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What is Supply Chain 
Security? 

O
ptional section m

arker
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Example: Lock Company
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Example: Lock Company
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Example: Lock Company
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What does our software 
supply chain look like?

6



7

Developer

Pull Request

Git Repo Release Branch Release Tarballs

Release Binaries

LLVM Supply Chain



8

Developer

Pull Request

Git Repo Release Branch Release Tarballs

Release Binaries

LLVM Supply Chain
Distributors

End 
Users



9

Developer

Pull Request

Git Repo Release Branch Release Tarballs

Release Binaries

LLVM Supply Chain



How do we secure the git 
repository?
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Version number here V00000
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How do we 
secure the git 
repository?

▸ Restrict Commit Access.
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What are the 
requirements 
for commit 
access? 

▸ Ask!

▸ Give a Reason.

▸ No contribution requirements!



Version number here V00000
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How do we 
secure the git 
repository?

▸ Restrict Commit Access.

▸ Commit rules.
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What commit 
rules do we 
have?

▸ Major changes require an RFC.

▸ Pre-commit review with exceptions for 

‘Code Owners’ and trivial changes.

▸ CI Tests must pass.



We have reactive 
enforcement.
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Version number here V00000
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How do we 
secure the git 
repository?

▸ Restrict Commit Access.

▸ Commit rules.

▸ Post-Commit review.
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Post-Commit 
Review

▸ Commit lists get 1000 emails per day!

▸ How many people actually monitor the 

commit lists?



Version number here V00000
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How do we 
secure the git 
repository?

▸ Restrict Commit Access.

▸ Commit rules.

▸ Post-Commit review.
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Summary: 
Protecting the 
git repository.

▸ Anyone can get commit access!

▸ Anyone can commit at any time!

▸ We rely on people, not technology, to 

catch mistakes or prevent misuse.



Are we leaving our truck 
unlocked at night?
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Who should 
be worried 
about this?

▸ Everyone!
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Do you build 
your product 
from main?

▸ What would happen if malicious code 

was pushed to main?

▸ Is your build pipeline secure against 

untrusted code?

▸ Reactive upstream policies won’t protect 

you.
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Do you have 
internal CI 
building main?

▸ Even just testing main can put your 

systems at risk.
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What are the 
risks?

▸ Modified CMake files to execute 

arbitrary commands on your system.

▸ Backdoor inserted into compiler.

▸ Compiler modified to insert backdoors in 

everything it builds.



How did we get this so 
wrong?
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We didn’t actually do 
anything wrong!
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It all comes down to 
priorities.
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What are the 
goals of our 
current 
policies? 

▸ Make it easy for new contributors.

▸ Give experienced contributors flexibility 

to make their own decisions.



Can we update our 
policies while still meeting 
these goals?
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New 
Contributors. 

▸ In the SVN days being a contributor 

without commit access was very 

frustrating!

▸ GitHub makes this easier: One click 

merge for pull requests.

▸ Technology has changed, but our 

policies haven’t!
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Experienced 
Contributors. 

▸ Do we need to explicitly define this 

group?

▸ Can we give extra privileges to 

experienced contributors?
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New policy 
ideas. 

▸ Require pre-commit review for new 

contributors.

▸ Add requirements for obtaining commit 

access.

▸ Make CI mandatory.
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How you can 
help? 

▸ Share your ideas!

▸ Review and comment on RFCs.

▸ Review your internal build/test process.
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How do we secure our 
infrastructure?
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GitHub 
Actions: 
Overview

▸ Run automated jobs on GitHub 

infrastructure or self-hosted runners.

▸ Uses yaml based workflow definitions.

▸ One workflow per file, multiple jobs per 

workflow.
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GitHub 
Actions: 
Overview

▸ Jobs started by various events: pull 

request, issue comment, etc.

▸ Each job has its own access token: 

GITHUB_TOKEN

▸ Can add ‘Secrets’ for enhanced access.
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GitHub 
Actions: Risks

▸ Token/Secret compromise

▸ Repository Denial of Service attacks.

▸ Resource stealing.
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GitHub 
Actions: 
Tokens

▸ Allow access to GitHub via REST API.

▸ Some Examples: 

･ Creating comments.

･ Adding labels.

･ Creating Pull Requests.
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GitHub 
Actions: 
Tokens

▸ GITHUB_TOKEN permissions 

configurable for each job.

▸ Expires when the job finishes.

▸ Has permissions for current repository 

only.



Workflows will not start on 
events initiated by 
GITHUB_TOKEN! 
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Example
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Example
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Example
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Example
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GitHub 
Actions: 
Secrets

▸ Used to allow ‘chaining’ of workflows.

▸ Can grant more permissions than 

GITHUB_TOKEN.

▸ Can be anything e.g. pypi token, signing 

keys, etc.



Anyone with commit 
access can view secrets. 
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GitHub 
Actions: Real 
World Exploits

▸ pytorch

▸ GItHub Runner Images

▸ Token leaks affecting many projects

https://johnstawinski.com/2024/01/11/playing-with-fire-how-we-executed-a-critical-supply-chain-attack-on-pytorch/comment-page-1/
https://adnanthekhan.com/2023/12/20/one-supply-chain-attack-to-rule-them-all/
https://unit42.paloaltonetworks.com/github-repo-artifacts-leak-tokens/
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GitHub 
Actions: Best 
Practices

▸ Use GITHUB_TOKEN when possible.

▸ Grant GITHUB_TOKEN minimal 

permissions.

▸ Use GitHub hosted runners.

▸ Limit use of secrets.

▸ Disable workflows for first time 

contributors.
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GitHub 
Actions: Pull 
Request 
Events

▸ Two types: pull_request and 

pull_request_target

▸ pull_request has no secret access and 

read-only repo access.

▸ pull_request_target has access to 

secrets and write access to the repo.



Do not use 
pull_request_target when 
executing untrusted code 
(e.g. CI).
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GitHub 
Actions: Pull 
Request 
Events

▸ We have three workflows using 

pull_request_target.

▸ Generally, considered safe since they 

only use code from main.

▸ Could be ported over to pull_request 

event.
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Other 
Infrastructure:
Buildkite, 
Buildbot.

▸ Need to be hardened against running 

untrusted code.

▸ Using Ephemeral nodes mitigates some 

kinds of attacks.

▸ Internal CI systems carry the same risks!
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Release 
Branch

▸ New release branch created every 6 

months.

▸ Only release managers can commit.
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Release 
Tarballs

▸ Generated using GitHub Actions.

▸ Signed by release managers.

▸ Provenance established using GitHub 

Artifact Attestations.
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Release 
Binaries

▸ Official binaries generated using GitHub 

Actions.

▸ Signed by release managers

▸ GitHub Artifact Attestations.
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Anyone with commit 
access can upload assets 
to the release page!
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Release 
Assets

▸ No fine-grained permissions.

▸ We have an audit job that checks assets 

once per hour.

▸ Discussed moving assets to a different 

repository.



Should you download this file?
https://github.com/llvm/llvm-project/files/13166493/LLVM-19.1.1-Linux-X64.tar.xz
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Should you download this file?
https://github.com/llvm/llvm-project/files/13166493/LLVM-19.1.1-Linux-X64.tar.xz

No!
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User Upload (could be malicious):
https://github.com/llvm/llvm-project/files/13166493/LLVM-19.1.1-Linux-X64.tar.xz

Official Upload:
https://github.com/llvm/llvm-project/releases/download/llvmorg-19.1.1/LLVM-19.1.1-Linux-X64.tar.xz
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XZ Attack

https://www.openwall.com/lists/oss-security/2024/03/29/4
https://boehs.org/node/everything-i-know-about-the-xz-backdoor
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XZ Attack: 
Mechanics

▸ ‘Trusted’ user granted commit access.

▸ Malicious test binaries pushed to the 

repo.

▸ Release tarball hosting moved to github.

▸ Release tarballs modified to include 

script that injected malicious code into 

xz.
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XZ Attack: 
Results

▸ RSA_public_decrypt calls redirected to 

malicious code.
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XZ LLVM

Commit Access 
Wait Time 8 Months [1] Days

Test Binaries in 
Repo Yes Yes

Mandatory Code 
Review No No

Maintainers 1 Many

01   Title of tableLLVM vs XZ: How do we 
compare?

[1] https://boehs.org/node/everything-i-know-about-the-xz-backdoor



What’s next?
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What’s Next?
(my opinions)

▸ Having low bar for commit access is OK.

▸ Having minimal commit rules is OK.

▸ Having both at the same time is very 

risky.

▸ We should make some changes.
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Ideas ▸ Mandatory pull requests.

▸ Mandatory review for all changes.

▸ More strict requirements for commit 

access.

▸ We need to balance convenience and 

security.
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Advice for 
downstream.

▸ Know your risks.

▸ Contribute to upstream.

▸ Hire someone to work on this full time.

▸ Donate to the LLVM Foundation!



Conclusion: This is 
important.
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