
ENABLE EDGE AI PRODUCTS 
YOU DREAM OF

28 OCTOBER 2025

MAXIMILIAN BARTEL

Understanding linalg.pack and linalg.unpack



2

WHY IS A BLOCKED MATMUL IMPLEMENTATION NOT GETTING THE BEST 
PERFORMANCE?

GETTING A FAST MATMUL

• Fast algorithm, but it generates cache misses:

• Reads from A are good

• Reads from B and C are not

Logical layout

In-memory layout



3

WE CAN IMPROVE MEMORY ACCESS PATTERNS BY CHANGING THE MEMORY LAYOUT

DATA TILED MATMUL

• Changing the memory layout improves cache 
hit rate

• Optimal layout aligns perfectly with the reads

• This is called data tiling or packed layouts

Logical layout

In-memory layout



4

PACKING INCREASES THE DIMENSIONALITY OF THE TENSOR

PACK AND UNPACK

• Starting form the original logical layout, the 
new dimensions are marked in different colors

• We go from 4x4 to 2x2x2x2

• This is so far just a view

Exemplary 2D matrix Insights



5

PACKING MEANS ACTIVELY FLATTEN THE LAYOUT IN MEMORY

FLATTEN THE VIEW

• Packing takes the view and flattens it

• The reduction tree visualizes the 
dimensions

• These data movements come at a cost!

Flattened Tensor Insights



6

A PACK OP IS ALLOWED TO PAD TO A SPECIFIC TILE SIZE

EXAMPLE 1

Exemplary code Insights



7

WE ALSO NEED TO BE ABLE TO REVERT THE PADDING

EXAMPLE 2

Exemplary code Insights



8

DYNAMIC SHAPES ARE FULLY SUPPORTED BY THE UNPACK OP 

EXAMPLE 3

• Dynamic dimensions are fully supported 
by this op

• The inner_tiles can take SSA values

• A custom parser treats it as part of an 
attribute

Exemplary code Insights



9

UNPACK WILL DECOMPOSE AND INSERT OPERATIONS TO GET THE SHAPES OF THE 
TENSORS

EXAMPLE 3 

• Decomposing dynamic shapes leads to 
many dim operations

• Even a padded layout is supported by 
dynamic shapes

• The output is parsed for its dimensions

Exemplary code Insights



10

PACK ALSO SUPPORTS DYNAMIC SHAPES – BUT THE LOWERING CANNOT HANDLE IT YET

EXAMPLE 4

• This is a valid pack operation

• Decomposition should be like unpack

• However, it doesn’t lower (yet)

• A lowering can be enabled by inser_slice 
supporting dynamic shapes

Exemplary code Insights



11

UNIT DIMENSIONS ARE THE MOST COMMON PITFALLS AND PRODUCERS OF BUGS

EXAMPLE 5

• Most of the tricky behavior arises with 
unit dimensions

• This behavior is common after tiling

• Special handling is required to produce 
“better“ IR in these cases

• This op eliminates data movements

• Untiled non-unit dim dimension in 
between unit dims are possible

Exemplary code Insights



12

WHEN RUNNING FULL MODELS WE SEE LATENCY DECREASES FROM 69% TO 92%

FULL MODEL BENCHMARKS

100

1.000

10

1

O
n

e
sh

o
t

la
te

n
cy

in
 m

s

3

36

217

SmolLM2-135M SmolVLM-256M-

Instruct

DeepSeek-R1-Distill-

Qwen-1.5B

Qwen2.5-

Coder-0.5B

50

Llama-3.2-3B-

Instruct

11

626

21

5

27

9

-69%

-77%
-66%

-92%

-83%

Naïve Blocked Matmul

Packed/Data-tiled



13

PACK AND UNPACK MAKE MEMORY ACCESSES VERY EFFICIENT, BUT THEY COME AT A 
COST

HOW TO USE

• Packing can degrade performance for single 
kernels

• Only full model compilation can fuse packing 
operators into producers to hide the movement 
cost

• Explore data tiling for other kernels like 
convolutions

• Explore matrices as representations remove 
complex attributes (Triton)

How to use pack effectively What are unexplored paths?


	Default Section
	Slide 1: ENABLE EDGE AI PRODUCTS YOU DREAM OF
	Slide 2: Why is a blocked matmul implementation not getting the best performance?
	Slide 3: We can improve memory access patterns by changing the memory layout
	Slide 4: Packing increases the dimensionality of the tensor
	Slide 5: Packing means actively flatten the layout in memory
	Slide 6: A pack op is allowed to pad to a specific tile size
	Slide 7: We also need to be able to revert the padding
	Slide 8: Dynamic shapes are fully supported by the unpack op 
	Slide 9: Unpack will decompose and insert operations to get the shapes of the tensors
	Slide 10: Pack also supports dynamic shapes – but the lowering cannot handle it yet
	Slide 11: Unit dimensions are the most common pitfalls and producers of bugs
	Slide 12: When running full models we see latency decreases from 69% to 92%
	Slide 13: Pack and unpack make memory accesses very efficient, but they come at a cost


