MARCO

Modelica Advanced Research COmpiler

Michele Scuttari
LLVM Developers’ Meeting — October 28" 2025

Introduction & Motivation

Modelica

model Capacitor
L parameter Real C; o
BRI _L connector Pin Voltage u; m d I
_+ Vi C R Voltage v ; Pin pin p, pin _n; O e I C q
— T flow Current i; equation y 4 La nguage
-

end Pin; 0 = pin p.i + pin n.i;
L u = pin p.v - pin n.v;
) C * der(u) = pin _p.i;
end Capacitor;

du/ dt Equations, not assignments!
for i in 1:100 loop NOt ObVlOUS
C * der(u[i]) = pin p.i[il/ 3 lines of code
end for;

100 equations!

Why a new compiler?

e Array and loop declarations are typically unrolled

for i in 1:100 loop C * der(u[l]) = pin_p.i[1];
C * der(u[i]) = pin p.i[i]; :> C * der(u[2]) = pin p.i[2];
end for; C * der(u[3]) = pin p.i[3];

e High compilation times and binary sizes

e Development of new array-aware algorithms for the DAE domain
o Index reduction, Matching, Variables & Equations pruning, Detection SCCs, Scheduling, etc.

Why MLIR?

e No need to define yet another IR infrastructure
o Example: OpenModelica is a bootstrapping compiler extending Modelica to MetaModelica

e Reuse of concepts and optimizations shared across different domains

e Tighter integration with compilers’ backends
o Example: OpenModelica & Dymola generate C code which is then given to GCC / Clang

e Easier code generation for custom architectures
e Better debuggability

Architecture & IR

Software Architecture

poesssscss > Target- specific knowledge MARCO

runtime libraries

clang mo marco 11 LLVM ° Linker]_> exe
driver frontend middle- & back-end A
clang LLVM W
e frontend middle- & back- endJ
-CPP

Compilation Pipeline

bmodelica l

SUNT . e Inference of range boundaries
ECanonlcallzatlon} e Record unpacking

bmodelica -
e Automatic differentiation
e Materialization of the time-derivative operator
Model SoIving < e Array-aware causalization (matching, SCCs detection,

scheduling)
bmodelica l Kinsol L e Numerical integration (e.g., Explicit / Implicit Euler)
ida sundials
(e Parallelization of independent equations
. e Conversion to core dialects (with exceptions)
E Lowermg } < e Bufferization
e Conversion to LLVM dialect
LLVM l ~

e And many more (currently, the pipeline is made of 85 passes)

bmodelica dialect

e Purpose: Representing Differential-Algebraic Equation (DAE) systems

e Main concepts:
o Model

bmodelica.model @Test {
// Model description

/] ...
}

o Variables
o Equations

bmodelica: Variables

e Design goal: preserve interoperability with arbitrary dialects
e What if the operations are isolated-from-above?

e Solution: adopt Symbol semantics
o Dedicated operations to bridge Symbol and SSA semantics: variable get& variable set

bmodelica.variable @x : !bmodelica.variable<l0xfo4>

mydialect.isolated op {
$x = bmodelica.variable get @x : tensor<lO0xf64>

$new x = ... : tensor<lOxfo64>
bmodelica.variable set (@x, %new x : tensor<lOxf64>

bmodelica: Variables

e Lowering strategy:

o

In the case of models, they will become global symbols
memref.global @x : memref<l1000xf64>
mydialect.isolated op {

o —
X =

memref.get global @x

: memref<1000xf64d>
Fnew x : memref<l1000xfod>
memref.copy %new x to %x memref<1000xf64> to memref<l1000xf64>
}
o)

In the case of functions, they will become allocs/ allocas when converting to CFG
func.func Qfoo {

$x = memref.alloc()

: memref<1000xf64>
}

bmodelica: Equations

e Design goal: avoid code duplication since the beginning
e Why? Throughout compilation, the value of attribute will depend on the indices of the equations

e How? Separation between the equation structure and its actual indices
Parametric on the iteration space

bmodelica.model @Test ({
%t0 = bmodelica.equation_template inductions = [%i] {
50 = ... : fo4

%lhs = bmodelica.equation side %0 : tuple<fo64>
srhs = bmodelica.equation side %1 : tuple<f64>
bmodelica.equation sides %1lhs, %rhs : tuple<f64>, tuple<f64>

}
bmodelica.dynamic { We control the IR structure -> SSA semantics

bmodelica.equation_instance %t0 {
indices = {[1,1000]},
match = <@x, {[0,999]}>
} Iteration space, backed by an R-Tree implementation

ida, kinsol, sundials dialects

e Purpose: Integration of the IDA and KINSOL external solvers
e Used during the model solving stage:

o |IDA: BDF numerical integration method

o KINSOL: Newton iterations for algebraic cycles

ida, kinsol, sundials dialects: Declaring Variables

ida.instance @Rida

func.func Q@init () {

ida.init @ida

$x = ida.add differential variable @ida

dimensions = [10007],

differentialGetter =@x_getter,

differentialSetter =@x_setter,

derivativeGetter = @der x getter,

derivativeSetter = @der x setter
} ¢ lida.variable

func.return

sundials.getter @x _getter (%i: index) -> f64 {
%0 = bmodelica.variable get @Test::@x : tensor<l000xf64>

%1 = tensor.extract %$0[%i] : tensor<1000xfo64d>
ida.return %1 : f64
}
sundials.setter @x setter (%v: f64, %i : index) ({
%0 = bmodelica.variable get @Test::@x : tensor<l1000xf64>
%1 = tensor.insert %v into %0[%i1] : tensor<1l000xfo4>

bmodelica.variable set @x, %1 : tensor<l1000xf64>

ida.return

ida, kinsol, sundials dialects: Declaring Equations

e Need to compute residual values and Jacobian matrix of the system
e Each equation is partially differentiated (in-house forward automatic differentiation)
o Interface-based infrastructure

ida.instance @ida ida.residual function @eq0_res (%$time:
f64, %e_i: index, %v_i: index) -> f64 ({
func.func @init () { °0 = ... : f64
X = ... : lida.variable ida. return 20 : f64
}
%eq0 = ida.add equation (@ida indices = {[1, 1000]}
ida.set _residual function (@ida, %eq0, @eq0_res AD

ida.add pder function (@ida, %eqg0, %x, @eq0_pder x

ida.pder function Req0 pder x(%time:

func.return £64, %e i: index, %v_i: index, %alpha:
} £64) -> £64 {
$0 = ... : f64

ida.return %0 : fo64

runtime dialect

e Purpose: Interfacing with the runtime environment

e Support functions provided by the runtime environment (e.g., sin, cos)
o This includes stateful workflows, such as the configuration of dynamic
schedulers

e (Callback functions provided by the compiled model
o Some functions are always generated (e.g., setTime, getVariableValue)
o Some other functions depend on the chosen numerical integration algorithm

Optimization Example

Parallelization of Equations: Idea

Compiler

qs

Group 0

Runtime environment

Group 1

OIORC
) |

Group 2

(5

Group 3

Group 1 Tasks

[0 —1000] |:> [0 —-100] [101 - 200]

[0-500] [0—100] [101 - 200]

Thread pool

Thread O
Thread 1

Thread 2

Thread 3

Parallelization of Equations: Starting IR

Opaque computational blocks indicate whether they may grouped together with others.

bmodelica.model {
bmodelica.dynamic {
bmodelica.schedule block written = [@x] read = [] {
bmodelica.equation call @egO
} {parallelizable = true}

bmodelica.schedule block written = [Qy]

read = [] {
bmodelica.equation call Reql
} {parallelizable = true}
bmodelica.schedule block written = [@z] read = [@x, Qy] {

bmodelica.equation call QRegZ2
} {parallelizable = true}

Can be merged in a group with adjacent
parallelizable blocks

Parallelization of Equations: Dependency Analysis

Computationally independent and parallelizable opaque blocks are grouped together.

bmodelica.model {

bmodelica.dynamic {

bmodelica.parallel schedule blocks {

bmodelica.schedule block written
bmodelica.equation call QReqg0

} {parallelizable = true}

bmodelica.schedule block written
bmodelica.equation call QReql

} {parallelizable

}

bmodelica.parallel schedule blocks {

bmodelica.schedule block written
bmodelica.equation call Qeg2
} {parallelizable = true}

[@x]

[@y]

[@z]

read

read

read

[@x,

@yl

{

L
| RS —

F=" "1

Parallelization of Equations: Runtime Scheduling

The runtime environment is informed about the computation blocks.

runtime.scheduler @scheduler0
runtime.scheduler @schedulerl

bmodelica.model {
bmodelica.dynamic {
runtime.scheduler run @scheduler0
runtime.scheduler run (@schedulerl
}
}

func.func @dynamic init () {
runtime.scheduler add equation @scheduler0, @eq0
runtime.scheduler add equation @scheduler(O, Reql
runtime.scheduler add equation @schedulerl, (Req2

Application Example

Thermal Model of a Silicon Chip

e 3D silicon chip thermal model
o Discretized in volumes
o Parametrized number of volumes

T[ij,K]

e Explicit Euler method
o Stoptime: 0.4s
o Time step: 1.5 ys (~ 270k steps)

e Interest in both compilation and simulation times
o MARCO
o OpenModelica compiler

Fixed-temperature
cooling surface

/

I

i

t't't

i

nz

Performance Evaluation

Compilation time

10,000.00

1h limit

1,000.00

100.00

Time [s]

10.00

.\.—Q—O—H—O—Q—.—H—.—O——H

1.00

1000 10000 100000 1000000 10000000

Number of equations

® MARCO @ OpenModelica

Array-aware
DAE algorithms

Time [s]

Automatic MT
activation

L

Simulation time

10,000.00

1,000.00

100.00

10.00

1.00

1000 10000 100000 1000000 10000000

Number of equations

® MARCO @ OpenModelica

Conclusions & Future Works

Current Status & Future Directions

s N V
Language coverage Toolchain features
\/ Ordinary Differential Equations (ODE) X Functional Mockup Interface (FMI)
«/ Differential-Algebraic Equations (DAE) X Multiple architectures

/5 High-Index DAE systems

X Hybrid systems (time & state events) Other

X Model instantiation & flattening Benchmark suite

2%
?

Other modeling languages

Difficulties & Possible Improvements

e Integration of out-of-tree projects with the clang driver
o Not easy to understand how to plug into the infrastructure.
o A considerable amount of headers are private, and mandate copy-pasting into out-of-tree
frontends.
o Looking inside the Flang project was very helpful!
o Still not entirely clear how to handle 1:N source modifications.

e MLIR’s Symbol Tables

o Constructed and updated manually.

o Optionally cached through mlir::SymbolTableCollection.

o However, caching is rarely used. A few passes (Bufferization and ToLLVM conversion) were
scaling quadratically. They have been fixed, but...

o Should the Symbol Table trait automatically attach a property, to be automatically updated by
the core infrastructure?

Difficulties & Possible Improvements

e Hardware cost model

(@)

o O O O O

For now, parallelization of equations does not take into consideration the runtime
computational costs

A cost model is needed

Is there already something in LLVM? Can we leverage it?

Should an interface / analysis be developed within upstream MLIR?

What should be the level of detail?

How do we allow for arbitrary user-defined architectures?

e Early exits

(@)

@)

(Base) Modelica allows for early exits within its functions

bl 13 ” [13

The bmodelica dialect has its own “scf.if”, “scf.while”, “scf.for”

Thanks for your attention!

https://github.com/marco-compiler/marco
michele.scuttari@polimi.it

https://github.com/marco-compiler/marco
mailto:michele.scuttari@polimi.it

