
Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

Constant-Time Coding Support in LLVM:
Protecting Cryptographic Code at the
Compiler Level

LLVM 2025, 27th October, Julius Alexandre

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

The Compiler Optimization Problem
Modern compilers excel at making code run faster:

• Eliminate redundant operations
• Vectorize loops for parallel execution
• Restructure algorithms for performance

2

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

The Compiler Optimization Problem
Modern compilers excel at making code run faster:

• Eliminate redundant operations
• Vectorize loops for parallel execution
• Restructure algorithms for performance

3

Break Cryptographic code…

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

Timing Attacks: The Silent Threat

Carefully crafted constant-time code:
const bool cond = i == secret_idx;
const uint64_t mask = (-(int64_t)cond);
result |= table[i] & mask;

4

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

Timing Attacks: The Silent Threat

Carefully crafted constant-time code:
const bool cond = i == secret_idx;
const uint64_t mask = (-(int64_t)cond);
result |= table[i] & mask;

5

Generated Assembly:
cmp rdi, rcx ; Compare i == secret_idx
je .LBB0_3 ; BRANCH if equal (Timing leak!)
xor edx, edx ; else: mask = 0
jmp .LBB0_4

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

Timing Attacks: The Silent Threat

Carefully crafted constant-time code:
const bool cond = i == secret_idx;
const uint64_t mask = (-(int64_t)cond);
result |= table[i] & mask;

6

Generated Assembly:
cmp rdi, rcx ; Compare i == secret_idx
je .LBB0_3 ; BRANCH if equal (Timing leak!)
xor edx, edx ; else: mask = 0
jmp .LBB0_4

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

Timing Attacks: The Silent Threat

Carefully crafted constant-time code:
const bool cond = i == secret_idx;
const uint64_t mask = (-(int64_t)cond);
result |= table[i] & mask;

7

Generated Assembly:
cmp rdi, rcx ; Compare i == secret_idx
je .LBB0_3 ; BRANCH if equal (Timing leak!)
xor edx, edx ; else: mask = 0
jmp .LBB0_4

if (i == secret_idx) then jmp

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

Timing Attacks: The Silent Threat

Carefully crafted constant-time code:
const bool cond = i == secret_idx;
const uint64_t mask = (-(int64_t)cond);
result |= table[i] & mask;

8

Generated Assembly:
cmp rdi, rcx ; Compare i == secret_idx
je .LBB0_3 ; BRANCH if equal (Timing leak!)
xor edx, edx ; else: mask = 0
jmp .LBB0_4

if (i == secret_idx) then jmp

• CVE-2022-4304 (OpenSSL RSA - billions affected)

• CVE-2021-38153 (Apache Kafka authentication - Fortune 100 companies)

• CVE-2023-5388 (NSS RSA ~150M Firefox users)

• And more…

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

Real-World Impact

9

ETH Zürich Study: "Breaking Bad" (2024)
• 8 production cryptographic libraries analyzed
• Tested on different compilers version for LLVM and GCC
• 44,604 experiments found compiler-induced vulnerabilities
• BearSSL, HACL*, Fiat-Crypto, BoringSSL, OpenSSL derivatives

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

Real-World Impact

10

ETH Zürich Study: "Breaking Bad" (2024)
• 8 production cryptographic libraries analyzed
• Tested on different compilers version for LLVM and GCC
• 44,604 experiments found compiler-induced vulnerabilities
• BearSSL, HACL*, Fiat-Crypto, BoringSSL, OpenSSL derivatives

Prior work:
• Simon and Chisnall __builtin_ct_choose (2018)
• Rust's optimization experiments

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

Real-World Impact

11

ETH Zürich Study: "Breaking Bad" (2024)
• 8 production cryptographic libraries analyzed
• Tested on different compilers version for LLVM and GCC
• 44,604 experiments found compiler-induced vulnerabilities
• BearSSL, HACL*, Fiat-Crypto, BoringSSL, OpenSSL derivatives

Prior work:
• Simon and Chisnall __builtin_ct_choose (2018)
• Rust's optimization experiments

Cryptographers current solution:
• Using inline assembly
• Bitmask hack to bypass optimization
• Disable optimization

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

Our Solution: __builtin_ct_select

12

A new compiler intrinsic family:

result = __builtin_ct_select(condition,
 value_if_true,
 value_if_false);

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

Our Solution: __builtin_ct_select

13

A new compiler intrinsic family:

result = __builtin_ct_select(condition,
 value_if_true,
 value_if_false);

Key Properties:
✓ Guarantees constant-time execution
✓ Preserved through all optimization levels
✓ Acts as optimization barrier
✓ Semantic meaning: "this must remain constant-time"
✓ All happening in the Post-RA

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

Circumvent Branch-base Timing Attacks
Carefully crafted constant-time code:
const bool cond = i == secret_idx;
result |= __builtin_ct_select(cond, table[i], 0);

14

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

Circumvent Branch-base Timing Attacks
Carefully crafted constant-time code:
const bool cond = i == secret_idx;
result |= __builtin_ct_select(cond, table[i], 0);

15

x86 Assembly:
cmp rdi, rcx ; i == secret_idx
sete dl ; Set dl = 1
test dl, dl ; Test the condition
mov edx, 0 ; Prepare edx = 0
cmovne rdx, [rsi + 8*rcx] ; CONDITIONAL MOVE
or rax, rdx ; result |= rdx

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

Circumvent Branch-base Timing Attacks
Carefully crafted constant-time code:
const bool cond = i == secret_idx;
result |= __builtin_ct_select(cond, table[i], 0);

16

x86 Assembly:
cmp rdi, rcx ; i == secret_idx
sete dl ; Set dl = 1
test dl, dl ; Test the condition
mov edx, 0 ; Prepare edx = 0
cmovne rdx, [rsi + 8*rcx] ; CONDITIONAL MOVE
or rax, rdx ; result |= rdx

ARM32 Assembly:
sub r4, r0, r2 ; Arithmetic comparison
rsbs r5, r4, #0
adc r10, r4, r5
rsb r4, r10, #0 ; Create explicit mask
and r5, r6, r4 ; Explicit masking
orr r3, r5, r3 ; Unconditional OR

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

How It Works: Architecture Support

17

IRBuilderSource SDAGClang Frontend

NATIVE SUPPORT (x86, Aarch64 & Arm32)

Post-RA

llvm.ct.select

CMOV/CSEL

Expansion occurs
AFTER

optimizations

Bitwise Ops

x86/Aarch64 ARM
(A32/T32)

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

How It Works: Architecture Support

18

IRBuilderSource SDAGClang Frontend

NATIVE SUPPORT (x86, Aarch64 & Arm32)

Post-RA

llvm.ct.select

CMOV/CSEL

Expansion occurs
AFTER

optimizations

Key points:
● Single native instruction (CMOV for x86-64, CSEL for AArch64)
● Generated bitwise operations for Arm32
● Constant-time enforced at Post-RA Expansion (AFTER all optimizations)

Bitwise Ops

x86/Aarch64 ARM
(A32/T32)

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

How It Works: Architecture Support

19

IRBuilderSource SDAG

NATIVE SUPPORT (i386)

Post-RA

llvm.ct.select Bitwise Ops

Expansion occurs
AFTER

optimizations

Key points:
● Generates bitwise operations pattern (no CMOV available)
● UNIQUE two-phase approach (only architecture using both Custom

Inserter + Post-RA)

Custom Inserter

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

How It Works: Architecture Support

20

IRBuilderSource SDAG

FALLBACK SUPPORT (RISC-V, Wasm, Mips, ...)

llvm.ct.select

Bitwise Ops

Key points:
● Generates bitwise operations for said Architecture
● Constant-time enforced at SelectionDAG level

DAG Chaining

REGULAR
PIPELINE

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

From RFC to Implementation

21

Community Engagement:
• RFC published on LLVM Discourse (August 2025)
• Strong support from cryptography maintainers
• Valuable feedback from LLVM developers

Real-World benchmarking :
• Tested BoringSSL, OpenSSL, etc
• Worked across multiple Architectures
• Better results compared

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

Beyond C/C++: Language Support

22

LLVM-based languages can leverage this work:
Rust:
• Exploring intrinsics integration
• Safe wrappers in standard library

Swift:
• Apple can look into integrating our implementation

WebAssembly:
• Critical for browser-based cryptography

Challenges:
• GCC and Cranelift backend compatibility

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

What's Next?

23

Future Intrinsics:
• __builtin_ct<op> for arithmetic operations
• __builtin_ct_expr for entire expressions
• Memory operations and string comparisons

Goal: Make secure crypto practical in high-level languages

Trail of Bits | Constant-Time Coding Support in LLVM | LLVM 2025

Key Takeaways

24

1. Compiler optimizations break constant-time guarantees

2. __builtin_ct_select provides compiler-level protection

3. Cross-architecture support

4. Community-driven approach with strong adoption

5. A crucial step toward practical secure cryptography

