
Reducing Code Size with 
Speculative Inlining

Vincent Lee



Growth in App Size 

Motivation

● Reducing app size is important for mobile applications

● Large apps impact user experience and user retention

● Employ optimizations (e.g. inliner) to reduce code size 



Inlining for Code Size

Motivation

• LLVM generally tuned for performance and not code size

• Performance often viewed at the expense of increased code size

• Inlining is critical for compiler optimizations

• Leverage inlining to reduce code size may help with performance

○ Potential to speed up programs by maximizing amount of hot 

code in instruction cache



Example

https://godbolt.org/z/E71E9xqjK

Under -Oz

Under -O3



Speculative Inliner

Speculative Inliner

● Inliner pass that measures the cost of inlining based on the 

material outcome of the post-inliner optimizations on the inlined

code

○ Consider all inline viable call sites for speculation and ignoring 

LLVM’s standard inline thresholds

● Post-inline optimizations (i.e. simplification) determines whether 

an inline is profitable or not



LLVM Inliner

Speculative Inliner: Implementation

Speculative Inliner



Problem #1: Uninlineable callsites

● Inline assembly

● Known mis-optimizations deeper in the pipeline

● Added a blocklist

○Prevent inlining callee into caller

○Prevent inlining all callees into caller

Challenges



Problem #2: Searching

● Build time is very expensive

○Large amount of callsites

○Cloning operation can be costly

○Simplifying large functions do not scale linearly

Challenges



Speculative Inliner Replay

Challenges

First Phase

Second Phase

Caller, Callee, Callsite location 



Speculative Inliner Replay

Challenges



Profile Staleness

Challenges



Size Beneficial Inlining

● Obtained when the callee can be removed from the program after 

inlining

○ Dropping its use count to zero

○ Internal linkage function

Speculative Inliner: Extensions



Speculative Inliner: Extensions

N = 1 callsite

● Guaranteed code size win 

once B is inlined into A



Speculative Inliner: Extensions

N = 2 callsites

● Not always guaranteed a win, but 

has been mostly true for small 

functions

o Register pressure on larger 

functions

● Gated behind an arbitrary threshold

o ~15 LLVM IR instructions 

through empirical testing



Speculative Inliner: Extensions

N = 3+ callsites

● Largely a size regression due 

to duplication

● Non-trivial heuristic



Internal Simplification Inliner

Internal Simplification Inliner

● Inliner pass that optimistically inlines and simplifies internal 

linkage functions based on the number of uses from a given call 

site

○ Similar to the speculative inliner - all inline viable call sites and 

ignores LLVM’s standard inline thresholds



Internal Simplification Inliner

● No rollback mechanism

● Pass runs significantly faster!



FullLTO

Pass Pipeline Ordering

1. Inlining compounds with other passes
2.Full LTO allows late IPO to capture more 

wins

Trial and error



ThinLTO

Pass Pipeline Ordering

Cross module import happens in the beginning



Results



Conclusions

● Current LLVM paradigm has limitations in modeling the benefits of 

downstream simplifications for size

● Speculative inlining addresses this limitation, which can provide up to 

~4% in code size reduction*

○ Size tradeoff with build time costs solved by replaying

● More wins to be captured when running IPO at different points of the 

pass pipeline

○ Experiments show running it early results in size regression, and 

running it late is more profitable 

Results




	Slide 1: Reducing Code Size with Speculative Inlining
	Slide 2: Growth in App Size  
	Slide 3: Inlining for Code Size
	Slide 4
	Slide 5: Speculative Inliner
	Slide 6: LLVM Inliner
	Slide 7: Problem #1: Uninlineable callsites
	Slide 8: Problem #2: Searching
	Slide 9: Speculative Inliner Replay
	Slide 10: Speculative Inliner Replay
	Slide 11: Profile Staleness
	Slide 12: Size Beneficial Inlining
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Internal Simplification Inliner
	Slide 17
	Slide 18: FullLTO
	Slide 19: ThinLTO
	Slide 20
	Slide 21: Conclusions
	Slide 22

