
DirectX HLSL Compiler

Where We’re Legalizing, We 
Don’t Need Validators
Generating valid DXIL for the DirectX Backend

Farzon Lotfi

Principal Engineer

HLSL Modernization Project

10/28/2025



'25 LLVM Dev Meeting Quick Talk

Outline

• Terms

• Current Flow

• Reimagining the LLVM-to-DXIL Pipeline

• Data Transformations: Preparing for DXIL

• The Custom Legalization Pass

• Optimization bypass for custom types

• Future Work

10/28/25 2



'25 LLVM Dev Meeting Quick Talk

Terms

• DXIL – DirectX Intermediary Language A derivative of LLVM IR 3.7

• DXC – The Current production HLSL to DirectX backend compiler

• DXV – DXIL Validator- A tool that checks if a DXIL module meets 

the spec and add a validation hash

10/28/25 3



'25 LLVM Dev Meeting Quick Talk

Current Flow: What is validation for

• To confirm generation of legal DXIL that drivers can compile

• To preserve compliance with DirectX API versions used by older 

and current GPUs.

 

10/28/25 4



'25 LLVM Dev Meeting Quick Talk

Current Flow: When do we validate

In today’s DXIL pipeline validation happens after code generation.

• This forces rules to be placed in the optimization pipeline in DXC.

Because validator (DXV) development  happens in the same repository 

as DXC staying in sync is easy per release.

 

10/28/25 5



'25 LLVM Dev Meeting Quick Talk

Current Flow: Why this is fragile?

• Errors surface too late (validator failures at the end of compilation).

• Legalization rules are forced into the DXC frontend which can 

impact SPIRV codegen.

• Newer DXC versions can generate invalid DXIL for older validators

• Maintaining compliance is a game of whack-a-mole.

10/28/25 6



'25 LLVM Dev Meeting Quick Talk

What the validator (dxv) does 

• Checks that it follows all the structural and semantic rules 

defined by the DXIL specification

• Reports any violations — such as:
• Illegal instruction types,

• Invalid resource bindings or signatures,

• Type mismatches,

• Shader model version misuse,

• Missing metadata,

• Out-of-bounds indices or undefined behavior.

• Adds a validator hash for valid DXIL

10/28/25 7



'25 LLVM Dev Meeting Quick Talk

What the validator (dxv) doesn’t do  
•  Does not repair invalid IR or attempt to make corrections.

•  Does not recompile or optimize the shader.

•  Does not rewrite the DXIL module beyond possibly updating the 

validation hash.

10/28/25 8



'25 LLVM Dev Meeting Quick Talk

Reimagining the LLVM-to-DXIL Pipeline

Core Idea:
• Don’t generate breaking constructs.

• Keep specific backend legalization requirements in backend passes

• Keep DXV just around for the validation hash and maintaining codgen parity with DXC.

• LLVM IR → [Transformations & Legalizations] → DXIL BitcodeWriter → DXV → GPU

Goals

• Output is inherently DXIL-legal

• Predictable DXIL generation.

• Reuse of LLVM’s existing infrastructure for portability.

• No hidden rules. 
• Every DXV rule gets encoded as a transformation (Ie validation moves from checks to 

changes/legalizations).
10/28/25 9



'25 LLVM Dev Meeting Quick Talk

Legalization Types: Data transformations

Scalarization:

DXIL 6.8 and older prefers scalar opcodes but most LLVM IR is 

vectorized. We extended the existing LLVM Scalarizer pass to ensure 

all vector operations expand predictably into legal scalar forms. We 

also do a custom data scalarization pass.

Array flattening:

DXIL also restricts how arrays and aggregates are represented. We 

flatten vectors, nested and multidimensional arrays into linearized 

memory layouts.

10/28/25 10



'25 LLVM Dev Meeting Quick Talk

Legalization: IR Transformations

• Custom Legalization Pass inspired by GlobalIsel Legalizer.

• Can’t use GlobalIsel b\c we need to maintain LLVMIR for Bitcode 

serialization.

• This pass rewrites any remaining non-DXIL-compliant constructs 

effectively acting as an in-compiler validator.

• This gives us a path to convert validation rules across generations 

of validators into transformations.

10/28/25 11



'25 LLVM Dev Meeting Quick Talk

Legalization: Instruction Transformations

• Replace new instructions with ones that existed in 3.7

10/28/25 12



'25 LLVM Dev Meeting Quick Talk

Legalization: Type Transformations

• Replace i8s and i64 indexes with legal types

Stores let us know 

how to update the 

alloca use chain.

10/28/25 13



'25 LLVM Dev Meeting Quick Talk

Legalization: Intrinsic Expansions

• Memcpy expansion

• Memset expansion

10/28/25 14



'25 LLVM Dev Meeting Quick Talk

Legalization: Turning off optimizations for extension types

• Treat DX resource target-ext types (like 

dx.RawBuffer) as token-like so optimizations 

can’t rewrite them through phi/select or 

appear in non-intrinsic function signatures.

•  This prevents simplifyCFG from modification.

All that is going on here is 

dx.rawbuffer is maintained in 

individual basic blocks.

10/28/25 15

https://github.com/llvm/llvm-project/commit/01c0a8409a21344c822deba9467bd9d547f6e5d8#diff-a471cb9ddcb3e798a3483ebd6d6750ba2fc2b6fa9476c139174314f15776880e
https://github.com/llvm/llvm-project/commit/01c0a8409a21344c822deba9467bd9d547f6e5d8#diff-a471cb9ddcb3e798a3483ebd6d6750ba2fc2b6fa9476c139174314f15776880e
https://github.com/llvm/llvm-project/commit/01c0a8409a21344c822deba9467bd9d547f6e5d8#diff-a471cb9ddcb3e798a3483ebd6d6750ba2fc2b6fa9476c139174314f15776880e


'25 LLVM Dev Meeting Quick Talk

Legalization: Turning off optimizations for extension types

• Don’t let GVN pass 

generate phi for token 

like extension types.

• Second GVN case

10/28/25 16

https://godbolt.org/z/jdY5PvhGY
https://godbolt.org/z/jdY5PvhGY
https://godbolt.org/z/jdY5PvhGY
https://godbolt.org/z/jdY5PvhGY
https://github.com/llvm/llvm-project/pull/156513
https://github.com/llvm/llvm-project/pull/156513


'25 LLVM Dev Meeting Quick Talk

Future work

• This won’t replace the validator overnight but gives us a means for 

the new compiler to be responsive to current and older validators.

• Our work here is incomplete. The plan is to continue to encode 

validation rules into the DirectX backend so that All HLSL compiled 

with clang-dxc generates valid DXIL.

10/28/25 17



Thank you!

10/28/25 18


	Slide 1: Where We’re Legalizing, We Don’t Need Validators
	Slide 2: Outline
	Slide 3: Terms
	Slide 4: Current Flow: What is validation for
	Slide 5: Current Flow: When do we validate
	Slide 6: Current Flow: Why this is fragile?
	Slide 7: What the validator (dxv) does ✔️
	Slide 8: What the validator (dxv) doesn’t do ❌ 
	Slide 9: Reimagining the LLVM-to-DXIL Pipeline
	Slide 10: Legalization Types: Data transformations
	Slide 11: Legalization: IR Transformations
	Slide 12: Legalization: Instruction Transformations
	Slide 13: Legalization: Type Transformations
	Slide 14: Legalization: Intrinsic Expansions
	Slide 15: Legalization: Turning off optimizations for extension types
	Slide 16: Legalization: Turning off optimizations for extension types
	Slide 17: Future work
	Slide 18: Thank you!

