o)
FUJITSU

Can Vectorization Slow Down
Performance?

Addressing the Challenges of
Vectorizing Stride Acces

October 28, 2025
Kotaro Kinoshita (@kinoshita-fj)
2025 US LLVM Developers’ Meeting

© 2025 Fujitsu Limited

Introduction FUjiTSU

® \ectorization is generally expected to improve performance. However, we found performance
degradation in some cases of vectorizing strided access.

® This talk focuses on one such case.

® For example, vectorizing the test case leads to performance degradation by inefficient code
generation.

_ _ Execution Cycles of the Test Case on Neoverse V11 (n=256)
® We opened the issue for this #129474. .,

The current vectorization is
Lower is better

Test Case 300

void func(double *a, double *b, int n) {
for (int i = 0; i < n; i) {
ali] = b[i * 10] + 1; 200
}

100

0
1. Neoverse V1 : AArchb4 processor by Arm

Scalar Vectorization
2. SVE (Scalable Vector Extension) : Vector extension for the AArch64

2 (SVE?) o 2025 Fujitsu Limited

https://github.com/llvm/llvm-project/issues/129474

Current Address Calculation is Inefficient FUjiTSU

LLVM (21.1.0) Vectorization (SVE)

index zl.d, #0, #1
void func(double *a, double *b, int n) { loop:

for (int i = 0; i < n; i+) { adg 22.3, zl.g, Zgéd
a[i] = b[i * 10] + 1; mul zl.d, z1.d, #
3 ! ldid { zi1.d }, po/z, [x1, zl.d]

} ﬁéb z1l.d, z2.d
1st Iteration 2nd Iteration 3rd Iteration
x1| b b b
+ + +
21 0 80 | 160 | 240 320 | 400 | 480 | 560 640 | 720 | soo | 880
Addresses for 80 160 240 320 400 480 560 640 720 800 880

Gather

® Address calculation uses vector instructions inside the loop.

3 © 2025 Fujitsu Limited

Efficient Instructions for Strided Access

o)
FUJITSU

® [f the pattern is identified as a strided access, efficient instructions like these can be generated.

1st Iteration

x1 b
+

Better Vectorization

index zl.d, #0, #80
loop:
ldid { z2.d }, p0/z, [x1, zl1l.d]

add x1, x1, x2

z1 0 80 160 | 240

oy ov oy

Addresses for
Gather 80 160 240

2nd Iteration

b+320

+
0 80 160 | 240

oy ooy

320 400 480 560

3rd Iteration

b+640
+
0 80 160 | 240
oYy
640 720 800 880

® Generate offset vector outside the loop and update base with a scalar instruction.

4

© 2025 Fujitsu Limited

Improvement Status FUJITSU

® Convert gather loads with invariant stride into strided loads #147297
® Detect strided access and introduce the StridedLoadRecipe in LoopVectorize.
® Contributed by @Mel-Chen for RISC-V, which has vector strided load/store.

Input IR LoopVectorize (VPlan)
for.body:
vector.body:
%idx = mul nuw nsw ié6d %iv, 80
%gep = getelementptr inbounds nuw i8, ptr %b, i6d %idx |WIDEN ir<%0> = load ir<%gep>, stride = ir<80>, runtimeVF = vp<%l> |
%0 = load double, ptr %gep, align 8

StridedLoadRecipe

® |Improve strided access vectorization for AArch64 SVE #164205
® Legalize the StridedLoadRecipe for architectures that don't have vector strided load/store instructions, such as

AArché4. -
. . . o 37% Performance
Legalize StridedLoadRecipe Better Vectorization 5 Improvement
vector.ph: § g 400 Better
O ®©
EMIT vp<%l> = step-vector i64 [index z1.d, #0, #80] 5‘&_,) 300 ~ Vectorization
EMIT vp<%2> = mul vp<%l>, ir<ge> Loop: % 900
vector.body: » [ldid { z2.d }, p6/z, [x1, z1.d]| No
32 100
> = wide— ir< > <%3> add x1, x1, x2 o+
WIDEN ir<%6> = load vp<%3> o 0 - Gl
calar

Vectorization

5 © 2025 Fujitsu Limited

https://github.com/llvm/llvm-project/pull/147297
https://github.com/Mel-Chen
https://github.com/llvm/llvm-project/pull/164205

Other Issues FUjiTSU

® We have discovered other issues in vectorizing strided accesses.

Variable Stride

® Variable stride widths cannot be vectorized.
)) .) for (int i = 0; i < n; i+) {
® The loop is multi-versioned, and only the version for the m=1 alil = b[i * m] + 1;
case is vectorized, while the other case (m# 1) remains scalar.

® When IndVarSimplify widens the index of a strided access to 64-bit, the number of

memory access instructions can double.
® Related Issue #86785.

6 © 2025 Fujitsu Limited

https://github.com/llvm/llvm-project/issues/86785

Acknowledgement FUJITSU

® This presentation is based on results obtained from a project, JPNP21029, subsidized by
the New Energy and Industrial Technology Development Organization (NEDO).

7 © 2025 Fujitsu Limited

o)
FUJITSU

Thank you

	スライド 1: Can Vectorization Slow Down Performance? Addressing the Challenges of Vectorizing Stride Access
	スライド 2: Introduction
	スライド 3: Current Address Calculation is Inefficient
	スライド 4: Efficient Instructions for Strided Access
	スライド 5: Improvement Status
	スライド 6: Other Issues
	スライド 7: Acknowledgement
	スライド 8: Thank you

