
Widen Your Char-izons
Adding wide character conversion to LLVM-libc

By: Uzair Nawaz and Sriya Pratipati

Introduction 🌇
01

How Do We Represent Characters/Strings?

● Strings are just arrays of bytes (char is 1 byte)
● Super convenient for 1-byte characters, but not straightforward when

representing more complex characters (emojis, other languages, etc)

L L V M

0x4C 0x4C 0x56 0x4D

Multibyte vs Wide Characters

● Multibyte-Character Strings
○ Characters vary in size between 1 to 4 bytes
○ Length of a string in bytes != # of characters in the string
○ Referenced by a char * so possible to stop in the middle of a character
○ Typically represented by UTF-8 encoding

● Wide-Character Strings
○ Every character takes up the same number of bytes (usually 4 on most systems)
○ Easy to calculate length of string
○ Can’t stop in the middle of a wide character
○ Represented by UTF-32 encoding on most systems

“🤡Σ”
🤡 Σ

0xF0 0x9F 0xA4 0xAF 0xCE 0xA3

Multibyte representation (UTF-8) - 6 bytes

🤡 Σ

0x0001F921 0x000003A3

Wide character representation (UTF-32) - 8 bytes

Conversion Process 🦖
02

UTF-8 Encoding Details

Multibyte -> Wide Character Example

Input Multibyte String:

Output Wide Character String:

A Σ

0x65 0xCE 0xA3

Partial State

Multibyte -> Wide Character Example

Input Multibyte String:

Output Wide Character String:

A Σ

0x65 0xCE 0xA3

A

0x65

Partial State

A

0x65

Multibyte -> Wide Character Example

Input Multibyte String:

Output Wide Character String:

A Σ

0x65 0xCE 0xA3

A

0x00000065

Partial State

Multibyte -> Wide Character Example

Input Multibyte String:

Output Wide Character String:

A Σ

0x65 0xCE 0xA3

A

0x00000065

Σ

0xCE

Partial State

Multibyte -> Wide Character Example

Input Multibyte String:

Output Wide Character String:

A Σ

0x65 0xCE 0xA3

A

0x00000065

Σ

0xCE 0xA3

Partial State

Multibyte -> Wide Character Example

Input Multibyte String:

Output Wide Character String:

A Σ

0x65 0xCE 0xA3

A Σ

0x00000065 0x000003A3

Partial State

Libc Interface 🪸
03

Example of mbrtowc use

const char* mb_str = "🤡";
wchar_t wc_string[1];
mbstate_t mbs;
size_t ret = mbrtowc(wc_string, &mb_str, /* max # of bytes to read */ 1,
&mbs);

ASSERT(ret == -2);

Libc Interface

const char* mb_str = "🤡";
wchar_t wc_string[1];
mbstate_t mbs;
size_t ret = mbrtowc(wc_string, &mb_str, /* max # of bytes to read */ 1,
&mbs);

ASSERT(ret == -2);

ret = mbrtowc(wc_string, &mb_str + 1, /* max # of bytes to read */ 3, &mbs);
ASSERT(ret == 3);

ASSERT(wc_string[0] == 0x0001F921);

Restartable vs Non-Restartable

● Restartable
○ Takes in an input of an mbstate, can stop conversion mid-character and pick up where it left off

● Non-Restartable
○ Has its own internal state that is maintained globally on each call to the function

Architecture 🏗
04

mbstate_t

● Represents a partial conversion state
● Layout:

Field Size

Partial State as UTF-32 32 bits

bytes stored in partial state 8 bits

of total bytes in mb-character 8 bits

CharacterConverter Class

● Main internal interface to interact with mbstate
● Multibyte → Wide Character

○ push(char8_t): Push a single byte from a multibyte sequence
○ char32_t pop_utf32(): Pop a wide character

● Wide Character → Multibyte
○ push(char32_t): Push a wide character
○ char8_t pop_utf8(): Pop a single byte from a multibyte sequence

● Other utilities
○ clear()
○ isEmpty()/isFull()
○ isValidState()

StringConverter Class

● Layer of abstraction above CharacterConverter
● Construct with an input string and then pop converted characters

Internal Restartable Functions

● Internal functions are equivalent
to restartable public functions

Design Decisions 🍋
05

Size of mbstate/what to store

● Final decision: 6 bytes
○ 4 bytes to hold partial conversion
○ 8 bits each for number of total bytes and bytes stored

● Alternative 1: 4 bytes to hold partial conversion
○ Have to deduce total bytes and conversion status each time

● Alternative 2: 4 bytes
○ state[20:0] : partial conversion (utf-32)
○ state[22:21]: total bytes
○ state[28:23]: num bits processed
○ state[31:29]: unused

StringConverter Class

● The toughest design decision of the entire project
● Do we need a class to handle string conversion, or is the character converter

sufficient?
● Class allows for scalability to UTF-16 conversions
● Simplifies code for internal functions

Reflections 🔮
06

Future Expansion

● Wide character support in FILE
● wprintf
● 16-bit wide characters using UTF-16 (for windows)
● wctypes.h: iswalpha, iswupper/iswlower, etc
● Widechar to floating point conversion (wcstod)
● Add Bazel rules for conversion functions

Thank you for listening!

😸

😸😸

😸😸
😸
😸
😸

