
Higher-Level Linker Scripts for
Embedded Systems

Daniel Thornburgh
Google

1

Embedded Systems

2

● Sensitive to...
○ Cost
○ Power
○ Latency

● Special purpose code

SRAM Is Expensive.

3

264KiB Total!

Heterogeneous Memory
There’s no MMU, since an MMU requires an SRAM TLB cache.
Cheaper memory off-die can replace expensive SRAM.
Off-die memory may be read-only, slow, cleared on suspend,
unavailable on boot, or have bus contention.
The linker must deal with it!

4

Discontinuous Memory Linker Script?
MEMORY {
 fast_ram : ORIGIN = 0x1000, LENGTH = 0x1000
 slow_ram : ORIGIN = 0x3000, LENGTH = 0x1000
}

SECTIONS {
 .data_fast_ram : { *(.data) } >fast_ram
 .data_slow_ram : { *(.data) } >slow_ram
}

0x800
bytes

0x400
bytes

Spill

.data Sections

Code needs similar treatment.
5

Discontinuous Memory Linker Script? Nope!
MEMORY {
 fast_ram : ORIGIN = 0x1000, LENGTH = 0x1000
 slow_ram : ORIGIN = 0x3000, LENGTH = 0x1000
}

SECTIONS {
 .data_fast_ram : { *(.data) } >fast_ram
 .data_slow_ram : { *(.data) } >slow_ram
}

0x800
bytes

0x400
bytes

.data Sections

ERROR: Overflow

Sections are always assigned to the first match.

6

Solution 1: Manual Assignment AKA Toil
MEMORY {
 fast_ram : ORIGIN = 0x1000, LENGTH = 0x1000
 slow_ram : ORIGIN = 0x3000, LENGTH = 0x1000
}

SECTIONS {
 .data_fast_ram : {
 file1.o(.data)
 file2.o(.data)
 ...
 } >fast_ram
 .data_slow_ram : {*(.data) } >slow_ram
}

Let’s play Tetris with our codebase
(with blocks that change sizes). Tiny
Memory, Difficult Problem.

Computers are supposed to free us
from this. Some people generate
linker scripts.

Presently incompatible with Full LTO

0x800

0x400

7

Solution 2: --enable-non-contiguous-regions
MEMORY {
 fast_ram : ORIGIN = 0x1000, LENGTH = 0x1000
 slow_ram : ORIGIN = 0x3000, LENGTH = 0x1000
}

SECTIONS {
 .data_fast_ram : { *(.data) } >fast_ram
 .data_slow_ram : { *(.data) } >slow_ram
}

0x800
bytes

0x400
bytes

Spill

.data Sections

This is just that slide from before.
8

Solution 2: --enable-non-contiguous-regions
Originally from GNU LD, but we recently ported it to LLD.
Sections spill to later matches if they won’t fit.
Unblocks Full LTO, since scripts can be written without filenames.
Downside: Globally changes linker script semantics. This can break existing scripts.

9

Solution 3: Section Classes
MEMORY {
 fast_ram : ORIGIN = 0x1000, LENGTH = 0x1000
 slow_ram : ORIGIN = 0x3000, LENGTH = 0x1000
}

SECTIONS {
 CLASS(data) : { *(.data) }
 .data_fast_ram : { CLASS(data) *(.other) } >fast_ram
 .data_slow_ram : { CLASS(data) } >slow_ram
}

This is almost, but not quite, that slide from before.
10

Spilling Logic

0x800
A, then B

0x400
A

0x400
A, then B

Memory A (0x1000):

Memory B (0x1000):
11

0x800
A, B

0x400
A

0x400
A, B

Overflow

12

Spilling Logic

Memory A (0x1000):

Memory B (0x1000):

0x800
A, B

0x400
A

0x400
A, B

Spill at least 0x1200 - 0x1000 = 0x200 bytes
13

Spilling Logic

Memory A (0x1000):

Memory B (0x1000):

0x800
A, B

0x400
A

0x400
A, B

14

Spilling Logic

Memory A (0x1000):

Memory B (0x1000):

Feature Interactions
● /DISCARD/

● SHF_MERGE Section Merging (e.g. strings)
● ONLY_IF_RO / ONLY_IF_RW
● Output Section Alignment
● Identical Code Folding (ICF)
● SHF_LINK_ORDER

● INSERT AFTER / INSERT BEFORE
● OVERWRITE_SECTIONS

15

Horrible Circular Dependency

16

Input/Output
Section

Membership

Many Many
Linker

Decisions
Address

Assignment

Spilling

Circular Dependency Resolution

17

Input/Output
Section

Membership

Many Many
Linker

Decisions
Address

Assignment

Actual
Spills

Potential
Spills

Potential Spills

0x800
MERGE

A, B

0x400
A, B

18

0x800
A, B

0x400
MERGE

A, B
0x400
A, B

0x800
MERGE

A, B

0x400
MERGE

A, B
0x400
A, B

0x400
A, B

Memory A (0x1000):

Memory B (0x1000):

Linker Decisions (e.g. SHF_MERGE)

0x1000
A, B

0x400
A, B

19

0x1000
A, B

0x400
A, B

0x400
A, B

Potential spills manipulated as if they were regular sections... for the most part.

Ensures that spill locations are always okay to move sections to.

Memory A (0x1000):

Memory B (0x1000):

Actual Spills

20

0x1000
A, B

0x400
A, B

Replace a potential spill with the original section.

The context was prepared for this by the potential spill.

Delete unused potential spills.

0x1000
A, B

0x400
A, B

0x400
A, B

Memory A (0x1000):

Memory B (0x1000):

Future Work: Priority Ordering
Sections are placed first-fit but the order of sections and the order of regions is arbitrary.
Order memory regions best-first and sections by decreasing importance.
First-fit greedily optimizes performance.
Propeller? Use profiles to group code/data into sections with priorities?
How is priority information communicated to the linker?
How do priorities interact with e.g. ordering for thunk minimization?

21

LLD Section Class Documentation
LLD --enable-non-contiguous-regions Documentation
LLD Linker Section Packing RFC
LLD --enable-non-contiguous-regions Implementation RFC

Thanks for Listening! Questions?

22

https://lld.llvm.org/ELF/linker_script.html#section-classes
https://lld.llvm.org/ELF/linker_script.html#non-contiguous-regions
https://discourse.llvm.org/t/lld-linker-section-packing/70234
https://discourse.llvm.org/t/rfc-lld-enable-non-contiguous-regions/76513

STM32G4 Datasheet (ARM Cortex M0+ MCU)

More
RAM?

23

No MMU, huh? Not even a tiny one?
Microcontrollers typically have as much MMU as they can afford.

A Memory Protection Unit (MPU) provides a small number (e.g. 8) of segments.

These have protection but not remapping.

Remapping is just an add, so why’s it missing?

Eight manual segments isn’t very good. Even a Motorola 68451 MMU had 32.

Very many memory operations would fault and require the OS to update the segment table.

24

