< NVIDIA.

AArch64 Support for llvm-exegesis

Lakshay Kumar, Rahul Shinde, Sjoerd Meijer

Is AArch64 (fully) supported?

2 NVIDIA.

Our First Commit to llvm-exegesis

commit 6720ce75f61a306a3ed26b2205f09a7099e978e7
Author: Sjoerd Meijer <smeijer@nvidia.com>

Date: Thu Nov 7 10:48:52 2024 +0000
[Docs][llvm-exegesis] Clarify AArch64 support (#114989)

Claiming AArch64 support for llvm-exegesis is a bit of a stretch in my
opinion as only a couple of opcodes with GPR64 operands will work for
snhippet benchmarking, so | propose to clarify that AArch64 support is
very experimental. Also added some clarifications about its libpfm4

dependency.

3 NVIDIA.

llvm-exegesis

A benchmarking tool, a test case generator, to measure instruction latency and throughput:

Generates a test case, compiles it, runs it, and evaluates different metrics

mode: inverse throughput
key:
Instructions:
- 'ADDVv16i8v B8 Q5'

config: ;
register_initial values:
- 'Q5=0x0"'
Cpu_hame: neoverse-v2

llvm_triple: aarch64-unknown-linux-gnu
min_instructions: 10000
measurements:

- { key: inverse throughput, value: 1.3749, per snippet value: 1.3749, validation counters: {} }

Why are we interested?

Software Optimisation Guide advertises best case numbers: compare measured vs. advertised numbers

Correlation of simulators: run exegesis or test cases within simulation environment, compare with SWOG / HW
Longer term: can it help with auto-generating scheduler models?

4 NVIDIA.

AArch64 Support "BEFORE"

6045: Total Opcodes

112 : Working out of the box

2825 : Working with warnings

3098 : Errors, not running

[1339] Uninitialized operands by the snippet generator
[921] isPseudo/usesCustomlinserter

[607] Segmentation fault

[307] No serial execution strategy

[15] lllegal instruction

[15] isBranch/isIndirectBranch

[13] isCall/isReturn

[18] Targets with target-specific operands should implement

5 NVIDIA.

AFTER

-mode=latency

6045: Total Opcodes

4297 : Working

370 : No strategy found to make the execution serial

405 : Segmentation Fault (adr O (#386) fffffffcO000 (#14))

919 : Unsupported opcode: Pseudo Instruction

15 : Unsupported opcode: isBranch/isIndirectBranch

13 : Unsupported opcode: isCall/isReturn

6 <ANVIDIA. I

Number of Opcode Variants

6000

4000

3000

2000

1000

| I
B I
#

128
Initial

2128

Patch 1

Progress we made

2710

Paltch 2

2727

Patch 3

A
-

3621

Patch 4

3633

Patch 5

4321

Patch 6

B llegal Instruction
- Unsupperted opcode: Pseudo Instruction
~ Unsupported opcode: Load Tag Multiple
~ Unsupported opcode: isCallfisReturn
' Unsupported opcode: isBranchfisindirectBranch
No Senal Execution Strategy
B Segmentation Fault
B Uninit Target specific Operands
B Uninit Operands by Snippet Generator
- Warning: SetReg
B Working Opocdes

7 <ANVIDIA I

Contributions, Next Steps and Conclusions

Some of our contributions include:
Disabling instructions that cannot be easily measured: avoids lots of crashes.

Quite some work on initialization code: remove warnings, make results reliable.
Features to print the snippets: useful for debugging snippets

Added support for loop mode:
Various other smaller fixes

Currently working on load / store instructions:

Proven to be quite difficult:
Understanding the flow, as quite some setup code is required,

And there are quite a few X86 assumptions here and there.

We have only looked at latency, not so much yet at throughput.

We Q@ llvm-exegesis
An easy to use tool to measure instruction characteristics is (surprisingly) powerful

Thank you contributors, and thank you reviewers!

8 NVIDIA.

	Slide 1: AArch64 Support for llvm-exegesis
	Slide 2: Is AArch64 (fully) supported?
	Slide 3: Our First Commit to llvm-exegesis
	Slide 4: llvm-exegesis
	Slide 5: AArch64 Support ”BEFORE”
	Slide 6: AFTER
	Slide 7: Progress we made
	Slide 8: Contributions, Next Steps and Conclusions

