Protecting Cryptographic Code at the

Compiler Level
675

LLVM 2025, 27th October, Julius Alexandre

TQ - Constant-Time Coding Support in LLVM:
Va A L
"DITOC

The Compiler Optimization Problem

Modern compilers excel at making code run faster:

- Eliminate redundant operations
- Vectorize loops for parallel execution
« Restructure algorithms for performance

The Compiler Optimization Problem

Modern compilers excel at making code run faster:

- Eliminate redundant operations
- Vectorize loops for parallel execution
« Restructure algorithms for performance

Break Cryptographic code...

Constant-Time Coding Support in LLVM LLVM 2025

TRAL

"BlITC

Timing Attacks: The Silent Threat

IS)

Carefully crafted constant-time code:

const bool cond = i == secret_idx;
const uint64_t mask = (-(int64_t)cond);

result |= table[i] & mask;

ng Supportin LLVM | LLVM 2025

Timing Attacks: The Silent

Threat

TRAL

B'7S

Carefully crafted constant-time code:

const bool cond = i == secret_idx;
const uint64_t mask = (-(int64_t)cond); — 5

result |= table[i] & mask;

ail of Bits Constant-Tim

Generated Assembly:

cmp rdi, rcx
je .LBBO_3
xor edx, edx
jmp .LBBO_4

e Coding Supportin LLVM | LLVM 2025

; Compare i == secret_idx
; BRANCH if equal (Timing leak!)
; else: mask = 0

TRAL

Timing Attacks: The Silent Threat Blts
Carefully crafted constant-time code: Generated Assembly:
const bool cond = i == secret_idx; cmp rdi, rcx ; Compare i == secret_idx
const uint64_t mask = (-(int64_t)cond); — 5 je .LBB0O_3 ; BRANCH if equal (Timing leak!)
result |= table[i] & mask; xor edx, edx ; else: mask = 0
jmp .LBBO_4

ail of Bits Constant-Time Coding Support in LLVM | LLVM 2025

TRAL

Timing Attacks: The Silent Threat Blrs
Carefully crafted constant-time code: Generated Assembly:
const bool cond = i == secret_idx; cmp rdi, rcx ; Compare i == secret_idx
const uint64_t mask = (-(int64_t)cond); —0 — — 5 |Je .LBBO_3 ; BRANCH if equal (Timing leak!)
result |= table[i] & mask; xor edx, edx ; else: mask = 0
jmp .LBBO_4
if (i == secret_idx) then jmp

Trail of Bits Constant-Time Coding Support in LLVM | LLVM 2025

. . . TRAL
Timing Attacks: The Silent Threat Blrs
Carefully crafted constant-time code: Generated Assembly:
cmp rdi, rcx ; Compare i == secret_idx

const bool cond = i == secret_idx;
const uint64_t mask = (-(int64_t)cond);
result |= table[i] & mask;

if (i ==

* CVE-2022-4304 (OpenSSL RSA - billions affected)

—

* CVE-2021-38153 (Apache Kafka authentication - Fortune 100 companies)

* CVE-2023-5388 (NSS RSA ~150M Firefox users)

* And more...

Trail of Bits

je .LBBO_3

Constant-Time

xor edx, edx
jmp .LBBO_4

secret_idx) then jmp

Coding Supportin LLVM | LLVM 2025

; BRANCH if equal (Timing leak!)
; else: mask = 0

Real-World Impact

ETH Ziirich Study: "Breaking Bad" (2024)

- 8 production cryptographic libraries analyzed

- Tested on different compilers version for LLVM and GCC

- 44,604 experiments found compiler-induced vulnerabilities
- BearSSL, HACL®, Fiat-Crypto, BoringSSL, OpenSSL derivatives

Real-World Impact

ETH Ziirich Study: "Breaking Bad" (2024)

- 8 production cryptographic libraries analyzed

- Tested on different compilers version for LLVM and GCC

- 44,604 experiments found compiler-induced vulnerabilities
- BearSSL, HACL®, Fiat-Crypto, BoringSSL, OpenSSL derivatives

Prior work:
- Simon and Chisnall __builtin_ct_choose (2018)
- Rust's optimization experiments

10

Real-World Impact

ETH Ziirich Study: "Breaking Bad" (2024)

- 8 production cryptographic libraries analyzed

- Tested on different compilers version for LLVM and GCC

- 44,604 experiments found compiler-induced vulnerabilities
- BearSSL, HACL®, Fiat-Crypto, BoringSSL, OpenSSL derivatives

Prior work:
- Simon and Chisnall __builtin_ct_choose (2018)
- Rust's optimization experiments

Cryptographers current solution:
Usinginline assembly

- Bitmask hack to bypass optimization
- Disable optimization

Our Solution: __ builtin_ct_select

A new compiler intrinsic family:

result = __builtin_ct_select(condition,
value_if_true,
value_if_false);

Constant-Time Coding Supportin LLVM | LLVM 2025

12

Our Solution: __ builtin_ct_select

A new compiler intrinsic family:

result = __builtin_ct_select(condition,
value_if_true,
value_if_false);

Key Properties:

v Guarantees constant-time execution

v Preserved through all optimization levels

v Acts as optimization barrier

v/ Semantic meaning: "this must remain constant-time"
v All happening in the Post-RA

Circumvent Branch-base Timing Attacks

Carefully crafted constant-time code:

const bool cond = i == secret_idx;
result |= __builtin_ct_select(cond, table[i], 0);

]
T
=
3
D
O

ng Supportin LLVM | LLVM 2025

Circumvent Branch-base Timing Attacks

4
Ak
rJg

TR/

Carefully crafted constant-time code:

const bool cond = i ==
result |=

secret_idx;

Trail of

__builtin_ct_select(cond, table[i], 0);

cmp
sete
test
mov
cmovne

—_—

or

Bits Constant-Time Coding Support in LLVM

rdx, [rsi + 8*rcx]

CONDITIONAL MOVE

x86 Assembly:
rdi, rcx ; 1 == secret_idx
dl ; Set dl =1
di, dl ; Test the condition
edx, 0 ; Prepare edx = 0
5
)

rax, rdx

result |= rdx

Circumvent Branch-base Timing Attacks s

Carefully crafted constant-time code: x86 Assembly:

const bool cond = i == secret_idx; cmp rdi, rcx ; 1 == secret_idx

result |= __builtin_ct_select(cond, table[i], 0); sete dl ; Set dl =1
test di, dl ; Test the condition
mov edx, 0 ; Prepare edx = 0
cmovne rdx, [rsi + 8%rcx] ; CONDITIONAL MOVE
or rax, rdx ; result |= rdx

ARM32 Assembly:

sub r4, ro, r2 ; Arithmetic comparison
rsbs r5, r4, #0
adc rlO, r4, r5

rsb r4, rlo, #0 ; Create explicit mask
and r5, r6, r4 ; Explicit masking
orr r3, r5, r3 ; Unconditional OR

Trail of Bits Constant-Time Coding Support in LLVM | LLVM 2025 16

How It Works: Architecture Support i

NATIVE SUPPORT (x86, Aarch64 & Arm32)

Source mmmag Clang Frontend IRBuilder

_——— _—

(| Expansion occurs

| 1lvm.ct.select | AFTER
[| optimizations

CMOV/CSEL Bitwise Ops
x86/Aarché64 ARM
(A32/T32)

Trail of Bits Constant-Time Coding Supportin LLVM | LLVM 2025 7

How It Works: Architecture Support i

[RBuilder

NATIVE SUPPORT (x86, Aarch64 & Arm32)
|-~ D - - I
Expansion occurs

)
| 1lvm.ct.select | AFTER
| optimizations

_——— _—

CMOV/CSEL Bitwise Ops
Key points:
e Single native instruction (CMOV for x86-64, CSEL for AArché64) x86/Aarch64 ARM
e Generated bitwise operations for Arm32 (A32/T32)

e Constant-time enforced at Post-RA Expansion (AFTER all optimizations)

Trail of Bits | Constant-Time Coding Supportin LLVM | LLVM 2025 18

TRAL

How It Works: Architecture Support i

NATIVE SUPPORT (i386)

Expansion occurs
Source Peee IRBuilder Post-RA o AFTER
optimizations

___________ {

| Tlvm.ct.select | Custom Inserter Bitwise Ops
| |
AN /

Key points:
e Generates bitwise operations pattern (no CMOV available)
e UNIQUE two-phase approach (only architecture using both Custom
Inserter + Post-RA)

Trail of Bits | Constant-Time Coding Supportin LLVM | LLVM 2025 9

TRAL

How It Works: Architecture Support i

FALLBACK SUPPORT (RISC-V, Wasm, Mips,...)

wwe | -TR R 000 _,

REGULAR
PIPELINE

| Tlvm.ct.select | DAG Chaining

Key points:
e Generates bitwise operations for said Architecture
e Constant-time enforced at SelectionDAG level

Trail of Bits | Constant-Time Coding Supportin LLVM | LLVM 2025 20

From RFC to Implementation

Community Engagement:

« RFC published on LLVM Discourse (August 2025)
- Strong support from cryptography maintainers
- Valuable feedback from LLVM developers

Real-World benchmarking:

- Tested BoringSSL, OpenSSL, etc

- Worked across multiple Architectures
- Better results compared

Constant-Time Coding Support in

2

Beyond C/C++: Language Support

LLVM-based languages can leverage this work:
Rust:

- Exploring intrinsics integration
- Safe wrappers in standard library

Swift:
- Apple can look into integrating our implementation

WebAssembly:
- Critical for browser-based cryptography

Challenges:
- GCC and Cranelift backend compatibility

Constant-Time Coding Support in M

/i

TRA)L

What's Next? Bl

Future Intrinsics:

«__builtin_ct<op> forarithmetic operations
- __builtin_ct_expr forentire expressions

- Memory operations and string comparisons

Goal: Make secure crypto practical in high-level languages

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025 2

Key Takeaways

1. Compiler optimizations break constant-time guarantees
2. builtin_ct_select provides compiler-level protection

3. Cross-architecture support

4. Community-driven approach with strong adoption

5. A crucial step toward practical secure cryptography

24

