

Simplifying GPU Programming With Parametric Tile-Level Tensors in Mojo

Ahmed Taei ataei@modular.com

LLVM Dev 2024

Hengjie Wang hengjiewang@modular.com A unified team of thirty-two, Working together, we're sure to pull through. In synchronized fashion, no threads left behind, Executing your MatrixMultiply with speed in mind.

Who am I?

A unified team of thirty-two, Working together, we're sure to pull through. In synchronized fashion, no threads left behind,

Executing your MatrixMultiply with speed in mind.

Who am I? Warp executing mma.sync.aligned instruction

ough. behind, ed in mind.

Modern GPUs Architecture

- Massively parallel machine
 - Massive parallelism (128 SMs in GA100 GPUs)
 - Massive on chip memory
- Heterogeneous processing units
 - General purpose cores (CUDA Core) ~ 40 TFLOPS
 - Fixed function cores (Tensor Core) ~ 310 TFLOPS
- High bandwidth off-chip memory (HBM2) 1.5 TB/s

L1 Instruction Cache																	
	_		L0 In	struct	ion C	ache	_		_	_	L0 In	struct	tion C	ache		_	
Warp Scheduler (32 thread/clk)								Warp Scheduler (32 thread/clk)									
Dispatch Unit (32 thread/clk)									Di	spatch	Unit	(32 th	read/o	clk)			
Register File (16,384 x 32-bit)								Reg	ister I	File (1	16,384	4 x 32	2-bit)				
1T32 INT	32 FI	P32	FP32	FP	64			INT32	INT32	FP32	FP32	FP	64				
1T32 INT	32 FI	P32	FP32	FP	64			INT32	INT32	FP32	FP32	FP	64				
IT32 INT	32 FI	P32	FP32	FP	64			INT32	INT32	FP32	FP32	FP	64				
1T32 INT	32 FI	P32	FP32	FP	64	TENSO	RCORE	INT32	INT32	FP32	FP32	FP	64	т	ENSO	RC	ORE
IT32 INT	32 FI	P32	FP32	FP	64			INT32	INT32	FP32	FP32	FP	64				
IT32 INT	32 FI	P32	FP32	FP	64			INT32	INT32	FP32	FP32	FP	64				
1732 INT	32 FI	P32	FP32	FP	64			INT32	INT32	FP32	FP32	FP	64				
LD/ LI	32 FI	-32 .D/	LD/	LD/	64 LD/	LD/ LD/	oru	LD/	LD/	LD/	LD/	LD/	64 LD/	LD/	LD/		OFU
ST S	it s	ST	ST	ST	ST	ST ST	SFU	ST	ST	ST	ST	ST	ST	ST	ST		SFU
	_		L0 In	struct	ion C	ache	_		_	_	L0 in	struct	tion C	ache		-	-
L0 Instruction Cache						Warp Scheduler (32 thread/clk)											
Warp Scheduler (32 thread/clk)						hread/clk)				Wa	p Sch	edule	r (32 t	hread	l/clk)		
		War Dis	p Sch spatch	eduler Unit ((32 tl (32 th	hread/clk) read/clk)				Wai Di	rp Sch spatch	edulei Unit	r (32 t (32 th	hread read/o	l/clk) clk)		
	F	War Dis Regi	p Sch spatch ister I	eduler 1 Unit (File (1	(32 th (32 th) 6,384	hread/clk) read/clk) 4 x 32-bit)				Wai Di Reg	rp Sch spatch jister l	eduler 1 Unit (File (1	r (32 th (32 th 16,384	hread read/o 4 x 32	l/clk) clk) 2-bit)	1	
1T32 INT	F 32 F1	War Dis Regi P32	p Sch spatch ister I FP32	eduler Unit (File (1 FP	(32 th (32 th) 6,384	hread/clk) read/clk) 4 x 32-bit)		INT32	INT32	Wan Di Reg	rp Sch spatch jister FP32	eduler Unit File (1 FP	r (32 t (32 th 16,384 64	hread read/o 4 x 32	l/clk) clk) 2-bit)		
1T32 INT 1T32 INT	F 32 FI 32 FI	War Dis Regi P32 P32	p Sch spatch ister I FP32 FP32	eduler I Unit (File (1 FP	(32 th (32 th) (32 th)	hread/clk) read/clk) 4 x 32-bit)		INT32	INT32 INT32	Wan Di Reg FP32 FP32	rp Sch spatch jister FP32 FP32	eduler Unit File (1 FP FP	r (32 t (32 th 16,384 64 64	hread read/ 4 x 32	l/clk) clk) 2-bit)		
1T32 INT 1T32 INT 1T32 INT	F 32 FI 32 FI 32 FI	War Dis Regi P32 P32 P32	p Sch spatch ister I FP32 FP32 FP32	eduler I Unit (File (1 FP FP	(32 th (32 th) 6,384 64 64 64	hread/clk) read/clk) 4 x 32-bit)		INT32 INT32 INT32	INT32 INT32 INT32	Wan Di: Reg FP32 FP32 FP32	rp Sch spatch jister FP32 FP32 FP32	edule Unit File (1 FP FP	r (32 th (32 th 16,38 64 64 64	hread read/o 4 x 32	l/clk) clk) 2-bit)		
IT32 INT IT32 INT IT32 INT IT32 INT	F 32 F1 32 F1 32 F1 32 F1	War Dis Regi P32 P32 P32 P32	p Sch spatch ister I FP32 FP32 FP32 FP32	eduler 1 Unit (File (1 FP FP FP	(32 th (32 th (32 th (6,384) 64 64 64 64	hread/clk) read/clk) 4 x 32-bit) TENSC	DR CORE	INT32 INT32 INT32	INT32 INT32 INT32 INT32	War Di Reg FP32 FP32 FP32 FP32	rp Sch spatch ister 1 FP32 FP32 FP32 FP32	edule Unit File (1 FP FP FP	(32 th (32 th 16,384 64 64 64 64	hread read/o 4 x 32 TE	I/clk) clk) 2-bit) ENSO	DR C	ORE
1T32 INT 1T32 INT 1T32 INT 1T32 INT 1T32 INT	F 32 F1 32 F1 32 F1 32 F1 32 F1	War Dis Regi P32 P32 P32 P32 P32	p Schapatch spatch ister I FP32 FP32 FP32 FP32 FP32	eduler I Unit (File (1 FP FP FP FP	(32 th (32 th (32 th (32 th (32 th) (32 th) (3	hread/clk) read/clk) 4 x 32-bit) TENSC	PR CORE	INT32 INT32 INT32 INT32	INT32 INT32 INT32 INT32 INT32	Wai Di Reg FP32 FP32 FP32 FP32 FP32	rp Sch spatch ister I FP32 FP32 FP32 FP32 FP32	edule Unit File (1 FP FP FP FP	(32 th (32 th 16,384 64 64 64 64 64	hread/ 4 x 32	I/clk) clk) 2-bit) ENSO	DR C	ORE
1T32 INT 1T32 INT 1T32 INT 1T32 INT 1T32 INT 1T32 INT	F 32 F1 32 F1 32 F1 32 F1 32 F1 32 F1	War Dis Regi P32 P32 P32 P32 P32 P32	p School Spatch spatch ister I FP32 FP32 FP32 FP32 FP32 FP32	eduler File (1 FP FP FP FP	(32 th (32 th) (32 th)	hread/clk) read/clk) 4 x 32-bit) TENSC	PR CORE	INT32 INT32 INT32 INT32 INT32	INT32 INT32 INT32 INT32 INT32 INT32	War Di Reg FP32 FP32 FP32 FP32 FP32 FP32	rp Sch spatch ister 1 FP32 FP32 FP32 FP32 FP32 FP32	edule Unit File (1 FP FP FP FP FP	(32 th (32 th 16,38 64 64 64 64 64 64	hread read/o 4 x 32 TE	l/clk) clk) 2-bit) ENSO	DR C	ORE
IT32 INT IT32 INT IT32 INT IT32 INT IT32 INT IT32 INT IT32 INT	F 32 F1 32 F1 32 F1 32 F1 32 F1 32 F1 32 F1 32 F1	War Dis Regi P32 P32 P32 P32 P32 P32 P32 P32	p Scho spatch ister I FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	eduler Unit (File (1 FP FP FP FP FP	(32 th) (32 th	hread/clk) read/clk) 4 x 32-bit) TENSC	PR CORE	INT32 INT32 INT32 INT32 INT32 INT32 INT32	INT32 INT32 INT32 INT32 INT32 INT32 INT32	War Di Reg FP32 FP32 FP32 FP32 FP32 FP32 FP32	rp Sch spatch jister FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	edule Unit File (1 FP FP FP FP FP	(32 th (32 th (32 th 64 64 64 64 64 64 64 64 64	hread read/o 4 x 32 TE	l/clk) clk) 2-bit) ENSC	DR C	ORE
IT32 INT IT32 INT IT32 INT IT32 INT IT32 INT IT32 INT IT32 INT IT32 INT	F 32 F1 32 F1 32 F1 32 F1 32 F1 32 F1 32 F1 32 F1 32 F1	War Dis Regi P32 P32 P32 P32 P32 P32 P32 P32 P32 P32	p Scho spatch ister I FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	eduler Unit (File (1 FP) FP) FP) FP) FP) FP) FP) FP) FP) FP)	(32 th) (34 th) (35 th) (35 th) (36 th) <td< td=""><th>tread/clk) read/clk) 4 x 32-bit) TENSC</th><th>OR CORE</th><td>INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32</td><td>INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32</td><td>War Di Reg FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32</td><td>rp Sch spatch ister I FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32</td><td>edule Unit File (1 FP FP FP FP FP FP FP</td><td>(32 th (32 th (32 th (32 th 64 64 64 64 64 64 64 64 64 64 64 64</td><td>hread/ read/ 4 x 32 TE</td><th>LD/</th><th>DR C</th><td>ORE</td></td<>	tread/clk) read/clk) 4 x 32-bit) TENSC	OR CORE	INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	War Di Reg FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	rp Sch spatch ister I FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	edule Unit File (1 FP FP FP FP FP FP FP	(32 th (32 th (32 th (32 th 64 64 64 64 64 64 64 64 64 64 64 64	hread/ read/ 4 x 32 TE	LD/	DR C	ORE
1132 INT 1132 INT 1132 INT 1132 INT 1132 INT 1132 INT 1132 INT 1132 INT 1132 INT	32 FI 32 FI	War Dis Reg P32 P32 P32 P32 P32 P32 P32 P32 P32 P32	p School Spatch spatch ister I FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	eduler Unit (File (1 FP) FP) FP) FP) FP) FP) FP) FP) FP) FP)	(32 th) (34 th) (35 th) (36 th) <td< td=""><th>hread/clk) read/clk) 4 x 32-bit) TENSC</th><th>PR CORE</th><td>INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32</td><td>INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32</td><td>War Di Reg FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32</td><td>rp Sch spatch ister FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32</td><td>edule Unit File (1 FP FP FP FP FP FP FP</td><td>(32 th (32 th (32 th (32 th 64 64 64 64 64 64 64 64 64 64 64 64</td><td>hread read/ 4 x 32 TE</td><th>(/clk) clk) 2-bit) ENSO</th><th>DR C</th><td>ORE</td></td<>	hread/clk) read/clk) 4 x 32-bit) TENSC	PR CORE	INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	War Di Reg FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	rp Sch spatch ister FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	edule Unit File (1 FP FP FP FP FP FP FP	(32 th (32 th (32 th (32 th 64 64 64 64 64 64 64 64 64 64 64 64	hread read/ 4 x 32 TE	(/clk) clk) 2-bit) ENSO	DR C	ORE
IT32 INT IT32 INT IT32 INT IT32 INT IT32 INT IT32 INT IT32 INT IT32 INT IT32 INT	32 FI 32 FI	War Dis Regi P32 P32 P32 P32 P32 P32 P32 P32 P32 P32	p School Spatch spatch ister I FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	eduler Unit File (1 FP FP FP FP FP FP FP FP	(32 th) (34 th) (35 th) (36 th) <td< td=""><th>hread/clk) read/clk) 4 x 32-bit) TENSC LD/ ST LD/ ST ST 192K</th><th>DR CORE</th><td>INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32</td><td>INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32</td><td>Wan Di Reg FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32</td><td>rp Sch spatch ister FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32</td><td>edule Unit File (1 FP FP FP FP FP FP FP FP</td><td>(32 th (32 th 16,384 64 64 64 64 64 64 64 64 64 64 64 64 64</td><td>hread/ read/ 4 x 32 TE</td><th>LD/</th><th>DR C</th><td>ORE</td></td<>	hread/clk) read/clk) 4 x 32-bit) TENSC LD/ ST LD/ ST ST 192K	DR CORE	INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32 INT32	Wan Di Reg FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	rp Sch spatch ister FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32	edule Unit File (1 FP FP FP FP FP FP FP FP	(32 th (32 th 16,384 64 64 64 64 64 64 64 64 64 64 64 64 64	hread/ read/ 4 x 32 TE	LD/	DR C	ORE

Modern GPUs Architecture

- Next generation (Hopper) introduces
 - More parallelism (144 SMs in GH100 GPUs)
 - More on chip memory
- Faster GP cores ~ (CUDA Cores) 120 TFLOPS
- New & faster fixed function cores (Tensor Core) ~ 1000 TFLOPS
- **New** specialized accelerators Tensor Memory Accelerator (TMA)
- Higher bandwidth for accessing off-chip memory (HBM3) 3 TB/s
- Performance isn't portable 😓
 - New ISA + New fixed function cores → New tricks
 - Compiler backends are catching up slowly!

Modern GPUs Programming Model

- Single Instruction Multiple Threads (SIMT)
 - All threads are executing same instruction in parallel
- Every 32 consecutive threads warp are scheduled together
 - Threads in a warp are executed in parallel
 - Warp level instructions, Tensor Core MMA, warp shuffles ...etc
 - New architectures define instructions wider than a single warp
 - Hopper's (W)arp(G)roupMMA instruction

Ι

- SIMT exposes GPU parallelism but!
 - HW groups threads together into warps
 - Programmers wants to assign work to a group of thread
- Most GPU programms especially dense kernels (e.g matmul) reduces to data parallel operations on tiles
 - Each thread block accesses a specific tile
 - Each warp in the thread blocks accesses a specific subtile
 - Each thread in the warp accesses a subtile of elements

- M
- The program is a operations on these tiles (load, copy, math...)
- Performant kernels wants to use fixed function cores within the GPU
 - TMA, Tensor Core ISA is naturally defines as an operations on a tile of data

Assign Tiles To Warps

- Tensor core MMA instruction
 - mma.sync.aligned.row.col.m16n8k8.bf16.bf16.tf32
 - Given a warp tile distribute its 32 threads in a particular layout
 - operand_a : Row major threads with 2 x [1x2] thread subtile
 - operand_b : Col major threads with 2x1 thread subtile
 - operand_c : Row major threads with 2 x [1x2] thread subtile

Row\Column	0	1	2		7
0	$T0: \begin{cases} b0\\ b1 \end{cases}$	$T4: \begin{cases} b0\\ b1 \end{cases}$		1	$T28: \begin{cases} b0\\ b1 \end{cases}$
2 3	$T1: \begin{cases} b0\\ b1 \end{cases}$	$T5: \begin{cases} b0\\ b1 \end{cases}$			$T29: \begin{cases} b0\\ b1 \end{cases}$
4	$T2: \begin{cases} b0\\ b1 \end{cases}$	$T6: \begin{cases} b0\\ b1 \end{cases}$			$T30: \begin{cases} b0\\ b1 \end{cases}$
6 7	$T3: \begin{cases} b0\\ b1 \end{cases}$	$T7: \begin{cases} b0\\ b1 \end{cases}$			$T31: \begin{cases} b0\\ b1 \end{cases}$

Row\Column	0 1 2 3	4 5 6 7	8 9 10 11	12 13 14 15
0	T0:{a0,a1}	T1:{a0,a1}	T2:{a0,a1}	T3:{a0,a1}
1	T4:{a0,a1}	T5:{a0,a1}	T6:{a0,a1}	T6:{a0,a1}
2				
	•			
7	T28:{a0,a1}	T29:{a0,a1}	T30:{a0,a1}	T31:{a0,a1}
8	T0:{a2,a3}	T1:{a2,a3}	T2:{a2,a3}	T3:{a2,a3}
9	T4:{a2,a3}	T5:{a2,a3}	T6:{a2,a3}	T7:{a2,a3}
10				
15	T28:{a2,a3}	T29:{a2,a3}	T30:{a2,a3}	T31:{a2,a3}

Row\C
0
1
2
7
8
9
10
15

ol	0 1	2 3	4 5	6 7
	T0: {c0, c1}	T1: {c0, c1}	T2: {c0, c1}	T3: {c0, c1}
	T4: {c0, c1}	T5: {c0, c1}	T6: {c0, c1}	T7: {c0, c1}
				•
	•			
	T28: {c0, c1}	T29: {c0, c1}	T30: {c0, c1}	T31: {c0, c1}
	T0:{c2, c3}	T1:{c2, c3}	T2:{c2, c3}	T3:{c2, c3}
	T4:{c2, c3}	T5:{c2, c3}	T6:{c2, c3}	T7:{c2, c3}
	+			
	T28:{c2, c3}	T29:{c2, c3}	T30:{c2, c3}	T31:{c2, c3}

GPU kernel developers wants explicit parallelism but not necessarily SIMT

- For dense kernels they want higher level primitives like a tensor and operations on it
 - Tile, allocation, copy, math ...etc
 - Given an operation on a warp tile how threads are organized to access each element
 - Expose knobs and parametrize their kernels for auto-tuning or even manual experimentation

- This isn't a novel problem
 - Libraries exist to provide **zero cost** higher level abstractions
 - The challenge with libraries is how much the language can offer
- More specifically the language empowering the libray needs to provide an easy way for
 - Transformation of compile time type information (meta-programming)
 - Access the hardware without inline assembly (remember compiler backends are catching up!)

Parametric Tensor Type

- Thanks to Mojo 🔥
 - Meta programming is much simpler and expressive 🎉
 - Raw access to MLIR operations 💪 😂
- Our approach
 - **A Library defined Tensor** type that provides operations:
 - Tiled, distributed and binded to specific part of the compute hierarchy
 - Access to its elements can be explicitly vectorized
 - Tensor type parameterized by layout meta-types, which specify its shape and the way its elements are accessed
 - For this you **don't need a DSL or a compiler** you just need a library

Meta Programming in Mojo

Parameters are like templates but they are compile time typed values (TypedAttr!) not AST substitutions!

4		4
5	<pre>struct Tensor[dtype: DType, rank: Int]:</pre>	5 template <typename int="" rank="" t,=""> class Tensor {</typename>
6	<pre>var data: UnsafePointer[Scalar[dtype]]</pre>	6 T *data;
7	<pre>var shape: IndexList[rank]</pre>	7 size_t shape[rank];
8	<pre>var stride: IndexList[rank]</pre>	<pre>8 size_t stride[rank];</pre>
9		9 };
10		10

Same language for programming and metaprogramming

Meta Programming in Mojo

- Meta types can also be a parametric closure, which is super powerful
 - Software pipelined mma reduction loop with an SIMD \rightarrow SIMD elementwise epilogue

```
alias elementwise_epilogue_type = fn
    type: DType, width: Int
  (Int, Int, SIMD[type, width]) capturing -> SIMD[type, width]
fn multistage_mma[
    num_stages: Int,
    elementwise_epilogue: elementwise_epilogue_type
] (
    inout res: Tensor,
    lhs: Tensor,
    rhs: Tensor
    # construct a software pipelined mma with num_stages and inline
    # and apply elementwise epiloug
```

- Useful for ML graph compilers / code gen:
 - No need to write complex software pipelined loops as compiler pass
 - Fused into pipelined loop is **easier** than pipeline a fused loop

Layout Parameterized Tensor Type

- A Tensor type with **Layout(s)** meta types
 - Data layout
 - **Element layout**
- What is the layout?
 - A function logical (n-d) coords \rightarrow linear coords / Integer
 - Represent how data or threads spatially organized
 - Defined by {Tuple(shape), Tuple(stride)}
 - Layout(coords) \rightarrow dot(coords, stride)
- Same definition for Layout in CUTLASS/CUTE
 - Slightly different operations / algebra

scit	IC L	Lay	out			
	var	sh	аре	: 1	Тир	ſ
	var	st	ric	le:	Tu	I
	fn	i se	nit lf.	sha	(in ape	1
		se	lf.	st	rid	6
	fn	ran re	k(s tur	el n	f) sel	
	fn	siz re	e(s tur	n :	f) sel	-
	fn	c re	all tur	 n	(se dot	
stri	ıct dty	Ten pe:	sor D1	-[- _ype	е,	
	lay	out	: 1	ay	out	
	/,					
	*,					
	ele	men	t_1	ay	out	
	add	res	s_s	spa	ce	
:						
	var	pt	r	Un	saf	(

ole

out self, shape: Tuple, stride: Tuple): = shape = shape

-> Int: .shape.rank()

-> Int: .shape.size()

f, *coords: Int) -> Int: _product(coords, self.stride)

Layout = Layout(1, 1),

AddressSpace = AddressSpace.GENERIC,

ePointer[Scalar[dtype], address_space]

Layout for Data And Threads

- Example: 4x4 row major matrix:
 - shape = (4, 4), stride = (4, 1)
 - layout(i, j) = dot((i, j), (4, 1)) = 4 * i + j
 - domain: (0, 0)..(3, 3)
 - range: $0 \rightarrow 15$
- Example: 4x4 column major matrix:
 - shape = (4, 4), stride = (1, 4)
 - layout(i, j) = dot((i, j), (1, 4)) = i + 4 * j
 - domain: (0, 0)..(3, 3)
 - range: $0 \rightarrow 15$

0

2

3

(4,4):(4,<mark>1</mark>)

(4,4):(1,4)

0	4	8	12
1	5	9	13
2	6	10	14
3	7	11	15
0	1	2	3

Layout For Data And Threads

- How about a more complicated layout?
 - e.g 4x4 with 2x2 tile major
 - Split each dim $(4, 4) \rightarrow ((2, 2), (2, 2))$
 - $(4:4) \rightarrow (2,2):(2,8), (4:1) \rightarrow (2,2):(1,4)$
 - Inner tile stride (2, 1), Tile stride (8, 4)
 - OpenXLA/IREE's mmt4d uses similar but flattened representation (2,2,2,2):(8,4,2,1)
- With this we can support more general layouts.

((2,2),(2,2)):((2,8),(1,4))

Tensor Layout Transforms

• Tile and return the tensor tile at specific coordinates

fn tile_layout(tile_sizes: VariadicList[Int], layout: Layout) -> Layout:
 return Layout(tile_sizes, layout.stride)

• Returns a vectorized tensor with specific vec_shape

• Distribute the thread layout into the tensor and return thread_id's tile


```
truct Tensor
  dtype: DType,
  layout: Layout,
  1,
  *,
  element_layout: Layout = Layout(1, 1),
  address_space: AddressSpace = AddressSpace.GENERIC,
  var ptr: UnsafePointer[Scalar[dtype], address_space]
  fn __init__(inout self, ptr: UnsafePointer[Scalar[dtype], address_space]):
      self.ptr = ptr
  fn tile[
      *tile_sizes: Int
  ](self, *coords: Int) -> Tensor[
      dtype,
      tile_layout(tile_sizes, layout),
      element_layout=element_layout,
      address_space=address_space,
  as res:
      tile_offset = dot_product(coords, tile_sizes)
      return __type_of(res)(self.ptr.offset(tile_offset))
  fn vectorize[
      *vec_shape: Int
  ](self) -> Tensor[
      dtype,
      vectorize_layout(vec_shape, layout),
      element_layout = vectorize_element(vec_shape, element_layout),
      address_space=address_space,
  as res:
      return __type_of(res)(self.ptr)
  fn distribute[
      thread_layout: Layout
  ](self, thread_id: Int) -> Tensor[
      dtype,
      distribute_layout(thread_layout, layout),
      element_layout=element_layout,
      address_space=address_space,
   as res:
      thread_offset = layout(thread_layout.to_coords(thread_id))
      return __type_of(res)(self.ptr.offset(thread_offset))
```

Tensor Layout Transforms

Distributes tiles the data to the thread layout shape then distribute (repeat)

			(8,8	8):(8	3,1)							
throad lavout	0	1	2	3	4	5	6	7	(4	,4):(16,2	2) + 3
(2,2):(1,2)	8	9	10	11	12	13	14	15	8	10	12	14
0 2	16	17	18	19	20	21	22	23	24	26	28	30
1 3	24	25	26	27	28	29	30	31	40	42	44	46
	32	33	34	35	36	37	38	39	56	58	60	62
	40	41	42	43	44	45	46	47				
	48	49	50	51	52	53	54	55		Thre	ead	1
	56	57	58	59	60	61	62	63				

8

Tile Level Tensor operations

- With tensor tiles tiles as the primitives we can define operations for:
 - Memory allocations
 - Data movement
 - Math

outer product and acc into res res += outer_product(lhs, rhs)

Allocate BN x BK column major tensor on shared memory. b_sram_tile = tb[f32]().col_major[BN, BK]().shared().alloc()

a_reg_tile = tb[f32]().row_major[TM, 1]().local().alloc()

thread_layout=thread_layout_loadb

```
smem_tile.vectorize[1, simd_size](),
gmem_tile.vectorize[1, simd_size](),
```

Tile Level Tensor operations

• Simplify Tensor Core Programming

@parameter	change for	Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.
<pre>for mma_k in range(BK // MMA_K):</pre>	snape for	# Vectoriz
	÷	# Vectoriz
@parameter	N. MMA $K(1)$	# itself.
for mma_m in range(WM // MMA_M):		conv dram
		copy_uram_
(dparameter	ender the set	A_S ran
c reg m n = c reg tile[1 TN](mma m mma n)).alloc())
) alloc()	copy_dram_
# Tile warp tiles into MMA shapes.	/.actoc()	B sran
A mma tile = A warp tile.tile[MMA M, MMA K](mma m, mma k)) —
<pre>B_mma_tile = B_warp_tile.tile[MMA_K, MMA_N](mma_k, mma_n)</pre>		
		async_copy
<pre># Load data from warps tiles to register tiles.</pre>		barrier()
a_reg = mma_op.load_a(A_mma_tile)		
<pre>b_reg = mma_op.load_b(B_mma_tile)</pre>		# Tile SRA
		A warn til
# Compute MMA on data loaded from registers.		Burnet 1
c_reg_m_n = mma_op.mma_op(B_warp_ti
a_reg,		
b_reg,		@parameter
C_reg_m_r,		for mma k
@parameter		800 mar
for mma_m in range(WM // MMA_M):		eparan
		for mn
@parameter		
<pre>for mma_n in range(WN // MMA_N):</pre>		er
C_mma_tile = C_warp_tile.tile[MMA_M, MMA_N](mma_m, mma_n)		fo
<pre>c_reg_m_n = c_reg.tile[1, TN](mma_m, mma_n)</pre>		
mma_op.store_d(C_mma_tile, c_reg_m_n)		

```
zed async copy for data from DRAM -> SRAM
zation for both reading data from DRAM & copy instruction
_to_sram_async[thread_layout = Layout.row_major(4, 8)](
n_tile.vectorize[1, TN](), A_dram_tile.vectorize[1, TN]()
_to_sram_async[thread_layout = Layout.row_major(4, 8)](
n_tile.vectorize[1, TN](), B_dram_tile.vectorize[1, TN]()
/_wait_all()
AM data into Warp tiles
le = A_sram_tile.tile[WM, BK](warp_y, 0)
le = B_sram_tile.tile[BK, WN](0, warp_x)
in range(BK // MMA_K):
neter
ma_m in range(WM // MMA_M):
parameter
  mma_n in range(WN // MMA_N):
  c_reg_m_n = c_reg.tile[1, TN](mma_m, mma_n)
```

How GPU Primitives are Implemented?

- Mojo is syntax sugar on top of MLIR so we can:
 - Use an LLVM intrinsic operation
 - Use an MLIR operation
 - LLVM is catching up with Hopper
 - Thanks to MLIR's NVVM ops!
 - Mojo language type \rightarrow LLVMIR types
 - High level types transforms in the library
 - No need for HL Dialect \rightarrow NVVMOps

always_inline ___to_llvm_ptr[type: AnyType (ptr: UnsafePointer[type]) -> __mlir_type.`!llvm.ptr`: """Cast a pointer to LLVMPointer Type. Args: ptr: A pointer. Returns: A pointer of type !llvm.ptr. return __mlir_op.`builtin.unrealized_conversion_cast`[_type = __mlir_type.`!llvm.ptr`](ptr) @always_inline ___to_i32(val: Int32) -> __mlir_type.i32: """Cast Scalar I32 value into MLIR i32. Args: val: Scalar I32 value. Returns: Input casted to MLIR i32 value.

f(c): atrix-multiply and accumulate(MMA)

6.f16", t16, 2], SIMD[DType.float16, 2]],

return __mlir_op.`pop.cast_to_builtin` [_type = __mlir_type.`i32`](val.value)

_mlir_op.`nvvm.cp.async.bulk.tensor.shared.cluster.global`(___to_llvm_shared_mem_ptr(dst_mem), __to_llvm_ptr(tma_descriptor), ___to_i32(coords[0]), ___to_i32(coords[1]), ___to_llvm_shared_mem_ptr(mem_bar),

Fast GEMM On Modern GPUs

Map tiles seamlessly to memory/threads hierarchy

```
for k tile in range(num k tiles):
   # Async copy from global memory to shared memory.
   # thread block tile.
   var a gmem tile = A.tile[BM, BK](BlockIdx.y(), k tile)
   var a smem tile = LayoutTensor[a type, Layout.row major(BM, BK)]()
   async copy[thread layout](
       a smem tile.vectorize[simd width]()
       a gmem tile.vectorize[simd width]()
   # Warp tile.
   var a warp tile = a smem tile.tile[WM, WK](warp m, warp k)
   var b warp tile = b smem tile.tile[WN, WK](warp n, warp k)
   # Threads' register tile (fragments).
                                               special layout to
   mma.load_a(a_fragments, a warp tile)
   mma.load_b(b_fragments, b_warp_tile)
                                               avoid bank conflict
   # Tensor core mma
   mma.mma(c fragments, a fragments, b fragments)
```

):

Distribute workload to thread

fn async copy[thread layout: Layout](smem tile: LayoutTensor, gmem tile: LayoutTensor

```
# Distribute copy workload to threads.
```

```
var smem fragments = smem tile.distribute[thread layout](TheadIdx.x())
var gmem_fragments = gmem_tile.distribute[thread_layout](TheadIdx.x())
```

Each thread copies its share. smem fragments.copy(gmem fragments)

Express thread swizzling

Idmatrix(.x1) loads one matrix of 8 rows and 16B per row. Loading naively results in 4-way bank conflict!

Need to "swizzle" the data layout to avoid conflicts.

	9

```
var offset = ComposedLayout[
   composition(
       # shared memory tile layout
       Layout.row_major(BM, BK),
       # ldmatrix's required layout
       ldmatrix layout,
```

```
# swizzle to avoid bank conflict
   Swizzle[2, 3, 3](),
](ThreadIdx.x())
```

Tile-Based Gemm Performance

On-par performance with cuBLAS 12.6.1 on A100 for LLAMA3 BF16 serving

Parametric Tensor vs Triton Lang

- Both are tile level APIs, but Triton is explicitly only at the level of thread block tile.
- Triton is compiler based approach so, many things are implicit and done by the compiler •
 - Mapping of thread block level operations to warps and threads
 - Allocation/reuse of intermediate shared memory and/or register tiles
 - Synchronization
- Our approach all scheduling aspects are explicit
 - Allocation and synchronization are explicit and user defined
 - Tiling and distribution to warps and threads is explicit and user defined
- We believe that we can go from explicit warp level to "optionally" implicit block level APIs
 - With a mixture of Library + Minimal compiler passes for lowering implicit high level operations

Conclusion

- GPU architecture is moving fast, faster than compiler and perofmance engineers can catchup
- The hardware exposes tile level instructions so as the algorithms
- SIMT is low level, with good language features and higher level abstractions it can be simplified

Thank You Questions WE'RE

Open roles at Modular 👔

