
From Developer’s Desk to User’s Device

LLVM Supply Chain
Security

Tom Stellard

Red Hat

1

What is Supply Chain
Security?

O
ptional section m

arker

2

Example: Lock Company

3

Example: Lock Company

4

Example: Lock Company

5

What does our software
supply chain look like?

6

7

Developer

Pull Request

Git Repo Release Branch Release Tarballs

Release Binaries

LLVM Supply Chain

8

Developer

Pull Request

Git Repo Release Branch Release Tarballs

Release Binaries

LLVM Supply Chain
Distributors

End
Users

9

Developer

Pull Request

Git Repo Release Branch Release Tarballs

Release Binaries

LLVM Supply Chain

How do we secure the git
repository?

10

Version number here V00000

11

How do we
secure the git
repository?

▸ Restrict Commit Access.

12

What are the
requirements
for commit
access?

▸ Ask!

▸ Give a Reason.

▸ No contribution requirements!

Version number here V00000

13

How do we
secure the git
repository?

▸ Restrict Commit Access.

▸ Commit rules.

14

What commit
rules do we
have?

▸ Major changes require an RFC.

▸ Pre-commit review with exceptions for

‘Code Owners’ and trivial changes.

▸ CI Tests must pass.

We have reactive
enforcement.

15

Version number here V00000

16

How do we
secure the git
repository?

▸ Restrict Commit Access.

▸ Commit rules.

▸ Post-Commit review.

17

Post-Commit
Review

▸ Commit lists get 1000 emails per day!

▸ How many people actually monitor the

commit lists?

Version number here V00000

18

How do we
secure the git
repository?

▸ Restrict Commit Access.

▸ Commit rules.

▸ Post-Commit review.

19

Summary:
Protecting the
git repository.

▸ Anyone can get commit access!

▸ Anyone can commit at any time!

▸ We rely on people, not technology, to

catch mistakes or prevent misuse.

Are we leaving our truck
unlocked at night?

20

21

Who should
be worried
about this?

▸ Everyone!

22

Do you build
your product
from main?

▸ What would happen if malicious code

was pushed to main?

▸ Is your build pipeline secure against

untrusted code?

▸ Reactive upstream policies won’t protect

you.

23

Do you have
internal CI
building main?

▸ Even just testing main can put your

systems at risk.

24

What are the
risks?

▸ Modified CMake files to execute

arbitrary commands on your system.

▸ Backdoor inserted into compiler.

▸ Compiler modified to insert backdoors in

everything it builds.

How did we get this so
wrong?

25

We didn’t actually do
anything wrong!

26

It all comes down to
priorities.

27

28

What are the
goals of our
current
policies?

▸ Make it easy for new contributors.

▸ Give experienced contributors flexibility

to make their own decisions.

Can we update our
policies while still meeting
these goals?

29

30

New
Contributors.

▸ In the SVN days being a contributor

without commit access was very

frustrating!

▸ GitHub makes this easier: One click

merge for pull requests.

▸ Technology has changed, but our

policies haven’t!

31

Experienced
Contributors.

▸ Do we need to explicitly define this

group?

▸ Can we give extra privileges to

experienced contributors?

32

New policy
ideas.

▸ Require pre-commit review for new

contributors.

▸ Add requirements for obtaining commit

access.

▸ Make CI mandatory.

33

How you can
help?

▸ Share your ideas!

▸ Review and comment on RFCs.

▸ Review your internal build/test process.

34

Developer

Pull Request

Git Repo Release Branch Release Tarballs

Release Binaries

LLVM Supply Chain

How do we secure our
infrastructure?

35

36

GitHub
Actions:
Overview

▸ Run automated jobs on GitHub

infrastructure or self-hosted runners.

▸ Uses yaml based workflow definitions.

▸ One workflow per file, multiple jobs per

workflow.

37

GitHub
Actions:
Overview

▸ Jobs started by various events: pull

request, issue comment, etc.

▸ Each job has its own access token:

GITHUB_TOKEN

▸ Can add ‘Secrets’ for enhanced access.

38

GitHub
Actions: Risks

▸ Token/Secret compromise

▸ Repository Denial of Service attacks.

▸ Resource stealing.

39

GitHub
Actions:
Tokens

▸ Allow access to GitHub via REST API.

▸ Some Examples:

･ Creating comments.

･ Adding labels.

･ Creating Pull Requests.

40

GitHub
Actions:
Tokens

▸ GITHUB_TOKEN permissions

configurable for each job.

▸ Expires when the job finishes.

▸ Has permissions for current repository

only.

Workflows will not start on
events initiated by
GITHUB_TOKEN!

41

42

Example

43

Example

44

Example

45

Example

46

GitHub
Actions:
Secrets

▸ Used to allow ‘chaining’ of workflows.

▸ Can grant more permissions than

GITHUB_TOKEN.

▸ Can be anything e.g. pypi token, signing

keys, etc.

Anyone with commit
access can view secrets.

47

48

GitHub
Actions: Real
World Exploits

▸ pytorch

▸ GItHub Runner Images

▸ Token leaks affecting many projects

https://johnstawinski.com/2024/01/11/playing-with-fire-how-we-executed-a-critical-supply-chain-attack-on-pytorch/comment-page-1/
https://adnanthekhan.com/2023/12/20/one-supply-chain-attack-to-rule-them-all/
https://unit42.paloaltonetworks.com/github-repo-artifacts-leak-tokens/

49

GitHub
Actions: Best
Practices

▸ Use GITHUB_TOKEN when possible.

▸ Grant GITHUB_TOKEN minimal

permissions.

▸ Use GitHub hosted runners.

▸ Limit use of secrets.

▸ Disable workflows for first time

contributors.

50

51

52

53

GitHub
Actions: Pull
Request
Events

▸ Two types: pull_request and

pull_request_target

▸ pull_request has no secret access and

read-only repo access.

▸ pull_request_target has access to

secrets and write access to the repo.

Do not use
pull_request_target when
executing untrusted code
(e.g. CI).

54

55

GitHub
Actions: Pull
Request
Events

▸ We have three workflows using

pull_request_target.

▸ Generally, considered safe since they

only use code from main.

▸ Could be ported over to pull_request

event.

56

Other
Infrastructure:
Buildkite,
Buildbot.

▸ Need to be hardened against running

untrusted code.

▸ Using Ephemeral nodes mitigates some

kinds of attacks.

▸ Internal CI systems carry the same risks!

57

Developer

Pull Request

Git Repo Release Branch Release Tarballs

Release Binaries

LLVM Supply Chain

58

Release
Branch

▸ New release branch created every 6

months.

▸ Only release managers can commit.

59

Developer

Pull Request

Git Repo Release Branch Release Tarballs

Release Binaries

LLVM Supply Chain

60

Release
Tarballs

▸ Generated using GitHub Actions.

▸ Signed by release managers.

▸ Provenance established using GitHub

Artifact Attestations.

61

Developer

Pull Request

Git Repo Release Branch Release Tarballs

Release Binaries

LLVM Supply Chain

62

Release
Binaries

▸ Official binaries generated using GitHub

Actions.

▸ Signed by release managers

▸ GitHub Artifact Attestations.

63

64

65

66

Anyone with commit
access can upload assets
to the release page!

67

68

Release
Assets

▸ No fine-grained permissions.

▸ We have an audit job that checks assets

once per hour.

▸ Discussed moving assets to a different

repository.

Should you download this file?
https://github.com/llvm/llvm-project/files/13166493/LLVM-19.1.1-Linux-X64.tar.xz

69

Should you download this file?
https://github.com/llvm/llvm-project/files/13166493/LLVM-19.1.1-Linux-X64.tar.xz

No!

70

User Upload (could be malicious):
https://github.com/llvm/llvm-project/files/13166493/LLVM-19.1.1-Linux-X64.tar.xz

Official Upload:
https://github.com/llvm/llvm-project/releases/download/llvmorg-19.1.1/LLVM-19.1.1-Linux-X64.tar.xz

71

XZ Attack

https://www.openwall.com/lists/oss-security/2024/03/29/4
https://boehs.org/node/everything-i-know-about-the-xz-backdoor

72

73

XZ Attack:
Mechanics

▸ ‘Trusted’ user granted commit access.

▸ Malicious test binaries pushed to the

repo.

▸ Release tarball hosting moved to github.

▸ Release tarballs modified to include

script that injected malicious code into

xz.

74

XZ Attack:
Results

▸ RSA_public_decrypt calls redirected to

malicious code.

75

XZ LLVM

Commit Access
Wait Time 8 Months [1] Days

Test Binaries in
Repo Yes Yes

Mandatory Code
Review No No

Maintainers 1 Many

01 Title of tableLLVM vs XZ: How do we
compare?

[1] https://boehs.org/node/everything-i-know-about-the-xz-backdoor

What’s next?

76

77

What’s Next?
(my opinions)

▸ Having low bar for commit access is OK.

▸ Having minimal commit rules is OK.

▸ Having both at the same time is very

risky.

▸ We should make some changes.

78

Ideas ▸ Mandatory pull requests.

▸ Mandatory review for all changes.

▸ More strict requirements for commit

access.

▸ We need to balance convenience and

security.

79

Advice for
downstream.

▸ Know your risks.

▸ Contribute to upstream.

▸ Hire someone to work on this full time.

▸ Donate to the LLVM Foundation!

Conclusion: This is
important.

80

Acknowledgements

81

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

82

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

