Towards Automatic Reduction
of Module Bugs

Improving C-Vise

Maksim lvanov, Google



The Problem: Test-Case Reduction

* Goal: Reduce a large, failing program to a minimal, self-contained reproducer.

- Why: Critical for debugging compiler issues (speeds up debugging), reporting downstream issues, creating

focused regression tests.

MyProgram

- Challenge: Existing tools (C-Reduce, C-Vise) are often slow. Reductions can take hours, days, or even weeks on

large, real-world test cases.

- Core Limitation: They are fundamentally designed for single-file inputs. Multiple files are only reduced separately

and the same number of files remains.



The Specific Challenge: C++ Header Modules

Test-case reduction for C++ modules is significantly harder. A reproducer is not one file; it's a complex bundle:

- Multiple Files: Can involve thousands of source files, headers, and .cppmap files.

 Multiple Commands: Requires multiple, ordered compilation commands (to build PCMs) that must succeed

before the final, failing command is run.

- Complex Dependencies: A bug may only manifest when a specific PCM is built and imported in a specific way.



Our Approach: Evolving C-Vise

We chose to improve C-Vise (a Python-based C-Reduce successor) to tackle this.
 Goal 1: Speed

Radically improve core reduction performance, even on single-file inputs.

* Goal 2: Versatility

Extend the tool to natively support multi-file, multi-command reductions for C++ modules.

- Key Insight: Achieving Goal 1 with a new architecture directly unblocked our path to achieving Goal 2.



Core Improvement: Hint-Based Architecture

Old C-Vise: In-Place Modification New C-Vise: Hint Emission
Heuristics (e.g., "remove function body") directly Heuristics emit "hints" (JSONs describing
modified files. This was rigid, sequential, and hard patches). A generic, parallel scheduler collects
to parallelize effectively. hints and decides how to test them.
[Heuristic] ---> [Modifies File In-Place]
[Heuristic] ---> [JSON "Hint"] --->
[Scheduler]

This decouples "what to try" from "how to try it"

(+binary search, etc.).



Performance Win 1: Interleaved Execution

Old: Sequential Passes
Runs one full heuristic to completion before
starting the next. It can get "stuck” on a low-yield

pass for hours.

Run 'lines' pass (2 hours)
S - b S
Run 'remove-function' pass (1 hour)

New: Interleaved Hints
Mixes hints from all heuristics in a round-robin
fashion. The scheduler constantly makes progress

using the best reduction available from any pass.

Try '"line' hint

Try 'function' hint

Try 'comment' hint

Try 'line' hint (SUCCESS)



Performance Win 2: Folding Reductions

Old: Wasted Parallelism New: Folded Reductions
If 5 parallel jobs find 5 different successful We "fold" all successful, non-conflicting hints from
reductions, the tool picks one, discards the other a batch of parallel jobs into a single combined
4, and restarts all workers. patch and test that.
Job 1: Success (Remove line 18) Job 1: Success (Remove line 18)
Job 2: Success (Remove line 28) Job 2: Success (Remove line 28)
Job 3: Fail Job 3: Fail
Job 4: Success (Remove line 38) Job 4: Success (Remove line 38)
=> Keep Job 1, Discard 2 & 4. => Fold [1, 2, 4] -> Test 1 patch.

This achieves a massive reduction in one step.



Miscellaneous improvements

e Robustness:
o hung child process termination;

o temporary files leaks;

e Performance:
o improved ad-hoc parsers;

o new heuristics based on Tree-sitter parsers.



Performance Results (Single-File)

These architectural changes resulted in a ~10x-80x speedup on our benchmark suite.

Test Case

clang-363816643

clang-383027690

clang-321217557

clang-329180703

clang-410818184

gcc-94937

gcc-92516

C-Reduce 2.11.0

15 hours

18 min

oo (hung)

31 hours

24 hours

4.1 hours

C-Vise 2.11.0 (Old)
16 hours

2.5 hours

30 days (est.)

44 hours

85 hours

oo (hung)

3.2 hours

C-Vise (New)
12 min

2 min

8.5 hours

45 min

1.5 hours

40 min

15 min

Speedup

75X

9x

85x

60x

20x

35x

13x



Applying to C++ Header Modules



Streamlined multi-file handling

Before

e Files were processed
sequentially by each pass.

e Binary search was limited to
instances in a single file.

e Number of files remained
constant.

~

/After

e Passes now operate
simultaneously on all files.

e Binary search operates across
file boundaries.

e Detecting file cross-references,

deleting unused files/dirs.

/




Compilation command reductions

Our approach - use Makefiles:
> stores compilation commands and dependencies between them;

> can also be executed by the interestingness test.

New heuristics: cmnd parameter removal, target removal.

Makefile

clang “ﬁ:fmodule—file#a.pcmﬂ—o b.pcm

clang ..'-fmodule-file=a.pcmi-fmodule-file=b.pcm




Module map reductions

New heuristics for structured removal of contents from module map files.

a.cppmap

module a {

————————————————

header “bar.h”

— o o mm mm mm m mm mm mm mm Em mm Em my

use “//x/y"
module “a/b” {
'} :




Detecting file references

Goal: new passes to delete unused files; to attempt deleting a file with all references.

How: Run the Clang preprocessor to build the graph of #include's.




Performance results (Header Modules)

Test Case input size duration output size

clang-355835505 37 MB, 2638 files 2.5 hours 47 KB, 13 files



Summary

Done Future Work
e Re-architected C-Vise with "hints" for flexibility and e (C++20 modules support.
parallelism, achieving 10x-80x speedup on single-file e More heuristics.
tests. e Improving parallelism bottlenecks.
e Efficient multi-file reduction. e Reduction in the cloud.

e Header module aware passes. e LLM-based heuristics and drivers.



