
Simplifying GPU Programming With

 Parametric Tile-Level Tensors in Mojo🔥

Ahmed Taei
ataei@modular.com

Hengjie Wang
hengjiewang@modular.com

ataei@modular.com

LLVM Dev 2024

A unified team of thirty-two,
Working together, we're sure to pull through.
In synchronized fashion, no threads left behind,
Executing your MatrixMultiply with speed in mind.

Who am I ?

A unified team of thirty-two,
Working together, we're sure to pull through.
In synchronized fashion, no threads left behind,
Executing your MatrixMultiply with speed in mind.

Who am I ? Warp executing mma.sync.aligned instruction

Modern GPUs Architecture
● Massively parallel machine

● Massive parallelism (128 SMs in GA100 GPUs)

● Massive on chip memory

● Heterogeneous processing units

● General purpose cores (CUDA Core) ~ 40 TFLOPS

● Fixed function cores (Tensor Core) ~ 310 TFLOPS

● High bandwidth off-chip memory (HBM2) 1.5 TB/s

Modern GPUs Architecture
● Next generation (Hopper) introduces

● More parallelism (144 SMs in GH100 GPUs)

● More on chip memory

● Faster GP cores ~ (CUDA Cores) 120 TFLOPS

● New & faster fixed function cores (Tensor Core) ~ 1000 TFLOPS

● New specialized accelerators Tensor Memory Accelerator (TMA)

● Performance isn't portable 😓

● New ISA + New fixed function cores → New tricks

● Compiler backends are catching up slowly!

● Higher bandwidth for accessing off-chip memory (HBM3) 3 TB/s

Modern GPUs Programming Model
● Single Instruction Multiple Threads (SIMT)

● All threads are executing same instruction in parallel

● Every 32 consecutive threads — warp — are scheduled together

● Warp level instructions, Tensor Core MMA, warp shuffles …etc

● New architectures define instructions wider than a single warp

● Threads in a warp are executed in parallel 🤞

● Hopper's (W)arp(G)roupMMA instruction

The Missing Abstraction

● Most GPU programms especially dense kernels (e.g matmul) reduces to data parallel operations on tiles

● Each warp in the thread blocks accesses a specific subtile

● Each thread in the warp accesses a subtile of elements

● Each thread block accesses a specific tile

● SIMT exposes GPU parallelism but!

● HW groups threads together into warps

● Programmers wants to assign work to a group of thread

● The program is a operations on these tiles (load, copy, math…)

● Performant kernels wants to use fixed function cores within the GPU

● TMA, Tensor Core ISA is naturally defines as an operations on a tile of data

The Missing Abstraction

● Tensor core MMA instruction

● mma.sync.aligned.row.col.m16n8k8.bf16.bf16.tf32

● operand_a : Row major threads with 2 x [1x2] thread subtile

● operand_b : Col major threads with 2x1 thread subtile

● operand_c : Row major threads with 2 x [1x2] thread subtile

● Given a warp tile distribute its 32 threads in a particular layout

The Missing Abstraction
● GPU kernel developers wants explicit parallelism but not necessarily SIMT

● For dense kernels they want higher level primitives like a tensor and operations on it

● Tile, allocation, copy, math …etc

● Given an operation on a warp tile how threads are organized to access each element

● Expose knobs and parametrize their kernels for auto-tuning or even manual experimentation

The Missing Abstraction
● This isn't a novel problem

● Libraries exist to provide zero cost higher level abstractions

● More specifically the language empowering the libray needs to provide an easy way for

● Transformation of compile time type information (meta-programming)

● Access the hardware without inline assembly (remember compiler backends are catching up!)

● The challenge with libraries is how much the language can offer

Parametric Tensor Type

● Our approach

● A Library defined Tensor type that provides operations:

● Tensor type parameterized by layout meta-types, which specify its shape and the way its elements are accessed

● Tiled, distributed and binded to specific part of the compute hierarchy
● Access to its elements can be explicitly vectorized

● Thanks to Mojo 🔥

● Meta programming is much simpler and expressive 🎉

● Raw access to MLIR operations 💪

● For this you don't need a DSL or a compiler you just need a library

Meta Programming in Mojo🔥
• Parameters are like templates but they are compile time typed values (TypedAttr!) not AST substitutions!

• Same language for programming and metaprogramming

Meta Programming in Mojo🔥
• Meta types can also be a parametric closure, which is super powerful

● Software pipelined mma reduction loop with an SIMD → SIMD elementwise epilogue

● Useful for ML graph compilers / code gen:
● No need to write complex software pipelined loops as compiler pass
● Fused into pipelined loop is easier than pipeline a fused loop

Layout Parameterized Tensor Type

● A Tensor type with Layout(s) meta types

● Data layout

● Element layout

● What is the layout ?

● A function logical (n-d) coords → linear coords / Integer

● Defined by {Tuple(shape), Tuple(stride)}

● Layout(coords) → dot(coords, stride)

● Same definition for Layout in CUTLASS/CUTE

● Slightly different operations / algebra

● Represent how data or threads spatially organized

Layout for Data And Threads

•
•
•
•

•

•
•
•
•

•

Example: 4x4 row major matrix:

shape = (4, 4), stride = (4, 1)

layout(i, j) = dot((i, j), (4, 1)) = 4 * i + j

domain: (0, 0)..(3, 3)

range: 0 → 15

Example: 4x4 column major matrix:

shape = (4, 4), stride = (1, 4)

layout(i, j) = dot((i, j), (1, 4)) = i + 4 * j

domain: (0, 0)..(3, 3)

range: 0 → 15

Layout For Data And Threads

•
•
•
•
•

•

•

How about a more complicated layout ?

e.g 4x4 with 2x2 tile major

Split each dim (4, 4) → ((2,2), (2,2))

(4:4) → (2,2):(2,8), (4:1) → (2, 2):(1, 4)

Inner tile stride (2, 1), Tile stride (8, 4)

OpenXLA/IREE's mmt4d uses similar but flattened representation (2,2,2,2):(8,4,2,1)

With this we can support more general layouts.

Tensor Layout Transforms
● Tile and return the tensor tile at specific coordinates

● Returns a vectorized tensor with specific vec_shape

● Distribute the thread layout into the tensor and return thread_id's tile

Tensor Layout Transforms
● Distributes tiles the data to the thread layout shape then distribute (repeat)

Tile Level Tensor operations

•
•
•

• With tensor tiles tiles as the primitives we can define operations for:

Memory allocations

Data movement

Math

Tile Level Tensor operations
• Simplify Tensor Core Programming

How GPU Primitives are Implemented?
● Mojo is syntax sugar on top of MLIR so we can:

● Use an LLVM intrinsic operation

● Use an MLIR operation

● LLVM is catching up with Hopper

● Thanks to MLIR's NVVM ops!

● Mojo language type → LLVMIR types

● High level types transforms in the library

● No need for HL Dialect → NVVMOps

Fast GEMM On Modern GPUs
Map tiles seamlessly to memory/threads hierarchy Distribute workload to thread

special layout to
avoid bank conflict

Express thread swizzling
ldmatrix(.x1) loads one matrix of 8 rows and 16B per row.
Loading naively results in 4-way bank conflict!

16B 16B 16B 16B

Need to "swizzle" the data layout to avoid conflicts.

Tile-Based Gemm Performance
On-par performance with cuBLAS 12.6.1 on A100 for LLAMA3 BF16 serving

0

100

200

300
Mojo cuBLAS

TFlops

Context Encoding, 1024 Tokens Token Generation, Batch Size 128

Parametric Tensor vs Triton Lang
● Both are tile level APIs, but Triton is explicitly only at the level of thread block tile.

● Triton is compiler based approach so, many things are implicit and done by the compiler

● Mapping of thread block level operations to warps and threads

● Allocation/reuse of intermediate shared memory and/or register tiles

● Allocation and synchronization are explicit and user defined

● Synchronization

● Our approach all scheduling aspects are explicit

● Tiling and distribution to warps and threads is explicit and user defined

● We believe that we can go from explicit warp level to "optionally" implicit block level APIs

● With a mixture of Library + Minimal compiler passes for lowering implicit high level operations

Conclusion
• GPU architecture is moving fast, faster than compiler and perofmance engineers can catchup

• SIMT is low level, with good language features and higher level abstractions it can be simplified

• The hardware exposes tile level instructions so as the algorithms

 Thank You
 Questions

Open roles at Modular ⬆️

27

