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Introduction

● Vectorization is generally expected to improve performance. However, we found performance 

degradation in some cases of vectorizing strided access.

● This talk focuses on one such case.

● For example, vectorizing the test case leads to performance degradation by inefficient code

generation.

● We opened the issue for this #129474.

Test Case 

Execution Cycles of the Test Case on Neoverse V11 (n=256)

1. Neoverse V1 : AArch64 processor by Arm
2. SVE (Scalable Vector Extension) : Vector extension for the AArch64

void func(double *a, double *b, int n) {
for (int i = 0; i < n; i++) {

a[i] = b[i * 10] + 1;
}

}
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https://github.com/llvm/llvm-project/issues/129474
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Current Address Calculation is Inefficient

index  z1.d, #0, #1
loop:
    add  z2.d, z1.d, z0.d

mul  z1.d, z1.d, #80
ld1d  { z1.d }, p0/z, [x1, z1.d]

    .
    mov  z1.d, z2.d

.

LLVM (21.1.0) Vectorization (SVE)

void func(double *a, double *b, int n) {
for (int i = 0; i < n; i++) {

a[i] = b[i * 10] + 1;
}

}
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● Address calculation uses vector instructions inside the loop.
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Efficient Instructions for Strided Access

● Generate offset vector outside the loop and update base with a scalar instruction.

index  z1.d, #0, #80
loop:
    ld1d  { z2.d }, p0/z, [x1, z1.d]
    .
    add  x1, x1, x2

.++

Better Vectorization

x1
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● If the pattern is identified as a strided access, efficient instructions like these can be generated.
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Improvement Status

for.body: 
 …               
 %idx = mul nuw nsw i64 %iv, 80
 %gep = getelementptr inbounds nuw i8, ptr %b, i64 %idx
 %0 = load double, ptr %gep, align 8
  …

●  Convert gather loads with invariant stride into strided loads #147297
● Detect strided access and introduce the StridedLoadRecipe in LoopVectorize.

● Contributed by @Mel-Chen for RISC-V, which has vector strided load/store.

vector.body:
    …
    WIDEN ir<%0> = load ir<%gep>, stride = ir<80>, runtimeVF = vp<%1>
    …

● Improve strided access vectorization for AArch64 SVE #164205
● Legalize the StridedLoadRecipe for architectures that don’t have vector strided load/store instructions, such as 

AArch64.

vector.ph:
    …
  EMIT vp<%1> = step-vector i64

EMIT vp<%2> = mul vp<%1>, ir<80>
vector.body:
    …
    EMIT vp<%3> = wide-ptradd ir<%gep>, vp<%3> 
    WIDEN ir<%0> = load vp<%3>
    …

Legalize StridedLoadRecipe

StridedLoadRecipe

index  z1.d, #0, #80
loop:
    ld1d  { z2.d }, p0/z, [x1, z1.d]
    .
    add x1, x1, x2

.

Better Vectorization
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https://github.com/llvm/llvm-project/pull/147297
https://github.com/Mel-Chen
https://github.com/llvm/llvm-project/pull/164205
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Other Issues

● Variable stride widths cannot be vectorized.
● The loop is multi-versioned, and only the version for the m=1 

case is vectorized, while the other case (m≠1) remains scalar.

for (int i = 0; i < n; i++) {
a[i] = b[i * m] + 1;

}

Variable Stride

● We have discovered other issues in vectorizing strided accesses.

● When IndVarSimplify widens the index of a strided access to 64-bit, the number of 

memory access instructions can double.
● Related Issue #86785.

https://github.com/llvm/llvm-project/issues/86785
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Thank you
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