
MLIR Graph Compiler for In-Memory Inference Computing

Satyam Srivastava, Kshitij Jain, Vinay M, Prashantha NR, Sudeep Bhoja

[d-Matrix Corporation]

A New Computing Paradigm for GenAI Inference

Compute

Accumulate Accumulate Accumulate

Multiply Multiply Multiply

Accumulate Accumulate Accumulate

Multiply Multiply Multiply

DRAM (HBM) Memory Digital-In-Memory-Compute

Memory Memory Memory

MAC MAC MAC

Memory Memory Memory

MAC MAC MAC

Accumulate Accumulate Accumulate

T
h

e
 A

.I. B
a

rrie
r

Traditional architecture

8TB/s

High Bandwidth

architecture

100+TB/s

Corsair Accelerator Architecture Purpose Built for AI

Chiplet-based modular design: connectivity, scaling, cost
In-memory compute with block floating point: efficiency, throughput, accuracy
Large, on-chip performance memory: high bandwidth for params and caches
Independent, collaborative Quads: asynchronous, self-contained graph execution

Core 1

GM 4MB (1MB*4 banks)

Core 2
Stash
6MB

DRE

Slice XBAR

44

8 Stash
6MB

8

LPDDR (1) LPDDR (2)

P
er

 S
lic

e

Per Chiplet

25.6 GB/s 25.6 GB/s

Harnessing Memory Hierarchy and Scalability

•Highest performance leverages fast, on-chip memory, closest to compute units

•Operations spread over chiplets/cards/servers/racks to aggregate compute and memory

•Parallelism strategy optimized for compute, memory, and communication costs

Corsair ISA and Graph Representation

Aviator Software Stack for Efficient, Scalable Inference

Metrics
Exporter

Generation config,
batch size, etc.

Distributed inference config:
cards, parallelism type/degree, etc.

(Python API)

(Python API)

(DSL)

(Python API, C API)

(Python API)

(Python API &
GUI)

Model definition,
checkpoint

Quantized,
Partitioned,
Compiled
Model

Lowering Stack Execu
tio

n
 Stack

User mode

Kernel mode

(Python API)

(Python API)
K8s

Device
Plugin Debug &

Profiling
Tools

Management &
Monitoring tools

Model Factory

Quantization tools

PyTorch Frontend

Kernels Graph Compiler

Aviator
Inference Engine

Aviator Runtime

(C++ API)

Device Interface

Kernel Driver

Firmware: Quad Runtime

ModelBuilder

Tools

6

Graph Compiler for In-Memory Computing: Challenges

• Support of standard and custom ML operations

•Dynamic tensor shapes, conditions, autoregression

•Multi-device parallel model adaptation

• Tensor placement across memory hierarchy levels

• Fusion of large subgraphs into mega-kernels

•Resource sharing and lifetime management across

multiple kernels

• Tiling, balance of spatial and temporal spread

• Stationarity, proximity, concurrency of operations

Ease, coverage of algorithm expression

Developer intent and control

Hardware features and utilization

Model Factory

Compressor

Compiler FE

Compiler ME

Compiler BE

Triton Compiler

DSL Compiler

Triton

DSL

DMX Kernel Library

User Kernel Library

Hybrid Compiler

DLIR

Aviator Lowering Stack: High Perf Kernels and MLIR Compiler

Kernel library

PyTorch

MLIR Graph Compiler Stack

Compiler FE

StableHLO, DMIR*

Compiler ME

Affine, Memref,

VectorExt*, LLDMIR*

Compiler BE

GPU, DLIR*

Transformations

SPMD, Padding, Tiling, Quantization, Const-Folding

Transformations

Fusion, Bufferization, Vectorization

Transformations

SRAM + Register Allocation, ISel, Lower-to-threads-model,

Kernel-outlining, Loop-unrolling, DLIR Kernel-stitching,

Scheduling

Output – DMX ISA, DMMQ, Handles

Bunch of Affine loop

nests

Bunch of parallel loop

nests communicating

through DDR

PyTorch

Triton

DLIR

As bunch of Affine loop

nests

Hybrid Compiler

* indicates custom

dialect

SPMD partitioning

PyTorch

SPMD

Compiler FE

Per-quad SPMD

graph

DMIR

StableHLO

This per-quad

symmetry maps

quite nicely to multi-

headed Attention

models

Remember:

Card => 2 Packages

Package => 4 Chiplets

Chiplet => 4 quads

Total of 32 quads per card

Llama3 8b:

32 attention heads

GPT2 Med:

16 attention heads

whisper-medium:

16 attention heads

Progressive Lowering

A 512 x512 matmul through our compiler

Progressive Lowering

A 512 x512 matmul through our compiler

Progressive Lowering

A 512 x512 matmul through our compiler

Progressive Lowering

A 512 x512 matmul through our compiler

Progressive Lowering

A 512 x512 matmul through our compiler

Progressive Lowering

A 512 x512 matmul through our compiler

Progressive Lowering

A 512 x512 matmul through our compiler

Progressive Lowering

A 512 x512 matmul through our compiler

Progressive Lowering

A 512 x512 matmul through our compiler

Progressive Lowering

A 512 x512 matmul through our compiler

Progressive Lowering

A 512 x512 matmul through our compiler

Number of Affine Dialect Based Optimizations b/w FE/ME and ME/BE

FE/ME

ME/BE

1. Loop permutation – Make loops w/ highest trip counts outermost

2. Single trip loop promotion – Promote single iteration loops (inner-most only)

3. Normalization – Normalize loop nests to enable producer-consumer fusion

1. Affine scalar replacement – Forward affine memref stores to loads, remove

redundant loads, remove dead stores

DLIR: MLIR Egress to DMX ISA

Conclusion

MLIR enabled us to build an ergonomic S/W stack that we're confident can realize the full potential of our

hardware.

- Compatibility with PyTorch allowed us to meet users where they are.

- Flexibility and extensible dialect system -

- Allowed us to faithfully model and thereby optimize for our hardware and numerics, via custom IRs.

- Allowed us to support both code-gen and kernel-native approaches via a single compiler.

Next steps

- Op coverage

- Performance

- Kernel libraries

	Slide 1
	Slide 2: A New Computing Paradigm for GenAI Inference
	Slide 3
	Slide 4:
	Slide 5
	Slide 6: Aviator Software Stack for Efficient, Scalable Inference
	Slide 7: Graph Compiler for In-Memory Computing: Challenges
	Slide 8
	Slide 9: MLIR Graph Compiler Stack
	Slide 10: SPMD partitioning
	Slide 11: Progressive Lowering
	Slide 12: Progressive Lowering
	Slide 13: Progressive Lowering
	Slide 14: Progressive Lowering
	Slide 15: Progressive Lowering
	Slide 16: Progressive Lowering
	Slide 17: Progressive Lowering
	Slide 18: Progressive Lowering
	Slide 19: Progressive Lowering
	Slide 20: Progressive Lowering
	Slide 21: Progressive Lowering
	Slide 22: Number of Affine Dialect Based Optimizations b/w FE/ME and ME/BE
	Slide 23: DLIR: MLIR Egress to DMX ISA
	Slide 24: Conclusion

