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Why talk about SelectionDAG?

SelectionDAG is a framework for instruction selection.

SelectionDAG is important:

▶ Many targets use SelectionDAG (X86, NVPTX, MIPS, Hexagon, . . . ).

▶ Decisions made within SelectionDAG have a significant impact on final code quality.

▶ Support for new target instructions or intrinsics requires SelectionDAG changes.

SelectionDAG can be confusing:

▶ Layer of abstraction between generic and target specific portions can make it hard
to follow.
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Who is this talk for?

▶ You feel comfortable working in the LLVM codebase.

▶ You’ve heard of SelectionDAG.

▶ But, you don’t quite get it.
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Caveats

▶ We are not the authors of this framework nor are we experts.

▶ We have primarily worked on the NVPTX target.

▶ We have:

▶ ∼ 2 years of experience with LLVM

▶ ∼ 2 year of experience with NVPTX

▶ GlobalISel is an alternative to SelectionDAG, not covered in this presentation.
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SelectionDAG - The Data Structure

▶ SelectionDAGs are an alternate representation of the program

▶ Each SelectionDAG represents a single basic block

bb0

bb1
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SelectionDAG Types - MVT

Definition
Machine Value Type (MVT) A union of the types that are supported by each target
that uses SelectionDAG.

▶ Any given target will only support a subset of these types

▶ MVT examples include:

▶ Integers: {i1, i32, i128, . . . }

▶ Floats: {f16, bf16, f80, . . . }

▶ Vectors: {v1i1, v2i32, v128bf16, . . . }

▶ Other things: {Other,Glue, . . . }
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SelectionDAG Types - EVT

Definition
Extended Value Type (EVT) A union of the MVT types and all integer, float and
vectors types that LLVM IR supports

▶ Does not include all LLVM IR types, struct and array types are not in the set

▶ EVT examples include:

▶ All MVT types: {i1, i32, i128, f16, bf16, f80, v1i1, v2i32, v128bf16,Other,Glue, . . . }

▶ Integer and vector lengths not natively supported on any architectures:
{i3, v100i32, v99f32, v99i99, . . . }
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SDNode

▶ These are the building blocks of all
SelectionDAGs

▶ Each node has:

▶ Opcode which defines the type

▶ Potentially many other fields such as constant
value or flags

then:

%y = add i32 %a, 5

%z = mul i32 %y, 3

br label %join

ISD::Constant

5

ISD::ADD

ISD::Constant

3

ISD::MUL

ISD::BasicBlock

%join

ISD::BR
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SDValue

▶ Represents the “output” of an SDNode

▶ Has an associated EVT

▶ SDValues have:

▶ SDNode that defines this value

▶ Index into the list of results from that node

then:

%y = add i32 %a, 5

%z = mul i32 %y, 3

br label %join

ISD::Constant

5

MVT::i32
ISD::ADD

MVT::i32

ISD::Constant

3

MVT::i32
ISD::MUL

MVT::i32
ISD::BasicBlock

%join

MVT::Other
ISD::BR

MVT::Other
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SDUse

▶ Represents the “input” to an SDNode

▶ SDUses have:

▶ SDValue that is being used

▶ SDNode that is the user

▶ Operand index in the user node operand list1

then:

%y = add i32 %a, 5

%z = mul i32 %y, 3

br label %join

ISD::Constant

5

MVT::i320 1

ISD::ADD

MVT::i32
ISD::Constant

3

MVT::i320 1

ISD::MUL

MVT::i32 ISD::BasicBlock

%join

MVT::Other0 1

ISD::BR

MVT::Other

1This is a good mental model, actually implemented as a linked list
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SDNode - Revisited

▶ These are the building blocks of all
SelectionDAGs

▶ Each node has:

▶ Opcode which defines the type

▶ 1 or more results represented by SDValues

▶ 0 or more operands represented by SDUses

▶ Potentially many other fields such as constant
value or flags

ISD::Constant

5

MVT::i320 1

ISD::ADD

MVT::i32
ISD::Constant

3

MVT::i320 1

ISD::MUL

MVT::i32 ISD::BasicBlock

%join

MVT::Other0 1

ISD::BR

MVT::Other
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Cross-Block Data-Flow

How can we represent %a and %z SSA registers
which are live across multiple blocks?

▶ CopyFromReg - SSA register used here
defined elsewhere

▶ CopyToReg - SSA register used elsewhere
defined here

then:

%y = add i32 %a, 5

%z = mul i32 %y, 3

br label %join

0 1

ISD::CopyFromReg

MVT::i32 MVT::Other

ISD::Register

%3

MVT::i32

ISD::Constant

5

MVT::i320 1

ISD::ADD

MVT::i32
ISD::Constant

3

MVT::i320 1

ISD::MUL

MVT::i320 1 2

ISD::CopyToReg

MVT::Other

ISD::BasicBlock

%join

MVT::Other0 1

ISD::BR

MVT::Other

ISD::Register

%0

MVT::i32

GraphRoot

ISD::EntryToken

MVT::Other MVT::Glue
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Scheduling Dependencies

How to ensure that the branch instruction is
scheduled after the rest of the block?

▶ Chain values represent non-data
dependencies

▶ As with all other SDUses, the user must be
scheduled after the use

then:

%y = add i32 %a, 5

%z = mul i32 %y, 3

br label %join

ISD::Register

%3

MVT::i32

0 1

ISD::CopyFromReg

MVT::i32 MVT::Other
ISD::Constant

5

MVT::i320 1

ISD::ADD

MVT::i32
ISD::Constant

3

MVT::i320 1

ISD::MUL

MVT::i32

ISD::Register

%0

MVT::i32

0 1 2

ISD::CopyToReg

MVT::Other

ISD::BasicBlock

%join

MVT::Other0 1

ISD::BR

MVT::Other

GraphRoot

ISD::EntryToken

MVT::Other MVT::Glue
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Beginning and Ending the SelectionDAG

▶ An Entry token node is added to every
block. It represents the dependency on
entering the block.

▶ Each DAG also has a root, usually the
terminator instruction

then:

%y = add i32 %a, 5

%z = mul i32 %y, 3

br label %join

ISD::EntryToken

MVT::Other MVT::Glue

ISD::Register

%3

MVT::i32

0 1

ISD::CopyFromReg

MVT::i32 MVT::Other
ISD::Constant

5

MVT::i320 1

ISD::ADD

MVT::i32
ISD::Constant

3

MVT::i320 1

ISD::MUL

MVT::i32

ISD::Register

%0

MVT::i32

0 1 2

ISD::CopyToReg

MVT::Other

ISD::BasicBlock

%join

MVT::Other0 1

ISD::BR

MVT::Other

GraphRoot
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Another Example: Loads and Stores

▶ Chained together to represent
memory dependence

▶ MemSDNodes contain lots of
info about memory interaction

then:

store i32 5, ptr %p0

%l = load i32, ptr %p1, align 8

br label %join

EntryToken

MVT::Other MVT::Glue

Constant

5

MVT::i32

Register

%6

MVT::i64

0 1

CopyFromReg

MVT::i64 MVT::Other

ISD::UNDEF

MVT::i64

0 1 2 3

ISD::STORE

(store (s32) into %ir.p0)

MVT::Other

Register

%5

MVT::i64

0 1

CopyFromReg

MVT::i64 MVT::Other

0 1 2

ISD::LOAD

(load (s32) from %ir.p1, align 8)

MVT::i32 MVT::Other

Register

%0

MVT::i32

0 1 2

CopyToReg

MVT::Other

0 1

ISD::TokenFactor

MVT::Other

BasicBlock

%join

MVT::Other

0 1

br

MVT::Other
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Another Example: Loads and Stores

▶ Token Factor joins multiple
chains, allowing node to use
multiple dependencies.

▶ Convenience node will not be
joined.

then:

store i32 5, ptr %p0

%l = load i32, ptr %p1, align 8

br label %join

EntryToken

MVT::Other MVT::Glue

Constant

5

MVT::i32

Register

%6

MVT::i64

0 1

CopyFromReg

MVT::i64 MVT::Other

ISD::UNDEF

MVT::i64

0 1 2 3

ISD::STORE

(store (s32) into %ir.p0)

MVT::Other

Register

%5

MVT::i64

0 1

CopyFromReg

MVT::i64 MVT::Other

0 1 2

ISD::LOAD

(load (s32) from %ir.p1, align 8)

MVT::i32 MVT::Other

Register

%0

MVT::i32

0 1 2

CopyToReg

MVT::Other

0 1

ISD::TokenFactor

MVT::Other

BasicBlock

%join

MVT::Other

0 1

br

MVT::Other
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Building the SelectionDAG

▶ Build a representation of each basic block in the function.

▶ 1:1 correspondence between LLVM IR instructions and SelectionDAG nodes (with a
few exceptions).

▶ Struct types are not supported in SelectionDAG. Instructions using them must be
expanded.

▶ Target hooks are required for tricky instructions.
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Example: Struct Splitting

▶ Struct operations are lowered
element-wise.

then:

%l = load {i32, i1}, ptr %p1, align 8

%v = extractvalue {i32, i1} %l, 0

br label %join (not pictured)

EntryToken

MVT::Other MVT::Glue

Register

%5

MVT::i64

0 1

CopyFromReg

MVT::i64 MVT::Other

ISD::UNDEF

MVT::i64

0 1 2

ISD::LOAD

(load (s32) from %ir.p1, align 8)

MVT::i32 MVT::Other

Constant

4

MVT::i64

0 1

ISD::ADD

nuw

MVT::i64

0 1 2

ISD::LOAD

(load (s8) from %ir.p1 + 4, align 4, basealign 8)

MVT::i1 MVT::Other

0 1

ISD::TokenFactor

MVT::Other

0 1

ISD::MERGE VALUES

MVT::i32 MVT::i1

Register

%0

MVT::i32

0 1 2

CopyToReg

MVT::Other 26 / 83



Target Specific APIs

Calling conventions are too target-specific for a generic DAG representation to be
feasible. Each target must implement custom DAG building with the following APIs:

▶ SDValue TargetLowering::LowerCall(...)

▶ SDValue TargetLowering::LowerFormalArgs(...)

▶ SDValue TargetLowering::LowerReturn(...)
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Type Legalization

▶ Targets only support a subset of the types that LLVM IR supports.

▶ Goal: Lower illegal types to legal types.

▶ Legal := Supported by instruction selection.

PTX Types

i1 i16 i32 i64

half float double

v2i16 v2f16

v2bf16 v4i8

LLVM IR Types

i7i24i128

i8 v8f16

i4f80

v1i32 v3i8 v4i32
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How do targets control this?

▶ addRegisterClass(MVT)

▶ Communicate to SelectionDAG that the MVT is legal for the target.

▶ Given this information, SelectionDAG handles unsupported types for us!
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Behind the Scenes

▶ SelectionDAG constructs a table that maps every type to an action2 that will
legalize the type.

TypeLegal The target natively supports this type.
TypePromoteInteger Replace this integer with a larger one.
TypeExpandInteger Split this integer into two of half the size.
TypeSoftenFloat Convert this float to a same size integer type.
TypePromoteFloat Replace this float with a larger one.

TypeSoftPromoteHalf Soften half to i16 and use float to do arithmetic.
TypeScalarizeVector Replace this one-element vector with its element.
TypeSplitVector Split this vector into two of half the size.
TypeWidenVector This vector should be widened into a larger vector.

Table: Supported LegalizeTypeActions

2The legalization action is performed in Legalize*Types.cpp.
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TypeExpandInteger
Type legalization can produce new nodes. It’s doesn’t just modify the types.

Input0
MVT::i128

Input1
MVT::i128

0 1

ISD::ADD

MVT::i128

Output0

=⇒

Input0
MVT::i64 MVT::i64

Input1
MVT::i64 MVT::i64

0 1

ISD::ADDC

MVT::i64 MVT::Glue

0 1 2

ISD::ADDE

MVT::i64 MVT::Glue

Output0.low Output0.high
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TypePromoteInteger
SelectionDAG handles the possibility of overflow by masking off the high bits.

Input0

EVT::i24

Input1

EVT::i24

0 1

ISD::ADD

EVT::i24

0

ISD::ZERO EXTEND

MVT::i32

Output0

=⇒

Output0

0 1

ISD::AND

MVT::i32

0 1

ISD::ADD

MVT::i32

ISD::Constant

0x00FFFFFF

MVT::i32

Input0

MVT::i32

Input1

MVT::i32
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Special Handling for Vectors

▶ Targets can optionally instruct SelectionDAG on how to legalize a vector type.

▶ LegalizeTypeAction getPreferredVectorAction(MVT);

▶ By overriding this method, a target tells SelectionDAG what LegalizeTypeAction
should be performed to legalize the MVT.
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TypeWidenVector
[Hexagon] Prefer a larger vector that is supported by the target.

Input0

MVT::v3i8

Input1

MVT::v3i8

0 1

ISD::ADD

MVT::v3i8

Output0

=⇒

Input0

MVT::v4i8

Input1

MVT::v4i8

0 1

ISD::ADD

MVT::v4i8

Output0
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Operation Legalization

▶ SelectionDAG supports 400+ opcodes.

▶ Targets do not support all:

▶ Opcodes

▶ Combinations of Opcodes × Legal Types

▶ Goal: Lower operations supported by SelectionDAG to operations that are legal for
the target.
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How do targets control this?

▶ setOperationAction(Opcode, MVT, LegalizeAction)

▶ Communicate to SelectionDAG how the target will supports the Opcode x MVT.

▶ The semantics of the MVT parameter aren’t well defined.

▶ Sometimes it’s the operand type.

▶ Other times it’s the return type.

▶ When in doubt, read the code!
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Behind the Scenes

▶ SelectionDAG constructs a table that maps every Opcode × Legal MVT to an
action3 that will legalize that Opcode × Legal MVT.

▶ setOperationAction(Opcode, MVT, LegalizeAction) is how we override the
default values in the table.

Legal The target natively supports this operation.
Promote This operation should be executed in a larger type.
Expand Emulate this operation using other operations.
Custom Use the LowerOperation() hook to implement custom lowering.

Table: Supported LegalizeActions

3The legalization action is performed in LegalizeDAG.cpp.
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Promote
[NVPTX] ISD::FDIV

Type Type supported? ISD::FDIV supported?

MVT::f32 ✓ ✓

MVT::f16 ✓ ✗

▶ Problem: ISD::FDIV × MVT::f16 is not supported.

▶ Solution: Execute ISD::FDIV on a larger type.

▶ setOperationAction(ISD::FDIV, MVT::f16, Promote);
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Promote
[NVPTX] setOperationAction(ISD::FDIV, MVT::f16, Promote);

0 1

ISD::FDIV

MVT::f16

Input0

MVT::f16

Input1

MVT::f16

Output0

=⇒

Output0

0 1

ISD::FROUND

MVT::f16

0 1

ISD::FDIV

MVT::f32

ISD::TargetConstant

0

MVT::i64

Input0

MVT::f16

0

ISD::FP EXTEND

MVT::f32

Input1

MVT::f16

0

ISD::FP EXTEND

MVT::f32
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Expand
[MIPS] ISD::BSWAP

▶ Problem: ISD::BSWAP × MVT::i32 is not supported.

▶ Solution: Emulate ISD::BSWAP with operations that are legal for the target.

▶ setOperationAction(ISD::BSWAP, MVT::i32, Expand);

▶ Note: Expand does not specify how to emulate the operation.
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Expand
[MIPS] setOperationAction(ISD::BSWAP, MVT::i32, Expand);

Input0

MVT::i32

0

ISD::BSWAP

MVT::i32

Output0

=⇒

Input0

MVT::i32

Output0

0 1

ISD::OR

MVT::i32

0 1

ISD::OR

MVT::i32

0 1

ISD::OR

MVT::i32

ISD::Constant

24

MVT::i32

0 1

ISD::SRL

MVT::i32

ISD::Constant

0xFF00

MVT::i32

0 1

ISD::AND

MVT::i32

ISD::Constant

8

MVT::i32

0 1

ISD::SRL

MVT::i32

0 1

ISD::SRL

MVT::i32

0 1

ISD::AND

MVT::i32

0 1

ISD::SRL

MVT::i32
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Custom Operation Legalization

▶ Call setOperationAction(Opcode, MVT, Custom) to tell SelectionDAG that
we want to implement a custom lowering for Opcode × MVT.

▶ When SelectionDAG encounters Opcode × MVT, it will call LowerOperation().

▶ Targets override the LowerOperation() function to implement the custom
lowering.
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Custom
[NVPTX] setOperationAction(ISD::VECTOR SUFFLE, MVT::v4i8, Custom)

Input0

MVT::v4i8

Input1

MVT::v4i8

0 1

ISD::VECTOR SHUFFLE

<7,3,5,2>

MVT::v4i8

Output0

=⇒

Input0

MVT::v4i8

Input1

MVT::v4i8

Output0

0 1 2

NVPTXISD::PRMT

v4i8

ISD::Constant

0x2537

MVT::i32
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Custom
[X86] setOperationAction(ISD::ABS, MVT::i32, Custom)

Input0

MVT::i32

0

ISD::ABS

MVT::i32

Output0

=⇒

Input0

MVT::i32

Output0

0 1 2 3

X86ISD::CMOV

MVT::i32

0 1

X86ISD::SUB

MVT::i32 MVT::i32

ISD::TargetConstant

9

MVT::i8

ISD::Constant

0

MVT::i32

46 / 83



Phases of SelectionDAG

LLVM IR SelectionDAG Construction

Type Legalization

Operation Legalization

Instruction Selection

Instruction Scheduling MachineIR

DAG Combiner

DAG Combiner

DAG Combiner

DAG

DAG

DAG

DAG

DAG

DAG

DAG
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Why optimize the SelectionDAG?

Why optimize the SelectionDAG? Haven’t all the peephole optimizations already been
done in LLVM IR?

▶ Clean up inefficiencies that were introduced while lowering into SelectionDAG and
legalizing the DAG.

▶ Perform peephole that generate unique operations provided by the ISA.
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DAGCombiner

▶ Performs peepholes for all targets that use SelectionDAG.

▶ “InstCombine for SelectionDAG”

▶ It calls TargetLoweringInfo (TLI) to understand which optimizations are
profitable for a target

▶ Example from DAGCombiner:

// fold (fadd A, (fneg B)) -> (fsub A, B)
if (SDValue NegN1 = TLI.getCheaperNegatedExpression(N1, DAG))

return DAG.getNode(ISD::FSUB, VT, N0, NegN1);
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DAGCombiner
Perform transformation if TLI.getCheaperNegatedExpression() is true

Input0
MVT::f64

Input1
MVT::f64

0

ISD::FNEG

MVT::f64

0 1

ISD::FADD

MVT::f64

Output0

=⇒

Input0
MVT::f64

Input1
MVT::f64

0 1

ISD::FSUB

MVT::f64

Output0
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Custom DAG Combines

▶ setTargetDAGCombine(Opcode) tells SelectionDAG that we want to implement a
custom DAG combine for Opcode.

▶ Then, when SelectionDAG encounters Opcode, it calls PerformDAGCombine().

▶ Targets override PerformDAGCombine() to implement their DAG combines.
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Custom DAG Combine 1/2
[NVPTX] Reduce register pressure using wide multiply.

Input0

MVT::i32

Input1

MVT::i32

0

ISD::ZERO EXTEND

MVT::i64

0

ISD::ZERO EXTEND

MVT::i64

0 1

ISD::MUL

MVT::i64

Output0

=⇒

Input0

MVT::i32

Input1

MVT::i32

0

ISD::ZERO EXTEND

MVT::i64

0

ISD::ZERO EXTEND

MVT::i64

0

ISD::TRUNCATE

MVT::i32

0

ISD::TRUNCATE

MVT::i32

0 1

NVPTXISD::MUL WIDE UNSIGNED

MVT::i64

Output0
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Custom DAG Combine 2/2
[NVPTX] Like InstCombine, DAGCombiner runs iteratively.

Input0

MVT::i32

Input1

MVT::i32

0

ISD::ZERO EXTEND

MVT::i64

0

ISD::ZERO EXTEND

MVT::i64

0

ISD::TRUNCATE

MVT::i32

0

ISD::TRUNCATE

MVT::i32

0 1

NVPTXISD::MUL WIDE UNSIGNED

MVT::i64

Output0

=⇒ 0 1

NVPTXISD::MUL WIDE UNSIGNED

MVT::i64

Input0

MVT::i32

Input1

MVT::i32

Output0
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Custom DAG Combine
[NVPTX] Remove the expensive ISD::UREM instruction.

Input0
MVT::i32

Input1
MVT::i32

0 1

ISD::UDIV

MVT::i32

0 1

ISD::UREM

MVT::i32

Output0 Output1

=⇒

Input0
MVT::i32

Input1
MVT::i32

0 1

ISD::UDIV

MVT::i32

0 1

ISD::MUL

MVT::i32

Output0

0 1

ISD::SUB

MVT::i32

Output1
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Phases of SelectionDAG

LLVM IR SelectionDAG Construction

Type Legalization

Operation Legalization

Instruction Selection

Instruction Scheduling MachineIR

DAG Combiner

DAG Combiner

DAG Combiner

DAG

DAG

DAG

DAG

DAG

DAG

DAG
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Instruction Selection

▶ Replace most generic SDNodes with machine nodes.

▶ Machine nodes have MachineInstruction Opcodes.

▶ Too target-specific for a generic implementation. Each target must override
Select.

▶ Lots of matching code is required.

/// Main hook for targets to transform nodes into machine nodes.

virtual void Select(SDNode *N) = 0;
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TableGen to the Rescue

▶ Allows succinct specification of instructions and generic DAG patterns they
correspond to.

▶ TableGen will automatically generate all matching code.

▶ Targets may still implement custom logic outside of TableGen as needed.
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TableGen Instruction Selection Patterns

We need to define 3 items to allow TableGen to build maching code:

▶ SDPatternOperator(s) - Describes what we are looking for in the DAG

▶ Instruction - Representation of the machine instruction we will emit

▶ Pattern - Mapping between DAG and instruction(s)
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TableGen: Matching the SelectionDAG

def SDTIntBinOp : SDTypeProfile<
1, Produces 1 value
2, Takes 2 operands
[SDTCisSameAs<0, 1>, Result type (0) is same as first operand (1)
SDTCisSameAs<0, 2>, Result type (0) is same as second operand (2)
SDTCisInt<0>]>; Produced value (0) is an integer MVT

def add : SDNode<
"ISD::ADD", Opcode is ISD::ADD
SDTIntBinOp, SelectionDAG type is SDTIntBinOp
[SDNPCommutative, Properties include commutative, associative
SDNPAssociative]>;
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TableGen: Defining a Machine Instruction

▶ TableGen lets us populate the instruction record with lots of useful information. For
ISel, all we’re concerned with are the inputs and outputs.

def ADDi32rr : NVPTXInst< OpCode name of this instruction
(outs Int32Regs:$dst), Types of registers set by this instruction
(ins Int32Regs:$a, Int32Regs:$b), Types of registers read by this instruction
"add.s32 \t$dst, $a, $b;">; Assembly string for printing
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TableGen: Defining a Rewriting Pattern

def add : SDNode<. . .>

def ADDi32rr : NVPTXInst<. . .>

def : Pattern<
(set Int32Regs:$dst,
(add (i32 Int32Regs:$a), (i32 Int32Regs:$b))),

(ADDi32rr Int32Regs:$dst,
Int32Regs:$a, Int32Regs:$b)>;
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TableGen Instruction Selection

0 1

ISD::ADD

MVT::i32

Input0

MVT::i32

Input1

MVT::i32

Output0

=⇒ 0 1

NVPTX::ADDi32rr

MVT::i32

Input0

MVT::i32

Input1

MVT::i32

Output0
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Select Implementation Design Pattern

▶ Targets may insert custom logic prior to TableGen based matching for very complex
cases.

▶ SelectCode will execute the TableGen-generated matcher.

void NVPTXDAGToDAGISel::Select(SDNode *N) {

// Custom logic here

SelectCode(N); // TableGen based selection

}
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Selection Algorithm Overview

▶ DAG traversed in topological order “bottom up” ensures operator always selected
before any operands.

▶ TableGen patterns prioritized using heuristics:

1. Prefer more complex match patterns.

2. Prefer lower emitted instruction count.

3. Prefer larger match pattern size.

4. Prefer later source order.
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Phases of SelectionDAG

LLVM IR SelectionDAG Construction

Type Legalization

Operation Legalization

Instruction Selection

Instruction Scheduling MachineIR

DAG Combiner

DAG Combiner

DAG Combiner

DAG

DAG

DAG

DAG

DAG

DAG

DAG
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Instruction Scheduling

▶ Input - DAG of machine nodes.

▶ Output - A linear sequence of machine nodes.

▶ We aren’t going to focus on this, because we don’t have experience with it.

▶ Instead, check out:

▶ Scheduling Model in LLVM - Part I (Blog)

▶ Writing Great Machine Schedulers (2017 LLVM Developers’ Meeting)
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Example: Supporting the PTX mad instruction

▶ mad := Multiply two values and add a third value.

▶ Goal: Emit the PTX mad instruction via a peephole optimization.

▶ Lower latency and register pressure than a mul+add.

define i32 @foo(i32, i32, i32) {

%mul = mul i32 %0, %1

%add = add i32 %mul, %2

ret i32 %add

}

.visible .func (...) foo(...) {

ld.param.u32 %r1, [foo param 0];

ld.param.u32 %r2, [foo param 1];

ld.param.u32 %r3, [foo param 2];

mad.lo.s32 %r4, %r1, %r2, %r3;

st.param.b32 [func retval0+0], %r4;

ret;

}
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Scoping Things Out

▶ Observations: We don’t need to modify type or operation legalization.

▶ mad only supports existing legal types.

▶ The nodes we’re looking for, ISD::ADD and ISD::MUL are legal for all the types that
the PTX mad instruction supports.

▶ We need a target-specific DAG combine to generate a NVPTXISD::IMAD SDNode.

▶ We need instruction selection logic to lower the NVPTXISD::IMAD SDNode to a
machine node.
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Tasks

1. DAG Combine - Target-specific folding to generate NVPTXISD::IMAD.

2. Instruction Selection - Lower NVPTXISD::IMAD into a machine node.
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DAG Combine

Input0

MVT::i32

Input1

MVT::i32

Input2

MVT::i32

0 1

ISD::MUL

MVT::32

0 1

ISD::ADD

MVT::i32

Output

=⇒

Input0

MVT::i32

Input1

MVT::i32

Input2

MVT::i32

0 1 2

NVPTXISD::IMAD

MVT::i32

Output
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DAG Combine
Declare our target-specific DAG combine.

1. NVPTXTargetLowering::NVPTXTargetLowering() {

...

setTargetDAGCombine(ISD::ADD);

...

}
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DAG Combine
Override PerformDAGCombine()

1. NVPTXTargetLowering::NVPTXTargetLowering() {

setTargetDAGCombine(ISD::ADD);

2. SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N) {

switch (N->getOpcode()) {

case ISD::ADD: return PerformADDCombine(N);

...

}

}
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DAG Combine
Implement the target-specific DAG combine.

1. NVPTXTargetLowering::NVPTXTargetLowering() {

setTargetDAGCombine(ISD::ADD);

2. SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N) {

switch (N->getOpcode()) {

case ISD::ADD: return PerformADDCombine(N);

3. SDValue PerformADDCombine(SDNode *N) {

if (N->getOperand(0).getOpcode() != ISD::MUL) return SDValue();

if (N->getValueType() != MVT::i32) return SDValue();

return DAG.getNode(NVPTXISD::IMAD, N->getValueType(),

N->getOperand(0).getOperand(0),

N->getOperand(0).getOperand(1),

N->getOperand(1));
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PerformADDCombine() - Input/Output DAGs

Input0

MVT::i32

Input1

MVT::i32

Input2

MVT::i32

0 1

ISD::MUL

MVT::32

0 1

ISD::ADD

MVT::i32

Output

=⇒

Input0

MVT::i32

Input1

MVT::i32

Input2

MVT::i32

0 1 2

NVPTXISD::IMAD

MVT::i32

Output
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Tasks

1. DAG Combine - Target-specific folding to generate NVPTXISD::IMAD.

2. Instruction Selection - Lower NVPTXISD::IMAD into a machine node.
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Declare the target-specific SDNode & machine node.

def SDTIMAD : SDTypeProfile<1, 3,
[SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisInt<0>]>;

def imad : SDNode<"NVPTXISD::IMAD", SDTIMAD>;

def MAD32rrr : NVPTXInst<
(outs Int32Regs:$dst),
(ins Int32Regs:$a,

Int32Regs:$b,
Int32Regs:$c),

"mad.lo.s32 \t$dst, $a, $b;">;
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Select the machine node.

def imad : SDNode<. . .>

def MAD32rrr : NVPTXInst<. . .>

def : Pattern<
(set Int32Regs:$dst,
(imad (i32 Int32Regs:$a),

(i32 Int32Regs:$b),
(i32 Int32Regs:$c))),

(MAD32rrr Int32Regs:$dst,
Int32Regs:$a,
Int32Regs:$b,
Int32Regs:$c)>;
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mad Instruction Selection - Input/Output DAGs

Input0

MVT::i32

Input1

MVT::i32

Input2

MVT::i32

0 1 2

NVPTXISD::IMAD

MVT::i32

Output

=⇒

Input0

MVT::i32

Input1

MVT::i32

Input2

MVT::i32

0 1 2

NVPTX::MAD32rrr

MVT::i32

Output
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Support the PTX mad instruction

▶ Goal: Emit the PTX mad instruction via a peephole optimization. ✓

define i32 @foo(i32, i32, i32) {

%mul = mul i32 %0, %1

%add = add i32 %mul, %2

ret i32 %add

}

.visible .func (...) foo(...) {

ld.param.u32 %r1, [foo param 0];

ld.param.u32 %r2, [foo param 1];

ld.param.u32 %r3, [foo param 2];

mad.lo.s32 %r4, %r1, %r2, %r3;

st.param.b32 [func retval0+0], %r4;

ret;

}
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Other Resources

▶ The LLVM Target-Independent Code Generator (LLVM Docs)

▶ Instruction Selector (LLVM Docs)

▶ Legalizations in LLVM Backend (Blog)

▶ Building an LLVM Backend (2014 LLVM Developers’ Meeting)

▶ CodeGen Overview and Focus on SelectionDAGs (2008 LLVM Developers’ Meeting)
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Notes for the Road

▶ There are links throughout the slides to the relevant sections of the codebase.

▶ justinfargnoli.github.io/slides.pdf

▶ -debug-only=isel,legalize-types,legalizedag,dagcombine

▶ Thank you to Akshay Deodhar, Princeton Ferro, Max Gutierrez, Drew Kersnar,
Vladislav Malyshenko, and Kevin McAfee for your help in preparing this
presentation.
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