
The State of Pattern-Based
IR Rewriting in MLIR

Matthias Springer
NVIDIA Switzerland

2024 LLVM Developer’s Meeting – October 23, 2024

IR Traversal Infrastructure in MLIR

IR Walk Greedy Rewrite Dialect ConversionTransform Dialect
Pattern based Pattern based

increasing complexity + runtime overhead

Visitor-based traversal
of ops, regions or blocks.

Fixed-point iteration of
pattern applications.

Pattern-based rewrite of
illegal ops into legal ops in a
single top-to-bottom traversal.

Matching IR via handles and
rewriting IR via transform op
application.

Overview of Pattern Drivers

Greedy Pattern Rewrite Driver

● applyPatternsAndFoldGreedily()

● RewritePattern + PatternRewriter

● Apply patterns to all ops.
● Also tries to fold + DCE selected ops.
● No guaranteed IR traversal order.
● Process new, modified, … ops until a fixed

point/cutoff is reached (via worklist).
● No rollback mechanism.
● No special handling for type changes.

Dialect Conversion

● applyFull/PartialConversion()
● ConversionPattern +

ConversionPatternRewriter

● Apply patterns only to illegal ops.
● Also tries to fold selected ops (unsafe).
● Traverse by dominance (“top-to-bottom”).
● Process new illegal ops (via recursion).

Modified ops must be legal.
● Rolls back patterns on failure.
● Automatic type conversion (e.g.,

replaceOp) / materialization utilities.

https://github.com/llvm/llvm-project/pull/92683

Greedy Pattern Rewrite Driver: What’s New?

● Listen to IR modifications by attaching a RewriteListener.
● Integration into the transform dialect: transform.apply_patterns
● Expensive Pattern Checks: new debugging facilities for invalid API usage.
● Additional flags to control region simplification.
● All entry points take a GreedyRewriteConfig object.

Dialect Conversion: What’s New?

● Listen to most IR modifications by attaching a RewriteListener.
(Triggered when the conversion succeeded.)

● Integration into the transform dialect:
transform.apply_conversion_patterns

● Source/target/argument materializations are optional.
● New supported API: moveOpBefore / moveOpAfter
● Many internal bug fixes and additional assertions. Mostly related to block

signature conversions and rollbacks.

Best Practices

Prefer Walk over Pattern Driver

Use greedy pattern rewrite if:

● Fixed-point pattern application is required.
E.g.: A rewrite step creates an operation that must also be rewritten.

● The set of rewrite steps and/or operations is open-ended.

Use dialect conversion if:

● Many rewrite steps involve type conversions.
E.g.: A value is replaced with a value of a different type.

Otherwise: Use an Operation::walk: It’s faster, simpler and more predictable!

Rewrite Pattern: Return success iff IR was Modified

● At least one success: Run another greedy pattern iteration.
● Only failures: No further greedy pattern iteration.

● Case 1: Pattern returned success but did not modify the IR.
○ Pattern triggers another iteration and will match again.
○ Infinite loop!

● Case 2: Pattern returned failure but modifies the IR.
○ Another (or this) pattern may match if given the chance.
○ Case 2.1: Pattern returned failure half-way through matchAndRewrite. The next pattern will

see the result of an incomplete pattern application.
○ Case 2.2: Programmer’s intention was to return success. But this may be last iteration and the

process finished without reaching a fixed point.

Conversion Pattern: Return success if successful

● success: The matched must have been erased or modified in such a way that
it is not legal (according to ConversionTarget).

● failure: All pattern modifications are rolled back (and another pattern runs).
○ Rollback is going to be removed with the new One-Shot Dialect Conversion driver.

(Talk to me if you think that you need this feature or leave a comment on the public RFC.)
○ Same requirements as for rewrite patterns are going to apply for failure.

https://discourse.llvm.org/t/rfc-a-new-one-shot-dialect-conversion-driver/79083

Rewrite Pattern: IR Should Verify after Pattern Application

● Public Rewrite Pattern: Pattern that is exposed to users via
populate…Patterns(RewritePatternSet &) function.

○ Pattern may run together with other patterns in a large greedy pattern rewrite.
○ It is difficult to develop composable patterns if there is no contract.
○ If the IR at the beginning of a rewrite pattern is invalid, a pattern may crash or misbehave.

● By default, the greedy pattern rewrite process may stop suddenly when the
max. #iterations is exhausted.

○ Ideally, IR at the end of a greedy pattern rewrite should verify. (Because that’s often also the
end of a pass.)

● Not a strict rule. MLIR requires valid IR only between pass boundaries.

All IR Modifications Must Use Rewriter

● Greedy pattern driver listens to notifications to populate the worklist.
● Dialect conversion driver intercepts + delays certain API calls.
● Missing in-place modifications / IR creation: Rewrite process may finish

without reaching a fixed point.
● Missing erasure: Driver may crash due to dangling pointers on the worklist.

Incorrect: Bypassing the Rewriter
op->erase();
value.replaceAllUsesWith(value2);
op->setAttr(“name”, attr);
op->moveBefore(op2);
op->clone();
…

Correct: Using the Rewriter
rewriter.eraseOp(op);
rewriter.replaceAllUsesWith(value, value2);

rewriter.modifyOpInPlace([&]() {op->setAttr(…)});
rewriter.moveOpBefore(op, op2);
builder.clone(*op);
…

Do Not Rely on Canonicalizer Pass for Correctness

● Problem 1: Canonicalizer pass performs a greedy pattern rewrite with all
registered canonicalization patterns.

○ Populate only required patterns in a custom greedy pattern rewrite to improve efficiency.
○ New canonicalization patterns may be added by third parties and/or other dialects, potentially

making the compilation pipeline more fragile.
○ What should be canonicalization and what not is actively being discussed.

● Problem 2: Default max. #iterations is set to 10.
○ Rewrite process may finish without reaching a fixed point. The resulting IR is not

guaranteed to be in a canonical form.
○ (Max. #iterations can be configured.)

https://discourse.llvm.org/t/rfc-update-to-general-design-section-of-operation-canonicalizations-in-mlir/79355
https://discourse.llvm.org/t/rfc-canonicalizerpass-convergence-error-handling/67333

Rewrite Pattern: Expensive Pattern Checks

● Compile MLIR with MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS.
● Enables additional “expensive checks” in greedy pattern rewrite driver:

○ Detects most cases where IR was modified but pattern returned failure (or vice versa).
Implemented via operation fingerprint (hashing all operations).

○ Detects most cases where IR was modified without the rewriter. (Via operation fingerprint.)
○ Detects cases where IR does not verify after pattern application.

(Expected to fail for some patterns. E.g., patterns that modify FuncOp and CallOp separately.)
● Should be used together with LLVM_USE_SANITIZER="Address".

○ Fingerprint verification crashes if ops are erased without the rewriter (dangling pointers) and
ASAN will provide useful information to debug.

Rewrite Pattern: Randomize Operation Ordering

● Greedy pattern driver does not guarantee any op traversal order.
○ GreedyRewriteConfig::useTopDownTraversal controls the initial worklist population order.
○ PatternBenefit controls pattern priority once an operation was selected.

● Additional patterns / changes to existing patterns can affect the traversal op
order.

● Op traversal order can affect the output IR. Ideally, the any traversal order
should produce equivalent IR. Ideally, FileCheck tests should still pass.

● Set MLIR_GREEDY_REWRITE_RANDOMIZER_SEED to randomize the worklist.
(Operation is picked from worklist at random.)

Conversion Pattern: Do Not Traverse IR

● Some IR changes (e.g., op erasure, updating uses) are materialized in a
delayed fashion in a dialect conversion.

● Pattern implementations may see outdated IR (related discussion).

Example: Look back
LogicalResult matchAndRewrite(ConversionPatternRewriter r, Op op,
 Adaptor adaptor) {
 // Check if `op` is the only user of the result of `op2`.
 auto op2 = op.getSource().getDefiningOp<Op2>();
 if (!op2) return failure();
 if (op2->getUsers().size() != 1) return failure();
 // …

may include users that were already marked for erasure

%0 = “op2”() : () -> i1
“op3”(%0) : (i1) -> ()

// Matched op:
“op”(%0) : (i1) -> ()

look back

https://discourse.llvm.org/t/ir-ssa-use-def-chain-traversal-during-opconversionpattern-rewrite/82590

Conversion Pattern: Do Not Traverse IR

● Some IR changes (e.g., op erasure, updating uses) are materialized in a
delayed fashion in a dialect conversion.

● Pattern implementations may see outdated IR (related discussion).

Example: Look ahead
LogicalResult matchAndRewrite(ConversionPatternRewriter r, Op op,
 Adaptor adaptor) {
 // Check if `op2` is the only user of the result of `op`.
 if (op.getResult()->getUsers().size() != 1) return failure();
 auto op2 = dyn_cast<Op2>(op.getResult()->getUsers().front());
 if (!op2) return failure();
 // …

may include users that were already marked for erasure

// Matched op:
%0 = “op”() : () -> i1

“op2”(%0) : (i1) -> ()
“op3”(%0) : (i1) -> ()

look ahead

https://discourse.llvm.org/t/ir-ssa-use-def-chain-traversal-during-opconversionpattern-rewrite/82590

Dialect Conversion: Use Function + Control Flow Patterns

● populateFunctionOpInterfaceTypeConversionPattern:
Generic pattern that converts the signature of any FunctionOpInterface.

● populateSCFStructuralTypeConversions:
Generic patterns that convert SCF dialect ops.

● Customizable with a type converter.

Beware of Unsupported API

● OpBuilder::setListener / getListener
○ Dialect conversion framework and greedy pattern rewrite driver attach their own listeners.
○ Use ConversionConfig::listener / GreedyRewriteConfig::listener.

● Dialect conversion does not support RewriterBase::replaceAllUsesWith
○ Internal dialect conversion data structures operate on a per operation/block basis.
○ Replace operation: RewriterBase::replaceOp
○ Update block signature: ConversionPatternRewriter::applySignatureConversion

OpBuilder RewriterBase PatternRewriter ConversionPattern
Rewriter

Rewrite Pattern: Do Not Use in Dialect Conversion

● API design suggests that Conversion/RewritePattern are compatible.
● But ConversionPattern API is more restrictive than RewritePattern API.

○ PatternRewriter exposes unsupported API, e.g.: replaceAllUsesWith.
○ Traversing IR is generally unsafe. You may see outdated IR or IR that was scheduled for

erasure. (E.g.: value replacements are not visible yet, getUses() contains old uses, block still
contains erased operations.)

○ Public RewritePattern can reasonably assume valid input IR, whereas IR is generally invalid
after ConversionPattern application.

○ When creating new IR, operands of matched op should be accessed through the adaptor, but
rewrite patterns do not have an adaptor.

Pattern RewritePattern ConversionPattern

RewritePatternSet::add(std::unique_ptr<RewritePattern>) + template overload

Conversion Pattern: Do Not Use in Greedy Rewrite

● API design suggests that Conversion/RewritePattern are compatible.
● Pattern implementation will crash when running in a greedy pattern rewrite.

(Attempting to upcast PatternRewriter to ConversionPatternRewriter.)

Pattern RewritePattern ConversionPattern

RewritePatternSet::add(std::unique_ptr<RewritePattern>) + template overload

Dialect Conversion: Debugging Materialization Errors

● Explanation: A value was erased or replaced with a value of different type, but
there are uses that were not updated.

● Set ConversionConfig::buildMaterialization=false and check output.

error: failed to legalize unresolved materialization from () to 'i32' that remained live after conversion
 %0 = "test.illegal_op_a"() : () -> i32

note: see existing live user here: func.return %0 : i32
 return %0 : i32

// mlir-opt test-legalize-erased-op-with-uses.mlir -test-legalize-unknown-root-patterns

func.func @remove_all_ops(%arg0: i32) -> i32 {
 %0 = builtin.unrealized_conversion_cast to i32
 return %0 : i32
}

op was erased but result still in use

not just for
debugging…

Debugging with -debug

● Prints IR after each pattern application (and the name of the pattern).
● In case of dialect conversion: includes erased ops, replacements of values

are not reflected yet.

 * Pattern : 'func.func -> ()' {
Trying to match "(anonymous
namespace)::AnyFunctionOpInterfaceSignatureConversion"
 ** Insert Block into : 'func.func'(0x50c0000052c0)
 ** Insert : 'cf.br'(0x50b0000d0ac0)
 ** Insert Block into : 'func.func'(0x50c0000052c0)
 ** Insert : 'test.invalid'(0x507000016a60)
 ** Insert Block into : 'func.func'(0x50c0000052c0)
 ** Insert : 'cf.br'(0x50b0000d0b70)
"(anonymous
namespace)::AnyFunctionOpInterfaceSignatureConversion"
result 1

// *** IR Dump After Pattern Application ***
type mismatch for bb argument #0 of successor #0
mlir-asm-printer: 'builtin.module' failed to verify and will be
printed in generic form
"builtin.module"() ({
 "func.func"() <{function_type = () -> (), sym_name =
"test_undo_block_erase"}> ({
 "test.region"() ({
 }) {legalizer.erase_old_blocks, legalizer.should_clone} : () -> ()
 "test.return"() : () -> ()
 ^bb1(%0: f64): // no predecessors
 %1 = "builtin.unrealized_conversion_cast"(%0) : (f64) -> i64
 %2 = "builtin.unrealized_conversion_cast"(%1) : (i64) -> f64
 "cf.br"(<<UNKNOWN SSA VALUE>>)[^bb3] : (i64) -> ()
 ^bb2(%3: f64): // pred: ^bb3
 %4 = "builtin.unrealized_conversion_cast"(%3) : (f64) -> i64
 %5 = "builtin.unrealized_conversion_cast"(%4) : (i64) -> f64
 "test.invalid"(<<UNKNOWN SSA VALUE>>) : (i64) -> ()
 ^bb3(%6: f64): // pred: ^bb1
 %7 = "builtin.unrealized_conversion_cast"(%6) : (f64) -> i64
 %8 = "builtin.unrealized_conversion_cast"(%7) : (i64) -> f64
 "cf.br"(<<UNKNOWN SSA VALUE>>)[^bb2] : (i64) -> ()
 }) : () -> ()
}) : () -> ()

matched op pattern name
erased IR

bbarg from erased block

Getting Started with the Dialect Conversion Infrastructure

● Type converters are optional.
● ConversionTarget is mandatory.
● Argument/source/target materializations are optional.
● applySignatureConversion is optional in most cases. You can do almost

everything with inlineBlockBefore and replaceUsesOfBlockArgument.

Future Plans for Dialect Conversion

1:N Conversion Support (RFC)

● ConversionPatternRewriter already supports 1:N block argument
replacements during block signature conversions.

● New API for replacing ops:
replaceOpWithMultiple(Operation *, ArrayRef<ValueRange>)

Examples in MLIR:

● Sparse tensor → various storage specifier fields
● MemRef → offset, sizes, strides, base pointer, aligned point

(currently: LLVM struct, aka MemRef descriptor)

one ValueRange per op result

https://discourse.llvm.org/t/rfc-merging-1-1-and-1-n-dialect-conversions/82513

1:N Conversion Support (RFC)

// 1:1 pattern entry point
LogicalResult ConversionPattern::matchAndRewrite(
 Operation *op, ArrayRef<Value> adaptor, ConversionPatternRewriter &r) {

}

// New: 1:N pattern entry point
LogicalResult ConversionPattern::matchAndRewrite(
 Operation *op, ArrayRef<Value> adaptor, ConversionPatternRewriter &r) {
 // Default implementation: Call 1:N version
}

https://discourse.llvm.org/t/rfc-merging-1-1-and-1-n-dialect-conversions/82513

1:N Conversion Support (RFC)

// 1:1 pattern entry point
LogicalResult OpConversionPattern<FooOp>::matchAndRewrite(
 FooOp op, OpAdaptor adaptor, ConversionPatternRewriter &r) {

}

// New: 1:N pattern entry point
LogicalResult OpConversionPattern<FooOp>::matchAndRewrite(
 FooOp op, OneToNOpAdapator adaptor, ConversionPatternRewriter &r) {
 // Default implementation: Call 1:N version
}

https://discourse.llvm.org/t/rfc-merging-1-1-and-1-n-dialect-conversions/82513

1:N Conversion Support (RFC)

● No more argument materializations: Worked around missing 1:N support in
ConversionPattern. Only source/target materializations from now.

○ Argument materialization: Converts 1:N block argument replacements into a single SSA value.
Workaround in 1:1 dialect conversion because of 1:N limitations.

● Delete 1:N dialect conversion and 1:N type converter infrastructure
(OneToNTypeConversion.h). Functionality now provided by the “main” dialect
conversion.

https://discourse.llvm.org/t/rfc-merging-1-1-and-1-n-dialect-conversions/82513

One-Shot Dialect Conversion (RFC)

● Faster + more efficient: No rollback → no extra housekeeping
○ No more ConversionValueMapping (a king of IRMapping)
○ No more stack of all IR changes

● Easier to understand/debug: Immediately materialize all IR changes
○ You will always see the most recent IR.
○ Patterns can traverse the IR freely.

● Compatible with RewritePatterns
● Support full RewriterBase / PatternRewriter API surface

https://discourse.llvm.org/t/rfc-a-new-one-shot-dialect-conversion-driver/79083

Questions?

Manual IR Walk
Greedy Pattern Rewrite Driver
1:1 Dialect Conversion
1:N Dialect Conversion
One-Shot Dialect Conversion
Transform Dialect Integration
Listener Support
Fixed-point Iteration
Argument Materialization
Source Materialization
Target Materialization
Worklist Fuzzing / Randomization
Expensive Pattern Checks
Canonicalizer Pass

RewritePattern

ConversionPattern

RewriterBase

PatternRewriter

ConversionPatternRewriter

matchAndRewrite

success / failure
buildMaterializations

replaceOpWithMultiple

OneToNOpAdaptor

