
Towards Automatic Reduction
of Module Bugs

Improving C-Vise

Maksim Ivanov, Google



• Goal: Reduce a large, failing program to a minimal, self-contained reproducer.

• Why: Critical for debugging compiler issues (speeds up debugging), reporting downstream issues, creating 

focused regression tests.

• Challenge: Existing tools (C-Reduce, C-Vise) are often slow. Reductions can take hours, days, or even weeks on 

large, real-world test cases.

• Core Limitation: They are fundamentally designed for single-file inputs. Multiple files are only reduced separately 

and the same number of files remains.

The Problem: Test-Case Reduction



Test-case reduction for C++ modules is significantly harder. A reproducer is not one file; it's a complex bundle:

• Multiple Files: Can involve thousands of source files, headers, and .cppmap files.

• Multiple Commands: Requires multiple, ordered compilation commands (to build PCMs) that must succeed 

before the final, failing command is run.

• Complex Dependencies: A bug may only manifest when a specific PCM is built and imported in a specific way.

The Specific Challenge: C++ Header Modules



We chose to improve C-Vise (a Python-based C-Reduce successor) to tackle this.
• Goal 1: Speed

 Radically improve core reduction performance, even on single-file inputs.

• Goal 2: Versatility
 Extend the tool to natively support multi-file, multi-command reductions for C++ modules.

• Key Insight: Achieving Goal 1 with a new architecture directly unblocked our path to achieving Goal 2.

Our Approach: Evolving C-Vise



Old C-Vise: In-Place Modification
Heuristics (e.g., "remove function body") directly 

modified files. This was rigid, sequential, and hard 

to parallelize effectively.

New C-Vise: Hint Emission
Heuristics emit "hints" (JSONs describing 

patches). A generic, parallel scheduler collects 

hints and decides how to test them.

This decouples "what to try" from "how to try it" 

(+binary search, etc.).

Core Improvement: Hint-Based Architecture



Old: Sequential Passes
Runs one full heuristic to completion before 

starting the next. It can get "stuck" on a low-yield 

pass for hours.

New: Interleaved Hints
Mixes hints from all heuristics in a round-robin 

fashion. The scheduler constantly makes progress 

using the best reduction available from any pass.

Performance Win 1: Interleaved Execution



Old: Wasted Parallelism
If 5 parallel jobs find 5 different successful 

reductions, the tool picks one, discards the other 

4, and restarts all workers.

New: Folded Reductions
We "fold" all successful, non-conflicting hints from 

a batch of parallel jobs into a single combined 

patch and test that.

This achieves a massive reduction in one step.

Performance Win 2: Folding Reductions



Miscellaneous improvements

● Robustness:

○ hung child process termination;

○ temporary files leaks;

● Performance:

○ improved ad-hoc parsers;

○ new heuristics based on Tree-sitter parsers.



These architectural changes resulted in a ~10x-80x speedup on our benchmark suite.

Test Case C-Reduce 2.11.0 C-Vise 2.11.0 (Old) C-Vise (New) Speedup

clang-363816643 15 hours 16 hours 12 min 75x

clang-383027690 18 min 2.5 hours 2 min 9x

clang-321217557 ? 30 days (est.) 8.5 hours 85x

clang-329180703 ∞ (hung) 44 hours 45 min 60x

clang-410818184 31 hours 85 hours 1.5 hours 20x

gcc-94937 24 hours ∞ (hung) 40 min 35x

gcc-92516 4.1 hours 3.2 hours 15 min 13x

Performance Results (Single-File)



Applying to C++ Header Modules



Streamlined multi-file handling

Before

● Files were processed 
sequentially by each pass.

● Binary search was limited to 
instances in a single file.

● Number of files remained 
constant.

After

● Passes now operate 
simultaneously on all files.

● Binary search operates across 
file boundaries.

● Detecting file cross-references, 
deleting unused files/dirs.



a.pcm:
clang … -o a.pcm

b.pcm:
clang … -fmodule-file=a.pcm -o b.pcm

x.o:
clang … -fmodule-file=a.pcm -fmodule-file=b.pcm

Compilation command reductions

Our approach - use Makefiles:

➢ stores compilation commands and dependencies between them;

➢ can also be executed by the interestingness test.

New heuristics: cmd parameter removal, target removal.

Makefile



Module map reductions
New heuristics for structured removal of contents from module map files.

module a {
header “foo.h”
header “bar.h”
use “//x/y”
module “a/b” {
}

}

a.cppmap



Detecting file references
Goal: new passes to delete unused files; to attempt deleting a file with all references.

How: Run the Clang preprocessor to build the graph of #include’s.

#include “bar.h”
...
...

foo.h

...

...

...

bar.h

...

...

...

unused.h



Performance results (Header Modules)

Test Case input size duration output size

clang-355835505 37 MB, 2638 files 2.5 hours 47 KB, 13 files



Done Future Work
● Re-architected C-Vise with "hints" for flexibility and 

parallelism, achieving 10x-80x speedup on single-file 

tests.

● Efficient multi-file reduction.

● Header module aware passes.

● C++20 modules support.

● More heuristics.

● Improving parallelism bottlenecks.

● Reduction in the cloud.

● LLM-based heuristics and drivers.

Summary


