
1 © 2025 Fujitsu Limited© 2025 Fujitsu Limited

Can Vectorization Slow Down
Performance?
Addressing the Challenges of
Vectorizing Stride Access

October 28, 2025

Kotaro Kinoshita (@kinoshita-fj)

2025 US LLVM Developers’ Meeting

2 © 2025 Fujitsu Limited

Introduction

● Vectorization is generally expected to improve performance. However, we found performance

degradation in some cases of vectorizing strided access.

● This talk focuses on one such case.

● For example, vectorizing the test case leads to performance degradation by inefficient code

generation.

● We opened the issue for this #129474.

Test Case

Execution Cycles of the Test Case on Neoverse V11 (n=256)

1. Neoverse V1 : AArch64 processor by Arm
2. SVE (Scalable Vector Extension) : Vector extension for the AArch64

void func(double *a, double *b, int n) {
for (int i = 0; i < n; i++) {

a[i] = b[i * 10] + 1;
}

}

0

100

200

300

400
The current vectorization is
slower than scalar version

Scalar Vectorization
(SVE2)

Lower is better

https://github.com/llvm/llvm-project/issues/129474

3 © 2025 Fujitsu Limited

Current Address Calculation is Inefficient

index z1.d, #0, #1
loop:
 add z2.d, z1.d, z0.d

mul z1.d, z1.d, #80
ld1d { z1.d }, p0/z, [x1, z1.d]

 .
 mov z1.d, z2.d

.

LLVM (21.1.0) Vectorization (SVE)

void func(double *a, double *b, int n) {
for (int i = 0; i < n; i++) {

a[i] = b[i * 10] + 1;
}

}

x1

● Address calculation uses vector instructions inside the loop.

1st Iteration 2nd Iteration 3rd Iteration

240

+

b

160800

240160800

z1 560

+

b

480400320

560480400320
Addresses for

Gather

880

+

b

800720640

880800720640

4 © 2025 Fujitsu Limited

Efficient Instructions for Strided Access

● Generate offset vector outside the loop and update base with a scalar instruction.

index z1.d, #0, #80
loop:
 ld1d { z2.d }, p0/z, [x1, z1.d]
 .
 add x1, x1, x2

.++

Better Vectorization

x1

1st Iteration 2nd Iteration 3rd Iteration

240

+

b

160800

240160800

z1 240

+

b+320

160800

560480400320

240

+
160800

880800720640

b+640

Addresses for
Gather

● If the pattern is identified as a strided access, efficient instructions like these can be generated.

5 © 2025 Fujitsu Limited

Improvement Status

for.body:
 …
 %idx = mul nuw nsw i64 %iv, 80
 %gep = getelementptr inbounds nuw i8, ptr %b, i64 %idx
 %0 = load double, ptr %gep, align 8
 …

● Convert gather loads with invariant stride into strided loads #147297
● Detect strided access and introduce the StridedLoadRecipe in LoopVectorize.

● Contributed by @Mel-Chen for RISC-V, which has vector strided load/store.

vector.body:
 …
 WIDEN ir<%0> = load ir<%gep>, stride = ir<80>, runtimeVF = vp<%1>
 …

● Improve strided access vectorization for AArch64 SVE #164205
● Legalize the StridedLoadRecipe for architectures that don’t have vector strided load/store instructions, such as

AArch64.

vector.ph:
 …
 EMIT vp<%1> = step-vector i64

EMIT vp<%2> = mul vp<%1>, ir<80>
vector.body:
 …
 EMIT vp<%3> = wide-ptradd ir<%gep>, vp<%3>
 WIDEN ir<%0> = load vp<%3>
 …

Legalize StridedLoadRecipe

StridedLoadRecipe

index z1.d, #0, #80
loop:
 ld1d { z2.d }, p0/z, [x1, z1.d]
 .
 add x1, x1, x2

.

Better Vectorization

E
xe

cu
ti

o
n

 C
yc

le
s

o
f

th
e

 T
e

st
 C

as
e

0

100

200

300

400

Scalar

Better
Vectorization

Current
Vectorization

37% Performance
Improvement

LoopVectorize (VPlan)Input IR

https://github.com/llvm/llvm-project/pull/147297
https://github.com/Mel-Chen
https://github.com/llvm/llvm-project/pull/164205

6 © 2025 Fujitsu Limited

Other Issues

● Variable stride widths cannot be vectorized.
● The loop is multi-versioned, and only the version for the m=1

case is vectorized, while the other case (m≠1) remains scalar.

for (int i = 0; i < n; i++) {
a[i] = b[i * m] + 1;

}

Variable Stride

● We have discovered other issues in vectorizing strided accesses.

● When IndVarSimplify widens the index of a strided access to 64-bit, the number of

memory access instructions can double.
● Related Issue #86785.

https://github.com/llvm/llvm-project/issues/86785

7 © 2025 Fujitsu Limited

Acknowledgement

● This presentation is based on results obtained from a project, JPNP21029, subsidized by

the New Energy and Industrial Technology Development Organization (NEDO).

8 © 2025 Fujitsu Limited© 2025 Fujitsu Limited

Thank you

	スライド 1: Can Vectorization Slow Down Performance? Addressing the Challenges of Vectorizing Stride Access
	スライド 2: Introduction
	スライド 3: Current Address Calculation is Inefficient
	スライド 4: Efficient Instructions for Strided Access
	スライド 5: Improvement Status
	スライド 6: Other Issues
	スライド 7: Acknowledgement
	スライド 8: Thank you

