debug_info section CAS layout

Reduction of the size of the DistinctData CAS Object, via compression

23

Debug Information representation during LLVM Dev Meeting 2023

CAS Object’s Address = Hash of its contents

CAS Object’s contents is the data, and the list of references to other
CAS Objects

Also, CAS Blocks are always ordered

Debug Information representation during LLVM Dev Meeting 2023

Flattening of the Debug Information section representation

24

Debug Information representation during LLVM Dev Meeting 2023

debug_info

DistinctData Abbrevs DIEData1

DIEData1Child1 DIEData1Child2

DIEData2

DIEData1Child2Child1

25

Debug Information representation during LLVM Dev Meeting 2023

debug_info

DistinctData Abbrevs DIEData1

DIEData1Child1 DIEData1Child2

DIEData2

DIEData1Child2Child1

26

Debug Information representation during LLVM Dev Meeting 2023

debug_info

DistinctData Abbrevs DIEData1

DIEData1Child1 DIEData1Child2

DIEData2

DIEData1Child2Child1

27

Debug Information representation during LLVM Dev Meeting 2023

debug_info

DistinctData Abbrevs DIEData1

DIEData1Child1 DIEData1Child2

DIEData2

DIEData1Child2Child1

28

Debug Information representation during LLVM Dev Meeting 2023

debug_info

DistinctData Abbrevs DIEData1

DIEData1Child1 DIEData1Child2

DIEData2

DIEData1Child2Child1

29

Debug Information representation during LLVM Dev Meeting 2023

debug_info

DistinctData Abbrevs DIEData1

DIEData1Child1 DIEData1Child2

DIEData2

DIEData1Child2Child1

30

New representation
Flattening of the Debug Information section representation

debug_info

DistinctData Abbrevs DIEData1 DIEData1Child DIEData1Child DIEData2DIEData1Child
Child

31

New representation
Flattening of the Debug Information section representation

debug_info

DistinctData Abbrevs DIEData1 DIEData1Child DIEData1Child DIEData2DIEData1Child
Child

32

New representation
Flattening of the Debug Information section representation

debug_info

DistinctData Abbrevs DIEData1 DIEData1Child DIEData1Child DIEData2DIEData1Child
Child

33

Adding Compression
Reduction of the size of the DistinctData CAS Object block via compression

Si
ze

 (G
B)

0

4.5

9

13.5

18

Size of CAS Size of Debug Info Size of Distinct Data

9.079.87

17.53

34

Debug Information representation improvements
Reduction of the size of the DistinctData CAS Object block via compression

DistinctData block stores all the data that doesn’t deduplicate

Accounts for 90% of .debug_info in CAS

35

Debug Information representation improvements
Reduction of the size of the DistinctData CAS Object block via compression

DistinctData block stores all the data that doesn’t deduplicate

Accounts for 90% of .debug_info in CAS

Only one DistinctData block per object file

9.07 GB = 14370 CAS Blocks, or 630 KB per Block

36

Debug Information representation improvements: Results

llvm-project, -DCMAKE_ENABLE_LLVM_PROJECTS=‘clang’

Size of Debug Info section MCCAS

Si
ze

 (G
B)

0

2.5

5

7.5

10

Build Number

1 2 3 4 5 6 7 8 9 10

Pre Optimizations Post Optimizations 9.87 GB

4.93 GB

37

Debug Information representation improvements: Results

llvm-project, -DCMAKE_ENABLE_LLVM_PROJECTS=‘clang’

17.53 GB

12.65 GB

Size of MCCAS

Si
ze

 (G
B)

0

4.5

9

13.5

18

Build Num

1 2 3 4 5 6 7 8 9 10

Pre Optimizations Post Optimizations

38

Debug Information representation improvements: Results

llvm-project, -DCMAKE_ENABLE_LLVM_PROJECTS=‘clang’

17.53 GB

12.65 GB

Size of MCCAS

Si
ze

 (G
B)

0

4.5

9

13.5

18

Build Num

1 2 3 4 5 6 7 8 9 10

Pre Optimizations Post Optimizations
ccache 15.42 GB

39

Debug Information representation improvements: Results

llvm-project, -DCMAKE_ENABLE_LLVM_PROJECTS=‘clang’

32.66 GB

Size of MCCAS

Si
ze

 (G
B)

0

12.5

25

37.5

50

Build Num

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

MCCAS ccache
42.11 GB

1083% increase
2176% increase

40

llvm-project, -DCMAKE_ENABLE_LLVM_PROJECTS=‘clang’

9.45 GB

6.86 GB

Debug Information representation improvements: Results

MCCAS vs ccache

Si
ze

 o
f C

AS
 (G

B)

0

2.5

5

7.5

10

Build Number

1 13 25 37 49 61 73 85 97 109121 133145157169181193

MCCAS ccache

148% increase

410% increase

41

Support for DWARF5 in MCCAS

42

llvm-project, -DCMAKE_ENABLE_LLVM_PROJECTS=‘clang’

13.61 GB
12.65 GB

Support for DWARF5 in MCCAS: Results

DWARF5 vs DWARF4 MCCAS Size

Si
ze

 o
f C

AS
 (G

B)

0

3.5

7

10.5

14

Build Number

1 2 3 4 5 6 7 8 9 10

DWARF 5 DWARF 4

43

llvm-project, -DCMAKE_ENABLE_LLVM_PROJECTS=‘clang’

4.93 GB

4.23 GB

Support for DWARF5 in MCCAS: Results

DWARF5 vs DWARF4 MCCAS Debug Info size

Si
ze

 o
f C

AS
 (G

B)

0

1.25

2.5

3.75

5

Build Number

1 2 3 4 5 6 7 8 9 10

DWARF 5 DWARF 4

44

Support for DWARF5 in MCCAS: Results

DWARF5 CAS 7% > DWARF4 CAS

Reason is .debug_str_offsets section in DWARF5

45

Support for DWARF5 in MCCAS: Results

DWARF5 CAS 7% > DWARF4 CAS

Reason is .debug_str_offsets section in DWARF5

Zlib compression brings size down to DWARF4 levels

46

llvm-project, -DCMAKE_ENABLE_LLVM_PROJECTS=‘clang’

13.61 GB
12.65 GB

Support for DWARF5 in MCCAS: Results

DWARF5 vs DWARF4 MCCAS Size

Si
ze

 o
f C

AS
 (G

B)

0

3.5

7

10.5

14

Build Number

1 2 3 4 5 6 7 8 9 10

DWARF 5 DWARF 5 Post Compression
DWARF 4

47

Improvements to replay speed in a MCCAS

Replay refers to rebuilding a previously cached build

48

Improvements to replay speed in MCCAS: Results

llvm-project, -DCMAKE_ENABLE_LLVM_PROJECTS=‘clang’

Replay time

Ti
m
e
(s
)

4.5

9

13.5

18

Build Num

1 2 3 4 5 6 7 8 9 10

MCCAS Unoptimized ccache

49

Improvements to replay speed in MCCAS

There are two issues with replay speed that we identified

Materializing the same abbreviations multiple times

The ULEB decoder was not optimal

50

Improvements to replay speed in MCCAS
Materializing the same abbreviations multiple times

Debug abbreviations describe the DIEs in the .debug_info section

Multiple DIEs can be described by one abbreviation

Number of abbreviations is always ≤ Number of DIEs

51

Improvements to replay speed in MCCAS
Materializing the same abbreviations multiple times

The problem: We were materializing an abbreviation for a DIE every
time we wanted to materialize the DIE

Materialization is expensive, it requires lots of ULEB decoding

52

Improvements to replay speed in MCCAS
Materializing the same abbreviations multiple times

Solution: Materialize all abbreviations once, and memoize them

Cuts down on materialization time for the object file significantly

53

Improvements to replay speed in MCCAS
The ULEB decoder was not optimal

Materializing any debug info or abbreviations requires ULEB decoding

The ULEB decoder being used was part of BinaryStreamReader

BinaryStreamReader is not optimal because it doesn’t guarantee that
it’s stream is contiguous

However, all the CAS Objects that we are reading from, are contiguous

54

Improvements to replay speed in MCCAS
The ULEB decoder was not optimal

Solution: Replace BinaryStreamReader with DataExtractor

55

Improvements to replay speed in MCCAS: Results

llvm-project, -DCMAKE_ENABLE_LLVM_PROJECTS=‘clang’

Replay time

Ti
m
e
(s
)

0

4.5

9

13.5

18

Build Num

1 2 3 4 5 6 7 8 9 10

MCCAS Unoptimized MCCAS Optimized

56

Improvements to replay speed in MCCAS: Results

llvm-project, -DCMAKE_ENABLE_LLVM_PROJECTS=‘clang’

Replay time

Ti
m
e
(s
)

0

4.5

9

13.5

18

Build Num

1 2 3 4 5 6 7 8 9 10

MCCAS Unoptimized MCCAS Optimized
ccache

57

MCCAS Support for Swift

The Swift compiler also supports MCCAS

Currently, it has been tested with a small open-source project called
AlamoFire and works fine

Further testing is needed to ensure it works correctly

58

Conclusions

MCCAS demonstrates a real world use-case for having a CAS-library
in LLVM

59

Conclusions

MCCAS demonstrates a real world use-case for having a CAS-library
in LLVM

Having a CAS library built into the compiler is advantageous, we can
cache clang-modules

LLVM Dev 2023: Caching Explicit Clang Modules with Content-Addressable Storage
https://www.youtube.com/watch?v=6P9787H_SlQ

60

https://www.youtube.com/watch?v=6P9787H_SlQ

Future work

Test and Benchmark MCCAS for Swift

Implement CAS-specific optimizations for other DWARF sections,
such as:

.debug_loc

.debug_ranges

61

Want to contribute?

llvm-cas initial patch

LLVMCAS Implementation: https://github.com/llvm/llvm-project/
pull/68448

62

https://github.com/llvm/llvm-project/pull/68448
https://github.com/llvm/llvm-project/pull/68448

TM and © 2024 Apple Inc. All rights reserved.
63

