
A Beginner’s Guide to SelectionDAG

Justin M. Fargnoli Alex E. MacLean

NVIDIA

2024 LLVM Developers’ Meeting

1 / 83

Why talk about SelectionDAG?

SelectionDAG is a framework for instruction selection.

SelectionDAG is important:

▶ Many targets use SelectionDAG (X86, NVPTX, MIPS, Hexagon, . . .).

▶ Decisions made within SelectionDAG have a significant impact on final code quality.

▶ Support for new target instructions or intrinsics requires SelectionDAG changes.

SelectionDAG can be confusing:

▶ Layer of abstraction between generic and target specific portions can make it hard
to follow.

2 / 83

Who is this talk for?

▶ You feel comfortable working in the LLVM codebase.

▶ You’ve heard of SelectionDAG.

▶ But, you don’t quite get it.

3 / 83

Table of Contents

Compilation Flow

Selection DAG Data Structure

Phases of SelectionDAG

Example of Working with SelectionDAG

Notes for the Road

4 / 83

Caveats

▶ We are not the authors of this framework nor are we experts.

▶ We have primarily worked on the NVPTX target.

▶ We have:

▶ ∼ 2 years of experience with LLVM

▶ ∼ 2 year of experience with NVPTX

▶ GlobalISel is an alternative to SelectionDAG, not covered in this presentation.

5 / 83

Table of Contents

Compilation Flow

Selection DAG Data Structure

Phases of SelectionDAG

Example of Working with SelectionDAG

Notes for the Road

6 / 83

Compilation Flow

Source code Frontend opt llc Assembly

SelectionDAG lives here

LLVM IR LLVM IR

7 / 83

Compilation Flow

Source code Frontend opt llc Assembly

SelectionDAG lives here

LLVM IR LLVM IR

7 / 83

llc Compilation Flow

LLVM
IR

Pass0 Passn
Selection
DAG

Pass0 Passn Assembly

LLVM
IR

LLVM
IR

Machine
IR

Machine
IR

LLVM IR Passes Machine IR Passes

8 / 83

SelectionDAG Compilation Flow

LLVM IR SelectionDAG Construction

Type Legalization

Operation Legalization

Instruction Selection

Instruction Scheduling MachineIR

DAG Combiner

DAG Combiner

DAG Combiner

DAG

DAG

DAG

DAG

DAG

DAG

DAG

DAG

DAG

DAG

9 / 83

SelectionDAG Compilation Flow

LLVM IR SelectionDAG Construction

Type Legalization

Operation Legalization

Instruction Selection

Instruction Scheduling MachineIR

DAG Combiner

DAG Combiner

DAG Combiner

DAG

DAG

DAG

DAG

DAG

DAG

DAG

DAG

DAG

DAG

9 / 83

Table of Contents

Compilation Flow

Selection DAG Data Structure

Phases of SelectionDAG

Example of Working with SelectionDAG

Notes for the Road

10 / 83

SelectionDAG - The Data Structure

▶ SelectionDAGs are an alternate representation of the program

▶ Each SelectionDAG represents a single basic block

bb0

bb1

11 / 83

SelectionDAG Types - MVT

Definition
Machine Value Type (MVT) A union of the types that are supported by each target
that uses SelectionDAG.

▶ Any given target will only support a subset of these types

▶ MVT examples include:

▶ Integers: {i1, i32, i128, . . . }

▶ Floats: {f16, bf16, f80, . . . }

▶ Vectors: {v1i1, v2i32, v128bf16, . . . }

▶ Other things: {Other,Glue, . . . }

12 / 83

SelectionDAG Types - EVT

Definition
Extended Value Type (EVT) A union of the MVT types and all integer, float and
vectors types that LLVM IR supports

▶ Does not include all LLVM IR types, struct and array types are not in the set

▶ EVT examples include:

▶ All MVT types: {i1, i32, i128, f16, bf16, f80, v1i1, v2i32, v128bf16,Other,Glue, . . . }

▶ Integer and vector lengths not natively supported on any architectures:
{i3, v100i32, v99f32, v99i99, . . . }

13 / 83

SDNode

▶ These are the building blocks of all
SelectionDAGs

▶ Each node has:

▶ Opcode which defines the type

▶ Potentially many other fields such as constant
value or flags

then:

%y = add i32 %a, 5

%z = mul i32 %y, 3

br label %join

ISD::Constant

5

ISD::ADD

ISD::Constant

3

ISD::MUL

ISD::BasicBlock

%join

ISD::BR

14 / 83

SDValue

▶ Represents the “output” of an SDNode

▶ Has an associated EVT

▶ SDValues have:

▶ SDNode that defines this value

▶ Index into the list of results from that node

then:

%y = add i32 %a, 5

%z = mul i32 %y, 3

br label %join

ISD::Constant

5

MVT::i32
ISD::ADD

MVT::i32

ISD::Constant

3

MVT::i32
ISD::MUL

MVT::i32
ISD::BasicBlock

%join

MVT::Other
ISD::BR

MVT::Other

15 / 83

SDUse

▶ Represents the “input” to an SDNode

▶ SDUses have:

▶ SDValue that is being used

▶ SDNode that is the user

▶ Operand index in the user node operand list1

then:

%y = add i32 %a, 5

%z = mul i32 %y, 3

br label %join

ISD::Constant

5

MVT::i320 1

ISD::ADD

MVT::i32
ISD::Constant

3

MVT::i320 1

ISD::MUL

MVT::i32 ISD::BasicBlock

%join

MVT::Other0 1

ISD::BR

MVT::Other

1This is a good mental model, actually implemented as a linked list
16 / 83

SDNode - Revisited

▶ These are the building blocks of all
SelectionDAGs

▶ Each node has:

▶ Opcode which defines the type

▶ 1 or more results represented by SDValues

▶ 0 or more operands represented by SDUses

▶ Potentially many other fields such as constant
value or flags

ISD::Constant

5

MVT::i320 1

ISD::ADD

MVT::i32
ISD::Constant

3

MVT::i320 1

ISD::MUL

MVT::i32 ISD::BasicBlock

%join

MVT::Other0 1

ISD::BR

MVT::Other

17 / 83

Cross-Block Data-Flow

How can we represent %a and %z SSA registers
which are live across multiple blocks?

▶ CopyFromReg - SSA register used here
defined elsewhere

▶ CopyToReg - SSA register used elsewhere
defined here

then:

%y = add i32 %a, 5

%z = mul i32 %y, 3

br label %join

0 1

ISD::CopyFromReg

MVT::i32 MVT::Other

ISD::Register

%3

MVT::i32

ISD::Constant

5

MVT::i320 1

ISD::ADD

MVT::i32
ISD::Constant

3

MVT::i320 1

ISD::MUL

MVT::i320 1 2

ISD::CopyToReg

MVT::Other

ISD::BasicBlock

%join

MVT::Other0 1

ISD::BR

MVT::Other

ISD::Register

%0

MVT::i32

GraphRoot

ISD::EntryToken

MVT::Other MVT::Glue

18 / 83

Cross-Block Data-Flow

How can we represent %a and %z SSA registers
which are live across multiple blocks?

▶ CopyFromReg - SSA register used here
defined elsewhere

▶ CopyToReg - SSA register used elsewhere
defined here

then:

%y = add i32 %a, 5

%z = mul i32 %y, 3

br label %join

ISD::Register

%3

MVT::i32

0 1

ISD::CopyFromReg

MVT::i32 MVT::Other
ISD::Constant

5

MVT::i320 1

ISD::ADD

MVT::i32
ISD::Constant

3

MVT::i320 1

ISD::MUL

MVT::i32

ISD::Register

%0

MVT::i32

0 1 2

ISD::CopyToReg

MVT::Other

ISD::BasicBlock

%join

MVT::Other0 1

ISD::BR

MVT::Other

GraphRoot

ISD::EntryToken

MVT::Other MVT::Glue

18 / 83

Scheduling Dependencies

How to ensure that the branch instruction is
scheduled after the rest of the block?

▶ Chain values represent non-data
dependencies

▶ As with all other SDUses, the user must be
scheduled after the use

then:

%y = add i32 %a, 5

%z = mul i32 %y, 3

br label %join

ISD::Register

%3

MVT::i32

0 1

ISD::CopyFromReg

MVT::i32 MVT::Other
ISD::Constant

5

MVT::i320 1

ISD::ADD

MVT::i32
ISD::Constant

3

MVT::i320 1

ISD::MUL

MVT::i32

ISD::Register

%0

MVT::i32

0 1 2

ISD::CopyToReg

MVT::Other

ISD::BasicBlock

%join

MVT::Other0 1

ISD::BR

MVT::Other

GraphRoot

ISD::EntryToken

MVT::Other MVT::Glue

19 / 83

Scheduling Dependencies

How to ensure that the branch instruction is
scheduled after the rest of the block?

▶ Chain values represent non-data
dependencies

▶ As with all other SDUses, the user must be
scheduled after the use

then:

%y = add i32 %a, 5

%z = mul i32 %y, 3

br label %join

ISD::Register

%3

MVT::i32

0 1

ISD::CopyFromReg

MVT::i32 MVT::Other
ISD::Constant

5

MVT::i320 1

ISD::ADD

MVT::i32
ISD::Constant

3

MVT::i320 1

ISD::MUL

MVT::i32

ISD::Register

%0

MVT::i32

0 1 2

ISD::CopyToReg

MVT::Other

ISD::BasicBlock

%join

MVT::Other0 1

ISD::BR

MVT::Other

GraphRoot

ISD::EntryToken

MVT::Other MVT::Glue

19 / 83

Beginning and Ending the SelectionDAG

▶ An Entry token node is added to every
block. It represents the dependency on
entering the block.

▶ Each DAG also has a root, usually the
terminator instruction

then:

%y = add i32 %a, 5

%z = mul i32 %y, 3

br label %join

ISD::EntryToken

MVT::Other MVT::Glue

ISD::Register

%3

MVT::i32

0 1

ISD::CopyFromReg

MVT::i32 MVT::Other
ISD::Constant

5

MVT::i320 1

ISD::ADD

MVT::i32
ISD::Constant

3

MVT::i320 1

ISD::MUL

MVT::i32

ISD::Register

%0

MVT::i32

0 1 2

ISD::CopyToReg

MVT::Other

ISD::BasicBlock

%join

MVT::Other0 1

ISD::BR

MVT::Other

GraphRoot

20 / 83

Another Example: Loads and Stores

▶ Chained together to represent
memory dependence

▶ MemSDNodes contain lots of
info about memory interaction

then:

store i32 5, ptr %p0

%l = load i32, ptr %p1, align 8

br label %join

EntryToken

MVT::Other MVT::Glue

Constant

5

MVT::i32

Register

%6

MVT::i64

0 1

CopyFromReg

MVT::i64 MVT::Other

ISD::UNDEF

MVT::i64

0 1 2 3

ISD::STORE

(store (s32) into %ir.p0)

MVT::Other

Register

%5

MVT::i64

0 1

CopyFromReg

MVT::i64 MVT::Other

0 1 2

ISD::LOAD

(load (s32) from %ir.p1, align 8)

MVT::i32 MVT::Other

Register

%0

MVT::i32

0 1 2

CopyToReg

MVT::Other

0 1

ISD::TokenFactor

MVT::Other

BasicBlock

%join

MVT::Other

0 1

br

MVT::Other

21 / 83

Another Example: Loads and Stores

▶ Token Factor joins multiple
chains, allowing node to use
multiple dependencies.

▶ Convenience node will not be
joined.

then:

store i32 5, ptr %p0

%l = load i32, ptr %p1, align 8

br label %join

EntryToken

MVT::Other MVT::Glue

Constant

5

MVT::i32

Register

%6

MVT::i64

0 1

CopyFromReg

MVT::i64 MVT::Other

ISD::UNDEF

MVT::i64

0 1 2 3

ISD::STORE

(store (s32) into %ir.p0)

MVT::Other

Register

%5

MVT::i64

0 1

CopyFromReg

MVT::i64 MVT::Other

0 1 2

ISD::LOAD

(load (s32) from %ir.p1, align 8)

MVT::i32 MVT::Other

Register

%0

MVT::i32

0 1 2

CopyToReg

MVT::Other

0 1

ISD::TokenFactor

MVT::Other

BasicBlock

%join

MVT::Other

0 1

br

MVT::Other

22 / 83

Table of Contents

Compilation Flow

Selection DAG Data Structure

Phases of SelectionDAG

Example of Working with SelectionDAG

Notes for the Road

23 / 83

Phases of SelectionDAG

LLVM IR SelectionDAG Construction

Type Legalization

Operation Legalization

Instruction Selection

Instruction Scheduling MachineIR

DAG Combiner

DAG Combiner

DAG Combiner

DAG

DAG

DAG

DAG

DAG

DAG

DAG

24 / 83

Building the SelectionDAG

▶ Build a representation of each basic block in the function.

▶ 1:1 correspondence between LLVM IR instructions and SelectionDAG nodes (with a
few exceptions).

▶ Struct types are not supported in SelectionDAG. Instructions using them must be
expanded.

▶ Target hooks are required for tricky instructions.

25 / 83

Example: Struct Splitting

▶ Struct operations are lowered
element-wise.

then:

%l = load {i32, i1}, ptr %p1, align 8

%v = extractvalue {i32, i1} %l, 0

br label %join (not pictured)

EntryToken

MVT::Other MVT::Glue

Register

%5

MVT::i64

0 1

CopyFromReg

MVT::i64 MVT::Other

ISD::UNDEF

MVT::i64

0 1 2

ISD::LOAD

(load (s32) from %ir.p1, align 8)

MVT::i32 MVT::Other

Constant

4

MVT::i64

0 1

ISD::ADD

nuw

MVT::i64

0 1 2

ISD::LOAD

(load (s8) from %ir.p1 + 4, align 4, basealign 8)

MVT::i1 MVT::Other

0 1

ISD::TokenFactor

MVT::Other

0 1

ISD::MERGE VALUES

MVT::i32 MVT::i1

Register

%0

MVT::i32

0 1 2

CopyToReg

MVT::Other 26 / 83

Target Specific APIs

Calling conventions are too target-specific for a generic DAG representation to be
feasible. Each target must implement custom DAG building with the following APIs:

▶ SDValue TargetLowering::LowerCall(...)

▶ SDValue TargetLowering::LowerFormalArgs(...)

▶ SDValue TargetLowering::LowerReturn(...)

27 / 83

Phases of SelectionDAG

LLVM IR SelectionDAG Construction

Type Legalization

Operation Legalization

Instruction Selection

Instruction Scheduling MachineIR

DAG Combiner

DAG Combiner

DAG Combiner

DAG

DAG

DAG

DAG

DAG

DAG

DAG

28 / 83

Type Legalization

▶ Targets only support a subset of the types that LLVM IR supports.

▶ Goal: Lower illegal types to legal types.

▶ Legal := Supported by instruction selection.

PTX Types

i1 i16 i32 i64

half float double

v2i16 v2f16

v2bf16 v4i8

LLVM IR Types

i7i24i128

i8 v8f16

i4f80

v1i32 v3i8 v4i32

29 / 83

How do targets control this?

▶ addRegisterClass(MVT)

▶ Communicate to SelectionDAG that the MVT is legal for the target.

▶ Given this information, SelectionDAG handles unsupported types for us!

30 / 83

Behind the Scenes

▶ SelectionDAG constructs a table that maps every type to an action2 that will
legalize the type.

TypeLegal The target natively supports this type.
TypePromoteInteger Replace this integer with a larger one.
TypeExpandInteger Split this integer into two of half the size.
TypeSoftenFloat Convert this float to a same size integer type.
TypePromoteFloat Replace this float with a larger one.

TypeSoftPromoteHalf Soften half to i16 and use float to do arithmetic.
TypeScalarizeVector Replace this one-element vector with its element.
TypeSplitVector Split this vector into two of half the size.
TypeWidenVector This vector should be widened into a larger vector.

Table: Supported LegalizeTypeActions

2The legalization action is performed in Legalize*Types.cpp.
31 / 83

TypeExpandInteger
Type legalization can produce new nodes. It’s doesn’t just modify the types.

Input0
MVT::i128

Input1
MVT::i128

0 1

ISD::ADD

MVT::i128

Output0

=⇒

Input0
MVT::i64 MVT::i64

Input1
MVT::i64 MVT::i64

0 1

ISD::ADDC

MVT::i64 MVT::Glue

0 1 2

ISD::ADDE

MVT::i64 MVT::Glue

Output0.low Output0.high

32 / 83

TypePromoteInteger
SelectionDAG handles the possibility of overflow by masking off the high bits.

Input0

EVT::i24

Input1

EVT::i24

0 1

ISD::ADD

EVT::i24

0

ISD::ZERO EXTEND

MVT::i32

Output0

=⇒

Output0

0 1

ISD::AND

MVT::i32

0 1

ISD::ADD

MVT::i32

ISD::Constant

0x00FFFFFF

MVT::i32

Input0

MVT::i32

Input1

MVT::i32

33 / 83

Special Handling for Vectors

▶ Targets can optionally instruct SelectionDAG on how to legalize a vector type.

▶ LegalizeTypeAction getPreferredVectorAction(MVT);

▶ By overriding this method, a target tells SelectionDAG what LegalizeTypeAction
should be performed to legalize the MVT.

34 / 83

TypeWidenVector
[Hexagon] Prefer a larger vector that is supported by the target.

Input0

MVT::v3i8

Input1

MVT::v3i8

0 1

ISD::ADD

MVT::v3i8

Output0

=⇒

Input0

MVT::v4i8

Input1

MVT::v4i8

0 1

ISD::ADD

MVT::v4i8

Output0

35 / 83

Phases of SelectionDAG

LLVM IR SelectionDAG Construction

Type Legalization

Operation Legalization

Instruction Selection

Instruction Scheduling MachineIR

DAG Combiner

DAG Combiner

DAG Combiner

DAG

DAG

DAG

DAG

DAG

DAG

DAG

36 / 83

Operation Legalization

▶ SelectionDAG supports 400+ opcodes.

▶ Targets do not support all:

▶ Opcodes

▶ Combinations of Opcodes × Legal Types

▶ Goal: Lower operations supported by SelectionDAG to operations that are legal for
the target.

37 / 83

How do targets control this?

▶ setOperationAction(Opcode, MVT, LegalizeAction)

▶ Communicate to SelectionDAG how the target will supports the Opcode x MVT.

▶ The semantics of the MVT parameter aren’t well defined.

▶ Sometimes it’s the operand type.

▶ Other times it’s the return type.

▶ When in doubt, read the code!

38 / 83

Behind the Scenes

▶ SelectionDAG constructs a table that maps every Opcode × Legal MVT to an
action3 that will legalize that Opcode × Legal MVT.

▶ setOperationAction(Opcode, MVT, LegalizeAction) is how we override the
default values in the table.

Legal The target natively supports this operation.
Promote This operation should be executed in a larger type.
Expand Emulate this operation using other operations.
Custom Use the LowerOperation() hook to implement custom lowering.

Table: Supported LegalizeActions

3The legalization action is performed in LegalizeDAG.cpp.
39 / 83

Promote
[NVPTX] ISD::FDIV

Type Type supported? ISD::FDIV supported?

MVT::f32 ✓ ✓

MVT::f16 ✓ ✗

▶ Problem: ISD::FDIV × MVT::f16 is not supported.

▶ Solution: Execute ISD::FDIV on a larger type.

▶ setOperationAction(ISD::FDIV, MVT::f16, Promote);

40 / 83

Promote
[NVPTX] setOperationAction(ISD::FDIV, MVT::f16, Promote);

0 1

ISD::FDIV

MVT::f16

Input0

MVT::f16

Input1

MVT::f16

Output0

=⇒

Output0

0 1

ISD::FROUND

MVT::f16

0 1

ISD::FDIV

MVT::f32

ISD::TargetConstant

0

MVT::i64

Input0

MVT::f16

0

ISD::FP EXTEND

MVT::f32

Input1

MVT::f16

0

ISD::FP EXTEND

MVT::f32

41 / 83

Expand
[MIPS] ISD::BSWAP

▶ Problem: ISD::BSWAP × MVT::i32 is not supported.

▶ Solution: Emulate ISD::BSWAP with operations that are legal for the target.

▶ setOperationAction(ISD::BSWAP, MVT::i32, Expand);

▶ Note: Expand does not specify how to emulate the operation.

42 / 83

Expand
[MIPS] setOperationAction(ISD::BSWAP, MVT::i32, Expand);

Input0

MVT::i32

0

ISD::BSWAP

MVT::i32

Output0

=⇒

Input0

MVT::i32

Output0

0 1

ISD::OR

MVT::i32

0 1

ISD::OR

MVT::i32

0 1

ISD::OR

MVT::i32

ISD::Constant

24

MVT::i32

0 1

ISD::SRL

MVT::i32

ISD::Constant

0xFF00

MVT::i32

0 1

ISD::AND

MVT::i32

ISD::Constant

8

MVT::i32

0 1

ISD::SRL

MVT::i32

0 1

ISD::SRL

MVT::i32

0 1

ISD::AND

MVT::i32

0 1

ISD::SRL

MVT::i32

43 / 83

Custom Operation Legalization

▶ Call setOperationAction(Opcode, MVT, Custom) to tell SelectionDAG that
we want to implement a custom lowering for Opcode × MVT.

▶ When SelectionDAG encounters Opcode × MVT, it will call LowerOperation().

▶ Targets override the LowerOperation() function to implement the custom
lowering.

44 / 83

Custom
[NVPTX] setOperationAction(ISD::VECTOR SUFFLE, MVT::v4i8, Custom)

Input0

MVT::v4i8

Input1

MVT::v4i8

0 1

ISD::VECTOR SHUFFLE

<7,3,5,2>

MVT::v4i8

Output0

=⇒

Input0

MVT::v4i8

Input1

MVT::v4i8

Output0

0 1 2

NVPTXISD::PRMT

v4i8

ISD::Constant

0x2537

MVT::i32

45 / 83

Custom
[X86] setOperationAction(ISD::ABS, MVT::i32, Custom)

Input0

MVT::i32

0

ISD::ABS

MVT::i32

Output0

=⇒

Input0

MVT::i32

Output0

0 1 2 3

X86ISD::CMOV

MVT::i32

0 1

X86ISD::SUB

MVT::i32 MVT::i32

ISD::TargetConstant

9

MVT::i8

ISD::Constant

0

MVT::i32

46 / 83

Phases of SelectionDAG

LLVM IR SelectionDAG Construction

Type Legalization

Operation Legalization

Instruction Selection

Instruction Scheduling MachineIR

DAG Combiner

DAG Combiner

DAG Combiner

DAG

DAG

DAG

DAG

DAG

DAG

DAG

47 / 83

Why optimize the SelectionDAG?

Why optimize the SelectionDAG? Haven’t all the peephole optimizations already been
done in LLVM IR?

▶ Clean up inefficiencies that were introduced while lowering into SelectionDAG and
legalizing the DAG.

▶ Perform peephole that generate unique operations provided by the ISA.

48 / 83

Why optimize the SelectionDAG?

Why optimize the SelectionDAG? Haven’t all the peephole optimizations already been
done in LLVM IR?

▶ Clean up inefficiencies that were introduced while lowering into SelectionDAG and
legalizing the DAG.

▶ Perform peephole that generate unique operations provided by the ISA.

48 / 83

DAGCombiner

▶ Performs peepholes for all targets that use SelectionDAG.

▶ “InstCombine for SelectionDAG”

▶ It calls TargetLoweringInfo (TLI) to understand which optimizations are
profitable for a target

▶ Example from DAGCombiner:

// fold (fadd A, (fneg B)) -> (fsub A, B)
if (SDValue NegN1 = TLI.getCheaperNegatedExpression(N1, DAG))

return DAG.getNode(ISD::FSUB, VT, N0, NegN1);

49 / 83

DAGCombiner
Perform transformation if TLI.getCheaperNegatedExpression() is true

Input0
MVT::f64

Input1
MVT::f64

0

ISD::FNEG

MVT::f64

0 1

ISD::FADD

MVT::f64

Output0

=⇒

Input0
MVT::f64

Input1
MVT::f64

0 1

ISD::FSUB

MVT::f64

Output0

50 / 83

Custom DAG Combines

▶ setTargetDAGCombine(Opcode) tells SelectionDAG that we want to implement a
custom DAG combine for Opcode.

▶ Then, when SelectionDAG encounters Opcode, it calls PerformDAGCombine().

▶ Targets override PerformDAGCombine() to implement their DAG combines.

51 / 83

Custom DAG Combine 1/2
[NVPTX] Reduce register pressure using wide multiply.

Input0

MVT::i32

Input1

MVT::i32

0

ISD::ZERO EXTEND

MVT::i64

0

ISD::ZERO EXTEND

MVT::i64

0 1

ISD::MUL

MVT::i64

Output0

=⇒

Input0

MVT::i32

Input1

MVT::i32

0

ISD::ZERO EXTEND

MVT::i64

0

ISD::ZERO EXTEND

MVT::i64

0

ISD::TRUNCATE

MVT::i32

0

ISD::TRUNCATE

MVT::i32

0 1

NVPTXISD::MUL WIDE UNSIGNED

MVT::i64

Output0

52 / 83

Custom DAG Combine 2/2
[NVPTX] Like InstCombine, DAGCombiner runs iteratively.

Input0

MVT::i32

Input1

MVT::i32

0

ISD::ZERO EXTEND

MVT::i64

0

ISD::ZERO EXTEND

MVT::i64

0

ISD::TRUNCATE

MVT::i32

0

ISD::TRUNCATE

MVT::i32

0 1

NVPTXISD::MUL WIDE UNSIGNED

MVT::i64

Output0

=⇒ 0 1

NVPTXISD::MUL WIDE UNSIGNED

MVT::i64

Input0

MVT::i32

Input1

MVT::i32

Output0

53 / 83

Custom DAG Combine
[NVPTX] Remove the expensive ISD::UREM instruction.

Input0
MVT::i32

Input1
MVT::i32

0 1

ISD::UDIV

MVT::i32

0 1

ISD::UREM

MVT::i32

Output0 Output1

=⇒

Input0
MVT::i32

Input1
MVT::i32

0 1

ISD::UDIV

MVT::i32

0 1

ISD::MUL

MVT::i32

Output0

0 1

ISD::SUB

MVT::i32

Output1

54 / 83

Phases of SelectionDAG

LLVM IR SelectionDAG Construction

Type Legalization

Operation Legalization

Instruction Selection

Instruction Scheduling MachineIR

DAG Combiner

DAG Combiner

DAG Combiner

DAG

DAG

DAG

DAG

DAG

DAG

DAG

55 / 83

Instruction Selection

▶ Replace most generic SDNodes with machine nodes.

▶ Machine nodes have MachineInstruction Opcodes.

▶ Too target-specific for a generic implementation. Each target must override
Select.

▶ Lots of matching code is required.

/// Main hook for targets to transform nodes into machine nodes.

virtual void Select(SDNode *N) = 0;

56 / 83

TableGen to the Rescue

▶ Allows succinct specification of instructions and generic DAG patterns they
correspond to.

▶ TableGen will automatically generate all matching code.

▶ Targets may still implement custom logic outside of TableGen as needed.

57 / 83

TableGen Instruction Selection Patterns

We need to define 3 items to allow TableGen to build maching code:

▶ SDPatternOperator(s) - Describes what we are looking for in the DAG

▶ Instruction - Representation of the machine instruction we will emit

▶ Pattern - Mapping between DAG and instruction(s)

58 / 83

TableGen: Matching the SelectionDAG

def SDTIntBinOp : SDTypeProfile<
1, Produces 1 value
2, Takes 2 operands
[SDTCisSameAs<0, 1>, Result type (0) is same as first operand (1)
SDTCisSameAs<0, 2>, Result type (0) is same as second operand (2)
SDTCisInt<0>]>; Produced value (0) is an integer MVT

def add : SDNode<
"ISD::ADD", Opcode is ISD::ADD
SDTIntBinOp, SelectionDAG type is SDTIntBinOp
[SDNPCommutative, Properties include commutative, associative
SDNPAssociative]>;

59 / 83

TableGen: Defining a Machine Instruction

▶ TableGen lets us populate the instruction record with lots of useful information. For
ISel, all we’re concerned with are the inputs and outputs.

def ADDi32rr : NVPTXInst< OpCode name of this instruction
(outs Int32Regs:$dst), Types of registers set by this instruction
(ins Int32Regs:$a, Int32Regs:$b), Types of registers read by this instruction
"add.s32 \t$dst, $a, $b;">; Assembly string for printing

60 / 83

TableGen: Defining a Rewriting Pattern

def add : SDNode<. . .>

def ADDi32rr : NVPTXInst<. . .>

def : Pattern<
(set Int32Regs:$dst,
(add (i32 Int32Regs:$a), (i32 Int32Regs:$b))),

(ADDi32rr Int32Regs:$dst,
Int32Regs:$a, Int32Regs:$b)>;

61 / 83

TableGen Instruction Selection

0 1

ISD::ADD

MVT::i32

Input0

MVT::i32

Input1

MVT::i32

Output0

=⇒ 0 1

NVPTX::ADDi32rr

MVT::i32

Input0

MVT::i32

Input1

MVT::i32

Output0

62 / 83

Select Implementation Design Pattern

▶ Targets may insert custom logic prior to TableGen based matching for very complex
cases.

▶ SelectCode will execute the TableGen-generated matcher.

void NVPTXDAGToDAGISel::Select(SDNode *N) {

// Custom logic here

SelectCode(N); // TableGen based selection

}

63 / 83

Selection Algorithm Overview

▶ DAG traversed in topological order “bottom up” ensures operator always selected
before any operands.

▶ TableGen patterns prioritized using heuristics:

1. Prefer more complex match patterns.

2. Prefer lower emitted instruction count.

3. Prefer larger match pattern size.

4. Prefer later source order.

64 / 83

Phases of SelectionDAG

LLVM IR SelectionDAG Construction

Type Legalization

Operation Legalization

Instruction Selection

Instruction Scheduling MachineIR

DAG Combiner

DAG Combiner

DAG Combiner

DAG

DAG

DAG

DAG

DAG

DAG

DAG

65 / 83

Instruction Scheduling

▶ Input - DAG of machine nodes.

▶ Output - A linear sequence of machine nodes.

▶ We aren’t going to focus on this, because we don’t have experience with it.

▶ Instead, check out:

▶ Scheduling Model in LLVM - Part I (Blog)

▶ Writing Great Machine Schedulers (2017 LLVM Developers’ Meeting)

66 / 83

Table of Contents

Compilation Flow

Selection DAG Data Structure

Phases of SelectionDAG

Example of Working with SelectionDAG

Notes for the Road

67 / 83

Example: Supporting the PTX mad instruction

▶ mad := Multiply two values and add a third value.

▶ Goal: Emit the PTX mad instruction via a peephole optimization.

▶ Lower latency and register pressure than a mul+add.

define i32 @foo(i32, i32, i32) {

%mul = mul i32 %0, %1

%add = add i32 %mul, %2

ret i32 %add

}

.visible .func (...) foo(...) {

ld.param.u32 %r1, [foo param 0];

ld.param.u32 %r2, [foo param 1];

ld.param.u32 %r3, [foo param 2];

mad.lo.s32 %r4, %r1, %r2, %r3;

st.param.b32 [func retval0+0], %r4;

ret;

}

68 / 83

Scoping Things Out

▶ Observations: We don’t need to modify type or operation legalization.

▶ mad only supports existing legal types.

▶ The nodes we’re looking for, ISD::ADD and ISD::MUL are legal for all the types that
the PTX mad instruction supports.

▶ We need a target-specific DAG combine to generate a NVPTXISD::IMAD SDNode.

▶ We need instruction selection logic to lower the NVPTXISD::IMAD SDNode to a
machine node.

69 / 83

Scoping Things Out

▶ Observations: We don’t need to modify type or operation legalization.

▶ mad only supports existing legal types.

▶ The nodes we’re looking for, ISD::ADD and ISD::MUL are legal for all the types that
the PTX mad instruction supports.

▶ We need a target-specific DAG combine to generate a NVPTXISD::IMAD SDNode.

▶ We need instruction selection logic to lower the NVPTXISD::IMAD SDNode to a
machine node.

69 / 83

Tasks

1. DAG Combine - Target-specific folding to generate NVPTXISD::IMAD.

2. Instruction Selection - Lower NVPTXISD::IMAD into a machine node.

70 / 83

DAG Combine

Input0

MVT::i32

Input1

MVT::i32

Input2

MVT::i32

0 1

ISD::MUL

MVT::32

0 1

ISD::ADD

MVT::i32

Output

=⇒

Input0

MVT::i32

Input1

MVT::i32

Input2

MVT::i32

0 1 2

NVPTXISD::IMAD

MVT::i32

Output

71 / 83

DAG Combine
Declare our target-specific DAG combine.

1. NVPTXTargetLowering::NVPTXTargetLowering() {

...

setTargetDAGCombine(ISD::ADD);

...

}

72 / 83

DAG Combine
Override PerformDAGCombine()

1. NVPTXTargetLowering::NVPTXTargetLowering() {

setTargetDAGCombine(ISD::ADD);

2. SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N) {

switch (N->getOpcode()) {

case ISD::ADD: return PerformADDCombine(N);

...

}

}

73 / 83

DAG Combine
Implement the target-specific DAG combine.

1. NVPTXTargetLowering::NVPTXTargetLowering() {

setTargetDAGCombine(ISD::ADD);

2. SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N) {

switch (N->getOpcode()) {

case ISD::ADD: return PerformADDCombine(N);

3. SDValue PerformADDCombine(SDNode *N) {

if (N->getOperand(0).getOpcode() != ISD::MUL) return SDValue();

if (N->getValueType() != MVT::i32) return SDValue();

return DAG.getNode(NVPTXISD::IMAD, N->getValueType(),

N->getOperand(0).getOperand(0),

N->getOperand(0).getOperand(1),

N->getOperand(1));

74 / 83

PerformADDCombine() - Input/Output DAGs

Input0

MVT::i32

Input1

MVT::i32

Input2

MVT::i32

0 1

ISD::MUL

MVT::32

0 1

ISD::ADD

MVT::i32

Output

=⇒

Input0

MVT::i32

Input1

MVT::i32

Input2

MVT::i32

0 1 2

NVPTXISD::IMAD

MVT::i32

Output

75 / 83

Tasks

1. DAG Combine - Target-specific folding to generate NVPTXISD::IMAD.

2. Instruction Selection - Lower NVPTXISD::IMAD into a machine node.

76 / 83

Declare the target-specific SDNode & machine node.

def SDTIMAD : SDTypeProfile<1, 3,
[SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisInt<0>]>;

def imad : SDNode<"NVPTXISD::IMAD", SDTIMAD>;

def MAD32rrr : NVPTXInst<
(outs Int32Regs:$dst),
(ins Int32Regs:$a,

Int32Regs:$b,
Int32Regs:$c),

"mad.lo.s32 \t$dst, $a, $b;">;

77 / 83

Select the machine node.

def imad : SDNode<. . .>

def MAD32rrr : NVPTXInst<. . .>

def : Pattern<
(set Int32Regs:$dst,
(imad (i32 Int32Regs:$a),

(i32 Int32Regs:$b),
(i32 Int32Regs:$c))),

(MAD32rrr Int32Regs:$dst,
Int32Regs:$a,
Int32Regs:$b,
Int32Regs:$c)>;

78 / 83

mad Instruction Selection - Input/Output DAGs

Input0

MVT::i32

Input1

MVT::i32

Input2

MVT::i32

0 1 2

NVPTXISD::IMAD

MVT::i32

Output

=⇒

Input0

MVT::i32

Input1

MVT::i32

Input2

MVT::i32

0 1 2

NVPTX::MAD32rrr

MVT::i32

Output

79 / 83

Support the PTX mad instruction

▶ Goal: Emit the PTX mad instruction via a peephole optimization. ✓

define i32 @foo(i32, i32, i32) {

%mul = mul i32 %0, %1

%add = add i32 %mul, %2

ret i32 %add

}

.visible .func (...) foo(...) {

ld.param.u32 %r1, [foo param 0];

ld.param.u32 %r2, [foo param 1];

ld.param.u32 %r3, [foo param 2];

mad.lo.s32 %r4, %r1, %r2, %r3;

st.param.b32 [func retval0+0], %r4;

ret;

}

80 / 83

Table of Contents

Compilation Flow

Selection DAG Data Structure

Phases of SelectionDAG

Example of Working with SelectionDAG

Notes for the Road

81 / 83

Other Resources

▶ The LLVM Target-Independent Code Generator (LLVM Docs)

▶ Instruction Selector (LLVM Docs)

▶ Legalizations in LLVM Backend (Blog)

▶ Building an LLVM Backend (2014 LLVM Developers’ Meeting)

▶ CodeGen Overview and Focus on SelectionDAGs (2008 LLVM Developers’ Meeting)

82 / 83

Notes for the Road

▶ There are links throughout the slides to the relevant sections of the codebase.

▶ justinfargnoli.github.io/slides.pdf

▶ -debug-only=isel,legalize-types,legalizedag,dagcombine

▶ Thank you to Akshay Deodhar, Princeton Ferro, Max Gutierrez, Drew Kersnar,
Vladislav Malyshenko, and Kevin McAfee for your help in preparing this
presentation.

83 / 83

