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Brief Intro & History
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Brief History: Old System

OLD Premerge System (2019 - May 2025)

● Ran on BuildKite.
● Slow, flaky, unreliable.
● Not well maintained.



Brief History: New System

NEW Premerge System (May 2025+)

● Autoscaling 
● Oncall rotation support
● Metrics & performance tracking
● Added the libc++ testing, early July

Overall goals: Speed, Reliability & Ease of Use.

● < 30 mins, for 80+% of tests
● No false positive error reports.
● Make failures easy to find & understand.



New Features



Finding & Understanding Test Failures (failure summary)
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Finding & Understanding Test Failures, Cont. (failure summary)
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Finding & Understanding Test Failures, Cont. (failure summary)



Finding & Understanding Test Failures, Cont. (failure summary)
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Don't have to wait for tests to finish!

Option 1: 
Merge 
before 
they're 
done.

Option 2: 
Auto-merge 
when they 
finish.



Performance 
Improvements



Metrics & Performance Monitoring: Linux & Windows Current Performance
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Metrics & Performance Monitoring: Libc++ Current Performance
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Metrics & Performance Monitoring: Linux & Windows Performance Over Time

https://llvm.grafana.net/public-dashboards/106344f8f6f649c2972a57f201db3a65
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Performance Improvement: Caching objects.

● Updated testing to cache built objects.
● Re-uses cached objects whenever possible.
● Uses sccache in GCS (Google Cloud Storage)
● => 30-35% reduction in overall testing times!



Performance Improvement (Linux): Migrating tests to lit internal shell

● What: Lit internal shell:
○ Limited functionality shell (compared to bash)
○ Avoids spawning test shell in another process

● Why?
○ => 10-15% performance improvement on Linux
○ (Windows already using it!)

● When?
○ Most tests already using it, including clang and LLVM.
○ In progress: compiler-rt tests. 



Performance Improvement (Windows): Switch to using Clang.

● Coming soon: Work-in-progress.
● Expect 40-50% reduction in compilation time…

○ (Preliminary results!)



Flakiness Reduction



Flakiness Reduction: Postsubmit Testing

● Need to know what's failing at head
○ => Don't want to report those as PR failures.

● Created a "postsubmit" test buildbot.
○ Runs same tests as premerge testing,.
○ Same configuration as premerge, but builds/tests all projects every run.
○ Results get uploaded for comparison.
○ Runs continuously.



Flakiness Reduction: Premerge Advisor

● Checks failing premerge tests.
● Eliminates tests known to fail at head

○ (from postsubmit buildbot data)
● Eliminates known flaky tests.
● If any failures are left, reports tests as failing.
● Otherwise reports tests as passing.

 GOAL:  Eliminate false positive failure reports! 



Flakiness Reduction: Future Plans

.● Expose flaky test information from the premerge advisor.
○ Gives accurate flake data for the common platforms.
○ Makes it easy to report issues upstream to test authors.

 Ideally: eliminate all test flakiness on the most common platforms.



Thank you!


