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A New Computing Paradigm for GenAI Inference
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Corsair Accelerator Architecture Purpose Built for AI

Chiplet-based modular design: connectivity, scaling, cost
In-memory compute with block floating point: efficiency, throughput, accuracy
Large, on-chip performance memory: high bandwidth for params and caches
Independent, collaborative Quads: asynchronous, self-contained graph execution
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Harnessing Memory Hierarchy and Scalability

•Highest performance leverages fast, on-chip memory, closest to compute units

•Operations spread over chiplets/cards/servers/racks to aggregate compute and memory

•Parallelism strategy optimized for compute, memory, and communication costs



Corsair ISA and Graph Representation



Aviator Software Stack for Efficient, Scalable Inference
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Graph Compiler for In-Memory Computing: Challenges

• Support of standard and custom ML operations

•Dynamic tensor shapes, conditions, autoregression

•Multi-device parallel model adaptation

• Tensor placement across memory hierarchy levels

• Fusion of large subgraphs into mega-kernels

•Resource sharing and lifetime management across 

multiple kernels

• Tiling, balance of spatial and temporal spread

• Stationarity, proximity, concurrency of operations

Ease, coverage of algorithm expression

Developer intent and control

Hardware features and utilization



Model Factory
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MLIR Graph Compiler Stack
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SPMD partitioning
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Progressive Lowering

A 512 x512 matmul through our compiler
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Progressive Lowering
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Number of Affine Dialect Based Optimizations b/w FE/ME and ME/BE

FE/ME

ME/BE

1. Loop permutation – Make loops w/ highest trip counts outermost

2. Single trip loop promotion – Promote single iteration loops (inner-most only)

3. Normalization – Normalize loop nests to enable producer-consumer fusion

1. Affine scalar replacement – Forward affine memref stores to loads, remove 

redundant loads, remove dead stores



DLIR: MLIR Egress to DMX ISA



Conclusion

MLIR enabled us to build an ergonomic S/W stack that we're confident can realize the full potential of our 

hardware.

- Compatibility with PyTorch allowed us to meet users where they are.

- Flexibility and extensible dialect system -

- Allowed us to faithfully model and thereby optimize for our hardware and numerics, via custom IRs.

- Allowed us to support both code-gen and kernel-native approaches via a single compiler.

Next steps

- Op coverage

- Performance

- Kernel libraries
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