
cmtice@google.com, aidengrossman@google.com Oct 2025Core Developer Software
Foundations

New & Improved LLVM
Premerge Testing:
Status Update

mailto:cmtice@google.com
mailto:aidengrossman@google.com

Brief Intro & History

What is this Premerge Testing?

What is this Premerge Testing?

"Premerge
Tests" for
this talk.

What is this Premerge Testing?

Not
covered in
this talk.

What is this Premerge Testing?

Brief History: Old System

OLD Premerge System (2019 - May 2025)

● Ran on BuildKite.
● Slow, flaky, unreliable.
● Not well maintained.

Brief History: New System

NEW Premerge System (May 2025+)

● Autoscaling
● Oncall rotation support
● Metrics & performance tracking
● Added the libc++ testing, early July

Overall goals: Speed, Reliability & Ease of Use.

● < 30 mins, for 80+% of tests
● No false positive error reports.
● Make failures easy to find & understand.

New Features

Finding & Understanding Test Failures (failure summary)

Finding & Understanding Test Failures (failure summary)

Finding & Understanding Test Failures (failure summary)

Finding & Understanding Test Failures (failure summary)

Finding & Understanding Test Failures, Cont. (failure summary)

Finding & Understanding Test Failures, Cont. (failure summary)

Finding & Understanding Test Failures, Cont. (failure summary)

Finding & Understanding Test Failures, Cont. (failure summary)

Don't have to wait for tests to finish!

Don't have to wait for tests to finish!

Option 1:
Merge
before
they're
done.

Don't have to wait for tests to finish!

Option 1:
Merge
before
they're
done.

Option 2:
Auto-merge
when they
finish.

Performance
Improvements

Metrics & Performance Monitoring: Linux & Windows Current Performance

https://llvm.grafana.net/public-dashboards/21c6e0a7cdd14651a90e118df46be4cc

https://llvm.grafana.net/public-dashboards/21c6e0a7cdd14651a90e118df46be4cc

Metrics & Performance Monitoring: Libc++ Current Performance

https://llvm.grafana.net/public-dashboards/0bd453e8b3034733a1b0
ff8c7728086d

https://llvm.grafana.net/public-dashboards/0bd453e8b3034733a1b0ff8c7728086d
https://llvm.grafana.net/public-dashboards/0bd453e8b3034733a1b0ff8c7728086d

Metrics & Performance Monitoring: Linux & Windows Performance Over Time

https://llvm.grafana.net/public-dashboards/106344f8f6f649c2972a57f201db3a65

https://llvm.grafana.net/public-dashboards/106344f8f6f649c2972a57f201db3a65

Performance Improvement: Caching objects.

● Updated testing to cache built objects.
● Re-uses cached objects whenever possible.
● Uses sccache in GCS (Google Cloud Storage)
● => 30-35% reduction in overall testing times!

Performance Improvement (Linux): Migrating tests to lit internal shell

● What: Lit internal shell:
○ Limited functionality shell (compared to bash)
○ Avoids spawning test shell in another process

● Why?
○ => 10-15% performance improvement on Linux
○ (Windows already using it!)

● When?
○ Most tests already using it, including clang and LLVM.
○ In progress: compiler-rt tests.

Performance Improvement (Windows): Switch to using Clang.

● Coming soon: Work-in-progress.
● Expect 40-50% reduction in compilation time…

○ (Preliminary results!)

Flakiness Reduction

Flakiness Reduction: Postsubmit Testing

● Need to know what's failing at head
○ => Don't want to report those as PR failures.

● Created a "postsubmit" test buildbot.
○ Runs same tests as premerge testing,.
○ Same configuration as premerge, but builds/tests all projects every run.
○ Results get uploaded for comparison.
○ Runs continuously.

Flakiness Reduction: Premerge Advisor

● Checks failing premerge tests.
● Eliminates tests known to fail at head

○ (from postsubmit buildbot data)
● Eliminates known flaky tests.
● If any failures are left, reports tests as failing.
● Otherwise reports tests as passing.

 GOAL: Eliminate false positive failure reports!

Flakiness Reduction: Future Plans

.● Expose flaky test information from the premerge advisor.
○ Gives accurate flake data for the common platforms.
○ Makes it easy to report issues upstream to test authors.

 Ideally: eliminate all test flakiness on the most common platforms.

Thank you!

