
GlobalISel CI/CD

Authors:
Dhruv Chawla
Madhur Amilkanthwar

Presented by:
Neil Hickey



• Introduction and Features

• Internals

• Future Directions

Agenda



Introduction
What this is

• The GlobalISel CI/CD is an automation that runs a set of benchmarks and try to extract data about the fallbacks to 
SelectionDAG that occurred

• It consists of a backend organized as a set of shell scripts and a frontend written using the React.JS framework

• The frontend and the backend communicate using the JSON format

Features
• Compiler is updated every day to ToT

• Fallbacks for all benchmarks are collected daily
• Fallbacks are collected per-phase for the 4 major passes (IRTranslator, Legalizer, RegBankSelect, InstructionSelect)

• Compiler logs and detailed information about fallbacks are maintained for runs done in the previous 5 days
• Statistics (number of fallbacks) are maintained for all runs

• Ability to filter results shown based on the flagset used to compile the benchmark



Dashboard View



Internals
How it works - frontend

• The frontend is a React.JS application that asynchronously loads multiple JSON data sources together

• It does a primary grouping of runs by the flags that they were compiled with

• In our case, it allows comparing runs done with SVE vs. runs done without SVE

• The UI filters the results based on the flags that are selected

• A secondary grouping is done based 
on the benchmarks of each suite
• This allows choosing which 

benchmarks are to be shown in the 
output

• The interface also shows the build 
status of each benchmark matching 
the current set of flags chosen



Internals
Frontend - views

• There are four main views in the UI:

• Historical – an aggregated view of total fallbacks for all benchmarks over the past 5 days, along with per-benchmark views for the 
past 20 days 

• Per-pass – an aggregated view of fallbacks per-benchmark per-pass (IRTranslator, Legalizer, RegBankSelect, 
InstructionSelect) for the last run along with per-benchmark fallbacks for each pass

• Functions – the list of functions that fell back to SelectionDAG for each benchmark

• Failures - the specific failure that caused a fallback

• The functions and failures views should be combined, however it is not always possible to correlate the instruction that 

caused a failure back to the function it came from



Internals
How it works - backend

• The backend scripts are organized into:

• A top-level run.sh script that invokes scripts for each benchmark of each suite

• A suite is a set of benchmarks that share the same set of scripts

• Example: The SPEC2017 suite has various benchmarks like gcc/x264/…
• Suites can also have one benchmark, like RAJAPerf - rajaperf

• For each benchmark:

• verify-env.sh: To ensure that the environment for the benchmark is setup correctly

• run.sh: To compile the benchmark

• get-buildfiles.sh: To get the list of files containing the compiler output – these files are automatically pattern matched to find 
fallbacks

• get-otherfiles.sh: To get a list of temporary files that should be saved before the build directory is deleted

• The collected data is then organized into a JSON file that contains per-benchmark information about fallbacks



Screenshots
Historical view

Aggregated fallbacks Per-benchmark fallbacks



Screenshots
Historical view

Per-pass fallbacks in previous run



Screenshots
Functions view

Per-pass view (passes/benchmarks with no fallbacks are not shown)



Screenshots
Failures view



Future Directions

• If we have enough interest from the community, we are interested in open-sourcing this so that people can add more 
benchmarks, configurations and views of the database



Thank You!


