
asbirlea@google.com October 2025LLVM Developers Meeting

Optimizing generic code lowering to LLVM-IR
through function equivalence coalescing

asbirlea@google.com October 2025LLVM Developer’s Meeting

A.K.A. Merging equivalent functions …
… in the front end

TL; DR:

Templates / generics generate many functions.

Equivalent ones can be merged / coalesced in LLVM IR
and the front end can do pretty good job at it.

Generics refers to the ability to generalize code by adding compile-time parameters.

● Generic function: function with at least a compile-time parameter (explicit or deduced)
● Generic type: type with a compile-time parameter
● Generic interface: interface with a compile-time parameter

C++ has templates, Rust and Carbon have generics

Generics refers to the ability to generalize code by adding compile-time parameters.

● Generic function: function with at least a compile-time parameter (explicit or deduced)
● Generic type: type with a compile-time parameter
● Generic interface: interface with a compile-time parameter - interfaces have functions

In Carbon, function parameters:

● Regular parameters fn F(x: Int) -> bool;
● Checked generics fn F[T:! type](x: T) -> T;
● Template generics fn F[template T:! type](x: T*) -> T*;

C++ has templates, Rust and Carbon have generics

https://docs.carbon-lang.dev/docs/design/generics/terminology.html#checked-versus-template-parameters

Rust and Carbon’s checked generics

Pros:

● Performance: Monomorphization eliminates runtime overhead associated with
generics (dynamic dispatch, type checking at runtime)

● Safety: Type checking at compile time

Cons:

● Increase in code size and compile time

C++: template function -> argument deduction

// C++

template <typename T>

T maximum(T a, T b) {

 return (a > b) ? a : b;

}

void main() {

 int intMax = maximum(5, 10);

 double doubleMax = maximum(3.14, 2.718);

}

Function instantiations

Carbon: checked generic function -> similar deduction

// C++

template <typename T>

T maximum(T a, T b) {

 return (a > b) ? a : b;

}

void main() {

 int intMax = maximum(5, 10);

 double doubleMax = maximum(3.14, 2.718);

}

Function instantiations

// Carbon

fn maximum[T:! Ordered](a: T, b: T) -> T {

 return if a > b then a else b;

}

fn main() {

 var intMax: i32 = maximum(5, 10);

 var doubleMax: f64 = maximum(3.14, 2.718);

}

Function specifics

Previous example revisited with pointers

// C++

template <typename T>

T maximum(T a, T b) {

 return (a > b) ? a : b;

}

void main() {

 int *i_1, *i_2;

 int *intMax = maximum(i_1, i_2);

 double *d_1, *d_2;

 double *doubleMax = maximum(d_1, d_2);

} Function instantiations Function specifics

// Carbon

fn maximum[T:! Ordered](a: T, b: T) -> T {

 return if a > b then a else b;

}

fn main() {

 var i_1: i32*; var i_2: i32*;

 var intMax: i32* = maximum(i_1, i_2);

 var d_1: f64*; var d_2: f64*;

 var doubleMax: f64* = maximum(d_1, d_2);

}

Function instantiations / specifics, where the arguments have different front-end types,
but translate in LLVM to functions with arguments of the same LLVM type.

Problem to solve

Function instantiations / specifics, where the arguments have different front-end types,
but translate in LLVM to functions with arguments of the same LLVM type.

Goal: Deduplicate or coalesce such function instantiations / specifics in LLVM-IR.

Problem to solve

Code size and compile time.

Why is this important?

Current implementation: Carbon’s front-end IR

Carbon front-end pipeline

“Check” creates SemIR

Parser
Lexer Check Lower

Input
Carbon

Program
LLVM IR

“Lower” queries SemIR

Carbon’s front-end IR: SemIR - focus for this talk

Carbon front-end pipeline

“Check” creates SemIR

Parser
Lexer Check Lower

Input
Carbon

Program
LLVM IR

“Lower” queries SemIR

Note: A front end IR vs an AST? … great idea!

Representation: generic function in FrontendIR

Single generic function body

…
Instruction (inst_id)

…

Type (type_id)
…

Given “specific_id”: query FrontendIR:

“Tell me more about this instruction or type for this
instantiation / specific”

FrontendIR internal
data structure

Easy: compare function bodies! Done! Right?

Single generic function body

…
Instruction(specific_id1) == Instruction(specific_id2) ?

…

Type (specific_id1) == Type (specific_id2) ?
…

To determine equivalence, we need to evaluate the body of Other_F => Build the definition of Other_F
for the two specific_ids => Applies for transitive calls, so need the full call graph!

First consideration: the instruction can be a call.

Single generic function body F

…
Call_To_Other_F(specific_id1) == Call_To_Other_F(specific_id2) ?

…

Type (specific_id1) == Type (specific_id2) ?
…

To determine equivalence in the presence of recursion: need to compare specific_ids.

Second consideration: recursion.

Single generic function body F

…
Call_To_F(specific_id1) == Call_To_F(specific_id2) ?

…

Type (specific_id1) == Type (specific_id2) ?
…

Evaluate transitive calls + Consider recursion => Need call graph SCCs (strongly connected components)

●

Putting the two together:

F
…

Call_To_Other_F(specific_id1) == Call_To_Other_F(specific_id2) ?

Other_F
…

Call_To_Other_G(specific_id1) == Call_To_Other_G(specific_id2) ?

Other_G
…

Call_To_F(specific_id1) == Call_To_F(specific_id2) ?

So far, checking LLVM type equivalence sufficies

● Calling a function on the same “type” may not always call the same function.

Third consideration: LLVM types may be insufficient

● Carbon may define generic constants in interfaces too
● => need to consider different LLVM-IR allocas.

Other frontend-specific considerations

For each instantiation/specific, consider:

● anything that translates to an llvm::Type
● any frontend specific feature that can generate different LLVM IR

All correctness considerations

Opt for hashing aggregated information into function “fingerprints” using LLVM’s BLAKE3.

● reduce storage
● ease of comparison

Final consideration: performance

At the top level:

1. Generate all function definitions and collect data for each one.
2. Perform coalescing logic and cleanup duplicates.
●

High level algorithm for coalescing generic function definitions

1. Generate all function definitions:

● Collect function type for each function definition into a common fingerprint (hash)
● Generate LLVM-IR for each instruction in the function
● If an instruction/type is specific-dependent, add this info into the common fingerprint

(hash)
● When a call to another specific of a generic is found, that function will need a function

definition (creates declaration, and marks it as needing a definition, will come back later)
○ Collect this info to a specific fingerprint (hash)
○ Collect the non-hashed specific_id.

High level algorithm for coalescing generic function definitions

 2. Perform coalescing logic

● For each two specifics of the same generic
○ 3. Check fingerprint equivalence
○ If step 3. returns equivalent, a list of all equivalent functions in the call graph SCC

will be given.
○ Define a canonical specific to use for each equivalence found, and perform

replacements
○ Once replaced, the duplicated may be deleted from LLVM IR

High level algorithm for coalescing generic function definitions

 3. Check fingerprint equivalence

● If common fingerprints are different or already known not equivalent => not
equivalent

● If specific fingerprints are the same => equivalent
● If already assumed equivalent (in a cycle) => equivalent
● Check each of the calls to other specifics (non-hashed specific_ids):

○ If all are equivalent or assumed equivalent => equivalent
○ If any are known non-equivalent => not equivalent
○ SCC resolution: assume they’re equivalent and recurse.

High level algorithm for coalescing generic function definitions

Code size and compile time.

Alternatives considered:

● Should it be done in the front-end or the middle end?
○ LLVM has a MergeFunctions Pass
○ When this was implemented, the guestimate was “in the front-end is likely to yield better results”.

● When to do the coalescing in the front-end?
○ Should we do a pre-processing before actually generating LLVM-IR?
○ Should we firstbuild all the call-graph to determine which specifics are expected to have a definition
○ This will duplicate most of the lowering logic, minus the LLVM-IR creation itself

● Should this be done at all?
○ We guessed yes!

Reminder: Why is this important?

Preliminary performance results

● Generating stress tests in Carbon - not representative of average compilations!
(https://github.com/carbon-language/carbon-lang/tree/trunk/testing/base)

● Extended current code generator with generic function definitions.
● Testing on test sizes of 512 - 1024 lines of Carbon code.

Methodology

● Balanced types (primitive and pointers): ~44-56% reduction in:
○ LLVM-IR size before and after optimizations
○ assembly size
○ # of functions generated

● Most pointer types: ~98% reduction in:
○ LLVM-IR size before and after optimizations
○ assembly size
○ # of functions generated

● MergeFunctions pass makes a difference in ~12% of tests
○ maximum of ~4% reduction in # of functions, average ~0.1% reduction

Code size impact with function coalescing logic

● Balanced types (primitive and pointers):
○ ~0.9% increase to ~2% reduction in Carbon’s lowering stage.
○ ~25-51% reduction in Carbon’s opt and codegen stages (-O3), with inlining disabled.

● Most pointer types:
○ ~7-9% reduction in Carbon’s lowering stage!
○ ~97% reduction in Carbon’s opt and codegen stages (-O3), with inlining disabled.

● Note: With inlining enabled, similar compile times with the coalescing logic enabled, but
compile-time explosion without it, due to aggressive inlining in the non-coalesced functions.

Compile time impact with function coalescing logic

The algorithm is part of Carbon’s lowering to LLVM-IR stage.
(https://github.com/carbon-language/carbon-lang/blob/trunk/toolchain/lower)

Algorithm and other considerations are documented in the docs:
https://github.com/carbon-language/carbon-lang/blob/trunk/toolchain/docs/coalesce_
generic_lowering.md

Lots of room for further improvements!

Status and more information

Questions? Let’s talk!

