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WHY IS A BLOCKED MATMUL IMPLEMENTATION NOT GETTING THE BEST
PERFORMANCE?
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e Fastalgorithm, but it generates cache misses:
* Reads from A are good

e Reads from B and C are not
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WE CAN IMPROVE MEMORY ACCESS PATTERNS BY CHANGING THE MEMORY LAYOUT

Changing the memory layout improves cache
hit rate

Optimal layout aligns perfectly with the reads

This is called data tiling or packed layouts
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PACK AND UNPACK

PACKING INCREASES THE DIMENSIONALITY OF THE TENSOR

Exemplary 2D matrix Insights

e Starting form the original logical layout, the

E new dimensions are marked in different colors
‘ | * We go from 4x4 to 2x2x2x2
e This is so far just a view
O
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PACKING MEANS ACTIVELY FLATTEN THE LAYOUT IN MEMORY

* Packing takes the view and flattens it

* The reduction tree visualizes the
dimensions

e These data movements come at a cost!
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EXAMPLE 1

A PACK OP IS ALLOWED TO PAD TO A SPECIFIC TILE SIZE

Exemplary code Insights
N N
1 func.func @simple_pad_and_pack_static_tiles( 0
2 %input: tensor<3xixf32>, €
3 %Soutput: tensor<ix1x5x2xf32>, | )\ J| J
4 %pad: f32)
5 -> tensor<ix1x5x2xf32> {
6 %0 = linalg.pack %input
7 padding_value(%pad : f32) _ _ _ _ _ _
8 inner_dims_pos = [0, 1] 111 112 1 - . -
9 inner_tiles = [5, 2] < ' ' '
10 into %output : tensor<5x1xf32> -> tensor<ix1x5x2xf32> l I I\ I\ I\
11 return %0 : tensor<lxix5x2xf32>
12 }
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EXAMPLE 2

WE ALSO NEED TO BE ABLE TO REVERT THE PADDING

Exemplary code

1 func.func @unpack_as_pad(
2 %arg0: tensor<ix1x2x3xf32>, %argl: tensor<ix2xf32>
3 -> tensor<ix2xf32> {

4 %pack = linalg.unpack %arg0@
5 inner_dims_pos = [0, 1]
6 inner_tiles = [2, 3]
7 into %argl :
8 return %pack :
9

}
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tensor<ix1x2x3xf32> -> tensor<ix2xf32> D —
tensor<1x2xf32>

Insights




DYNAMIC SHAPES ARE FULLY SUPPORTED BY THE UNPACK OP

. . )
L func. func @unpack_fully_dynamic( Dynamic dimensions are fully supported

2 ssource: tensor<?x?x?x?xf32>, %dest: tensor<?x?xf32>, by this op

3 Stile_n : index, Stile_m : index)

4 -> tensor<?x?xf32> { . .

5 %0 = linalg.unpack %source  The inner_tiles can take SSA values

6 inner_dims_pos = [0, 1]

7 inner_tiles = [%tile_n, %tile_m] .

8 into %dest : tensor<?x?x?x?xf32> -> tensor<?x7xf32> * Acustom parser treats it as part of an
13} return %0 : tensor<?x?xf32> attribute
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UNPACK WILL DECOMPQOSE AND INSERT OPERATIONS TO GET THE SHAPES OF THE
TENSORS

1 func.func @unpack_fully_dynamic(

%arg0: tensor<?x?x?x?xf32>, %argl: tensor<?x?xf32>,
%arg2: index, %arg3: index)
-> tensor<?x?xf32> {

%0 = tensor.empty(%sdim, %dim_1, S%dim_0, %Sdim_2) : tensor<?x?x?x?xf32>
%transposed = linalg.transpose ... permutation = [0, 2, 1, 3]
%collapsed = tensor.collapse_shape %transposed [[0, 1], [2, 3]]
%dim_3 = tensor.dim %argl, %c@ : tensor<?x?xf32>
%dim_4 = tensor.dim S%argl, %cl : tensor<?x?xf32>
%extracted_slice = tensor.extract_slice
%collapsed[0, 0] [%dim_3, %dim_4] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
%1 = linalg.copy
return %1 : tensor<?x?xf32>

= roocfline

Decomposing dynamic shapes leads to
many dim operations

Even a padded layout is supported by
dynamic shapes

The output is parsed for its dimensions



PACK ALSO SUPPORTS DYNAMIC SHAPES — BUT THE LOWERING CANNOT HANDLE IT YET

00

1 func.func @pack_fully_dynamic( e Thisis avalid paCk OperatiOH

P %ssource: tensor<?x?xf32>, %dest: tensor<?x?x?x?xf32>, . )

3 stile_n : index, %tile_m : index, %cst_0 : f32)  Decomposition should be like unpack
4 -> tensor<?x?x?x?xf32> {

T * However, it doesn’t lower (yet)

6 padding_value(%cst_0 : 32)

7 inner_dims_pos = [0, 1] . . .
" {nner tiles = [&tile n, stilen]  Alowering can be enabled by inser_slice
9 into %dest : tensor<?x?xf32> -> tensor<?x?x?x?xf32> supporting dynamic Shapes

10 return %0 : tensor<?x?x?x?xf32>

11 }
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UNIT DIMENSIONS ARE THE MOST COMMON PITFALLS AND PRODUCERS OF BUGS

* Most of the tricky behavior arises with
unit dimensions

eo0eo * This behavior is common after tiling

1 func.f it_di : S :
unc.func @unit_dims{ » Special handling is required to produce

2 %sargd: tensor<lx1x1x4x1xf32>, %argl: tensor<lx1x4xf32>)

3 -> tensor<lxixixdx1xf32> { ”bet‘ter” |R in these cases

4 spack = linalg.pack %argl

: outer_dims_perm = [1, 2, €] * This op eliminates data movements
inner_dims_pos = [2, 0]

7 inner_tiles = [4, 1] . . . . . .

8  into %argd : tensor<ixix4xf32> -> tensor<ixixix4x1xf32> * Untiled non-unit dim dimension in

9 , return %pack : tensor<ixixix4xixf32> between unit dims are pOSSib'E
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FULL MODEL BENCHMARKS

WHEN RUNNING FULL MODELS WE SEE LATENCY DECREASES FROM 69% TO 92%

I Naive Blocked Matmul
" Packed/Data-tiled
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PACK AND UNPACK MAKE MEMORY ACCESSES VERY EFFICIENT, BUT THEY COME AT A
COST

* Packing can degrade performance for single * Explore data tiling for other kernels like
kernels convolutions

e Only full model compilation can fuse packing * Explore matrices as representations remove
operators into producers to hide the movement complex attributes (Triton)
cost

Eroofline
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