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A uni�ed team of thirty-two, 
Working together, we're sure to pull through. 
In synchronized fashion, no threads left behind,
Executing your MatrixMultiply with speed in mind.
 
Who am I ?



 
A uni�ed team of thirty-two, 
Working together, we're sure to pull through. 
In synchronized fashion, no threads left behind,
Executing your MatrixMultiply with speed in mind.
 
Who am I ? Warp executing mma.sync.aligned instruction



Modern GPUs Architecture 
●      Massively parallel machine

●      Massive parallelism (128 SMs in GA100 GPUs)

●      Massive on chip memory 

●      Heterogeneous  processing units

●   General purpose cores (CUDA Core) ~ 40 TFLOPS

●   Fixed function cores (Tensor Core) ~ 310 TFLOPS

●      High bandwidth o�-chip memory (HBM2) 1.5 TB/s



Modern GPUs Architecture 
●      Next generation (Hopper) introduces

●      More parallelism (144 SMs  in GH100 GPUs)

●      More on chip  memory 

●      Faster GP cores ~ (CUDA Cores) 120 TFLOPS

●      New & faster �xed function cores (Tensor Core) ~ 1000 TFLOPS

●      New specialized accelerators Tensor Memory Accelerator (TMA)

●      Performance isn't portable 😓

●      New ISA + New �xed function cores → New tricks

●      Compiler backends are catching up slowly! 

●      Higher bandwidth for accessing o�-chip memory (HBM3) 3 TB/s



Modern GPUs Programming Model 
●      Single Instruction Multiple Threads (SIMT)

●      All threads are executing same instruction in parallel

●      Every 32 consecutive threads — warp — are scheduled together 

●      Warp level instructions, Tensor Core MMA, warp shu�es …etc

●      New architectures de�ne instructions wider than a single warp

●      Threads in a warp are executed in parallel 🤞

●      Hopper's (W)arp(G)roupMMA instruction



The Missing Abstraction

●      Most GPU programms especially dense kernels (e.g matmul) reduces to data parallel operations on tiles

●      Each warp in the thread blocks accesses a speci�c subtile

●      Each thread in the warp accesses a subtile of elements

●      Each thread block accesses a speci�c tile

●      SIMT exposes GPU parallelism but! 

●      HW groups threads together into warps 

●      Programmers wants to assign work to a group of thread

●      The program is a operations on these tiles (load, copy, math…)

●      Performant kernels wants to use �xed function cores within the GPU

●      TMA, Tensor Core ISA is naturally de�nes as an operations on a tile of data



The Missing Abstraction

 

●      Tensor core MMA instruction 

●     mma.sync.aligned.row.col.m16n8k8.bf16.bf16.tf32 

●     operand_a : Row major threads with 2 x [1x2] thread subtile

●     operand_b : Col major threads with 2x1 thread subtile

●     operand_c : Row major threads with 2 x [1x2] thread subtile

●     Given a warp tile distribute its 32 threads in a particular layout 



The Missing Abstraction
●      GPU kernel developers wants explicit parallelism but not necessarily SIMT

●     For dense kernels they want higher level primitives like a tensor and operations on it

●      Tile, allocation, copy, math …etc

●      Given an operation on a warp tile how threads are organized to access each element

●     Expose knobs and parametrize their kernels for auto-tuning or even manual experimentation



The Missing Abstraction
●     This isn't a novel problem

●      Libraries exist to provide zero cost higher level abstractions 

●     More speci�cally the language empowering the libray needs to provide an easy way for

●      Transformation of compile time type information (meta-programming)

●      Access the hardware without inline assembly (remember compiler backends are catching up!)

●      The challenge with libraries is how much the language can o�er 



Parametric Tensor Type

●      Our approach

●      A Library de�ned Tensor type that provides operations:

●    Tensor type parameterized by layout meta-types, which specify its shape and the way its elements are accessed

●      Tiled, distributed and binded to speci�c part of the compute hierarchy 
●      Access to its elements can be explicitly vectorized   

●     Thanks to Mojo 🔥

●      Meta programming is much simpler and expressive 🎉

●      Raw access to MLIR operations 💪

●      For this you don't need a DSL or a compiler you just need a library



Meta Programming in Mojo🔥 
• Parameters are like templates but they are compile time typed values (TypedAttr!) not AST substitutions!  

•  Same language for programming and metaprogramming



Meta Programming in Mojo🔥 
• Meta types can also be a parametric closure, which is super powerful

●      Software pipelined mma reduction loop with an SIMD → SIMD elementwise epilogue 

●      Useful for ML graph compilers / code gen: 
●      No need to write complex software pipelined loops as compiler pass
●      Fused into pipelined loop is easier than pipeline a fused loop



Layout Parameterized Tensor Type

 

 

●      A Tensor type with Layout(s) meta types

●     Data layout

●     Element layout

●      What is the layout ? 

●     A function logical (n-d) coords → linear coords / Integer

●     De�ned by {Tuple(shape), Tuple(stride)} 

●     Layout(coords) → dot(coords, stride)

●      Same de�nition for Layout in CUTLASS/CUTE 

●      Slightly di�erent operations / algebra 

●     Represent how data or threads spatially organized



Layout for Data And Threads

•
•
•
•

•

•
•
•
•

•

Example: 4x4 row major matrix:

shape = (4, 4), stride = (4, 1)

layout(i, j) = dot((i, j), (4, 1)) = 4 * i + j

domain: (0, 0)..(3, 3)

range: 0 → 15

Example: 4x4 column major matrix:

shape = (4, 4), stride = (1, 4)

layout(i, j) = dot((i, j), (1, 4)) = i + 4 * j

domain: (0, 0)..(3, 3)

range: 0 → 15



Layout For Data And Threads

•
•
•
•
•

•

•

How about a more complicated layout ?

e.g 4x4 with 2x2 tile major

Split each dim (4, 4) → ((2,2), (2,2))

(4:4) → (2,2):(2,8), (4:1) → (2, 2):(1, 4)

Inner tile stride (2, 1), Tile stride (8, 4)

OpenXLA/IREE's mmt4d uses similar but �attened representation (2,2,2,2):(8,4,2,1)

With this we can support more general layouts.



Tensor Layout Transforms 
●      Tile and return the tensor tile at speci�c coordinates

●      Returns a vectorized tensor with speci�c vec_shape

●      Distribute the thread layout into the tensor and return thread_id's tile  

 

 



Tensor Layout Transforms
●      Distributes tiles the data to the thread layout shape then distribute (repeat)



Tile Level Tensor operations

•
•
•

• With tensor tiles tiles as the primitives  we can de�ne operations for:

Memory allocations

Data movement

Math



Tile Level Tensor operations
• Simplify Tensor Core Programming



How GPU Primitives are Implemented? 
●      Mojo is syntax sugar on top of MLIR so we can:

●      Use an LLVM intrinsic operation 

●      Use an MLIR operation

●      LLVM is catching up with Hopper

●      Thanks to MLIR's NVVM ops!

●      Mojo language type → LLVMIR types

●      High level types transforms in the library

●      No need for HL Dialect → NVVMOps



Fast GEMM On Modern GPUs
Map tiles seamlessly to memory/threads hierarchy Distribute workload to thread

special layout to 
avoid bank con�ict 



Express thread swizzling
ldmatrix(.x1) loads one matrix of 8 rows and 16B per row.
Loading naively results in 4-way bank con�ict!  

16B 16B 16B 16B

Need to "swizzle" the data layout to avoid con�icts.



Tile-Based Gemm Performance
On-par performance with cuBLAS 12.6.1 on A100 for LLAMA3 BF16 serving
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Parametric Tensor vs Triton Lang
●      Both are tile level APIs, but Triton is explicitly only at the level of thread block tile. 

●      Triton is compiler based approach so, many things are implicit and done by the compiler

●    Mapping of thread block level operations to warps and threads

●    Allocation/reuse of intermediate shared memory and/or register tiles 

●    Allocation and synchronization are explicit and user de�ned

●    Synchronization 

●      Our approach all scheduling aspects are explicit

●    Tiling and distribution to warps and threads is explicit and user de�ned

●      We believe that we can go from explicit warp level to "optionally" implicit block level APIs

●    With a mixture of Library + Minimal compiler passes for lowering implicit high level operations



Conclusion
• GPU architecture is moving fast, faster than compiler and perofmance engineers can catchup

• SIMT is low level, with good language features and higher level abstractions it can be simpli�ed 

• The hardware exposes tile level instructions so as the algorithms 



        Thank You 
             Questions

Open roles at Modular ⬆

27


