
MARCO
Modelica Advanced Research COmpiler

Michele Scuttari
LLVM Developers’ Meeting – October 28th 2025

Introduction & Motivation

Modelica

connector Pin
 Voltage v ;
 flow Current i;
end Pin;

model Capacitor
 parameter Real C;
 Voltage u;
 Pin pin_p, pin_n;
equation
 0 = pin_p.i + pin_n.i;
 u = pin_p.v − pin_n.v;
 C ∗ der(u) = pin_p.i;
end Capacitor;

for i in 1:100 loop
C * der(u[i]) = pin_p.i[i];

end for;

Equations, not assignments!du / dt

3 lines of code
100 equations!

Not obvious

Why a new compiler?

● Array and loop declarations are typically unrolled

for i in 1:100 loop
C * der(u[i]) = pin_p.i[i];

end for;

C * der(u[1]) = pin_p.i[1];
C * der(u[2]) = pin_p.i[2];
C * der(u[3]) = pin_p.i[3];
...

● High compilation times and binary sizes
● Development of new array-aware algorithms for the DAE domain

○ Index reduction, Matching, Variables & Equations pruning, Detection SCCs, Scheduling, etc.

Why MLIR?

● No need to define yet another IR infrastructure
○ Example: OpenModelica is a bootstrapping compiler extending Modelica to MetaModelica

● Reuse of concepts and optimizations shared across different domains
● Tighter integration with compilers’ backends

○ Example: OpenModelica & Dymola generate C code which is then given to GCC / Clang
● Easier code generation for custom architectures
● Better debuggability

Architecture & IR

Software Architecture

clang
driver

marco
frontend

Linker
.mo

.c
.cpp

LLVM
middle- & back-end

.ll .o
exe

LLVM
middle- & back-end.ll .o

Target-specific knowledge MARCO
runtime libraries

clang
frontend

Compilation Pipeline

Canonicalization

Model Solving

Lowering

bmodelica

bmodelica

bmodelica
ida

● Automatic differentiation
● Materialization of the time-derivative operator
● Array-aware causalization (matching, SCCs detection,

scheduling)
● Numerical integration (e.g., Explicit / Implicit Euler)

● Parallelization of independent equations
● Conversion to core dialects (with exceptions)
● Bufferization
● Conversion to LLVM dialect

LLVM

● And many more (currently, the pipeline is made of 85 passes)

● Inference of range boundaries
● Record unpacking

kinsol
sundials

bmodelica dialect

● Purpose: Representing Differential-Algebraic Equation (DAE) systems

bmodelica.model @Test {
 // Model description
 // ...
}

● Main concepts:
○ Model

○ Variables
○ Equations

bmodelica: Variables

● Design goal: preserve interoperability with arbitrary dialects
● What if the operations are isolated-from-above?
● Solution: adopt Symbol semantics

○ Dedicated operations to bridge Symbol and SSA semantics: variable_get & variable_set

bmodelica.variable @x : !bmodelica.variable<10xf64>

mydialect.isolated_op {
%x = bmodelica.variable_get @x : tensor<10xf64>
...
%new_x = ... : tensor<10xf64>
bmodelica.variable_set @x, %new_x : tensor<10xf64>

}

● Lowering strategy:

bmodelica: Variables

memref.global @x : memref<1000xf64>
mydialect.isolated_op {

%x = memref.get_global @x : memref<1000xf64>
...
%new_x = ... : memref<1000xf64>
memref.copy %new_x to %x : memref<1000xf64> to memref<1000xf64>

}

func.func @foo {
%x = memref.alloc() : memref<1000xf64>
...

}

○ In the case of models, they will become global symbols

○ In the case of functions, they will become allocs / allocas when converting to CFG

bmodelica: Equations

bmodelica.model @Test {
%t0 = bmodelica.equation_template inductions = [%i] {

%0 = ... : f64
...
%lhs = bmodelica.equation_side %0 : tuple<f64>
%rhs = bmodelica.equation_side %1 : tuple<f64>
bmodelica.equation_sides %lhs, %rhs : tuple<f64>, tuple<f64>

}
bmodelica.dynamic {

bmodelica.equation_instance %t0 {
indices = {[1,1000]},
match = <@x, {[0,999]}>

}
}

}

● Design goal: avoid code duplication since the beginning
● Why? Throughout compilation, the value of attribute will depend on the indices of the equations
● How? Separation between the equation structure and its actual indices

Iteration space, backed by an R-Tree implementation

We control the IR structure -> SSA semantics

Parametric on the iteration space

ida, kinsol, sundials dialects

● Purpose: Integration of the IDA and KINSOL external solvers
● Used during the model solving stage:

○ IDA: BDF numerical integration method
○ KINSOL: Newton iterations for algebraic cycles

ida, kinsol, sundials dialects: Declaring Variables

ida.instance @ida

func.func @init() {
 ida.init @ida

 %x = ida.add_differential_variable @ida {
 dimensions = [1000],
 differentialGetter = @x_getter,
 differentialSetter = @x_setter,
 derivativeGetter = @der_x_getter,
 derivativeSetter = @der_x_setter
 } : !ida.variable

 func.return
}

sundials.getter @x_getter(%i: index) -> f64 {
 %0 = bmodelica.variable_get @Test::@x : tensor<1000xf64>
 %1 = tensor.extract %0[%i] : tensor<1000xf64>
 ida.return %1 : f64
}

sundials.setter @x_setter(%v: f64, %i : index) {
 %0 = bmodelica.variable_get @Test::@x : tensor<1000xf64>
 %1 = tensor.insert %v into %0[%i] : tensor<1000xf64>
 bmodelica.variable_set @x, %1 : tensor<1000xf64>
 ida.return
}

ida, kinsol, sundials dialects: Declaring Equations

● Need to compute residual values and Jacobian matrix of the system
● Each equation is partially differentiated (in-house forward automatic differentiation)

○ Interface-based infrastructure

ida.instance @ida

func.func @init() {
 %x = ... : !ida.variable

 %eq0 = ida.add_equation @ida indices = {[1, 1000]}
 ida.set_residual_function @ida, %eq0, @eq0_res
 ida.add_pder_function @ida, %eq0, %x, @eq0_pder_x

 func.return
}

ida.residual_function @eq0_res(%time:
f64, %e_i: index, %v_i: index) -> f64 {
 %0 = ... : f64
 ida.return %0 : f64
}

ida.pder_function @eq0_pder_x(%time:
f64, %e_i: index, %v_i: index, %alpha:
f64) -> f64 {
 %0 = ... : f64
 ida.return %0 : f64
}

AD

runtime dialect

● Purpose: Interfacing with the runtime environment

● Support functions provided by the runtime environment (e.g., sin, cos)
○ This includes stateful workflows, such as the configuration of dynamic

schedulers

● Callback functions provided by the compiled model
○ Some functions are always generated (e.g., setTime, getVariableValue)
○ Some other functions depend on the chosen numerical integration algorithm

Optimization Example

Parallelization of Equations: Idea

Runtime environmentCompiler

Thread pool

Thread 0

Thread 1

Thread 2

Thread 3

[0 – 1000]

[0 – 500]

Group 1

[101 – 200]

Tasks

[0 – 100]

[101 – 200]

[0 – 100]

G
ro

u
p

 1
G

ro
u

p
 0

G
ro

u
p

 2
G

ro
u

p
 3

Parallelization of Equations: Starting IR

bmodelica.model {
 bmodelica.dynamic {
 bmodelica.schedule_block written = [@x] read = [] {
 bmodelica.equation_call @eq0
 } {parallelizable = true}

 bmodelica.schedule_block written = [@y] read = [] {
 bmodelica.equation_call @eq1
 } {parallelizable = true}

 bmodelica.schedule_block written = [@z] read = [@x, @y] {
 bmodelica.equation_call @eq2
 } {parallelizable = true}
 }
}

Opaque computational blocks indicate whether they may grouped together with others.

Can be merged in a group with adjacent
parallelizable blocks

Parallelization of Equations: Dependency Analysis

bmodelica.model {
 bmodelica.dynamic {
 bmodelica.parallel_schedule_blocks {
 bmodelica.schedule_block written = [@x] read = [] {
 bmodelica.equation_call @eq0
 } {parallelizable = true}
 bmodelica.schedule_block written = [@y] read = [] {
 bmodelica.equation_call @eq1
 }{parallelizable = true}
 }

 bmodelica.parallel_schedule_blocks {
 bmodelica.schedule_block written = [@z] read = [@x, @y] {
 bmodelica.equation_call @eq2
 } {parallelizable = true}
 }
 }
}

Computationally independent and parallelizable opaque blocks are grouped together.

Parallelization of Equations: Runtime Scheduling

runtime.scheduler @scheduler0
runtime.scheduler @scheduler1

bmodelica.model {
 bmodelica.dynamic {
 runtime.scheduler_run @scheduler0
 runtime.scheduler_run @scheduler1
 }
}

func.func @dynamic_init() {
runtime.scheduler_add_equation @scheduler0, @eq0
runtime.scheduler_add_equation @scheduler0, @eq1
runtime.scheduler_add_equation @scheduler1, @eq2

}

The runtime environment is informed about the computation blocks.

Application Example

Thermal Model of a Silicon Chip

● 3D silicon chip thermal model
○ Discretized in volumes
○ Parametrized number of volumes

Fixed-temperature
cooling surface

Fixed power source

T[i,j,k] nz

ny

nx

● Explicit Euler method
○ Stop time: 0.4s
○ Time step: 1.5 µs (~ 270k steps)

● Interest in both compilation and simulation times
○ MARCO
○ OpenModelica compiler

Performance Evaluation

Array-aware
DAE algorithms

Automatic MT
activation

1h limit

Conclusions & Future Works

Current Status & Future Directions

Language coverage

Ordinary Differential Equations (ODE)

Differential-Algebraic Equations (DAE)

High-Index DAE systems

Hybrid systems (time & state events)

Model instantiation & flattening

Toolchain features

Functional Mockup Interface (FMI)

Multiple architectures

Benchmark suite

Other modeling languages

Other

● Integration of out-of-tree projects with the clang driver
○ Not easy to understand how to plug into the infrastructure.
○ A considerable amount of headers are private, and mandate copy-pasting into out-of-tree

frontends.
○ Looking inside the Flang project was very helpful!
○ Still not entirely clear how to handle 1:N source modifications.

● MLIR’s Symbol Tables
○ Constructed and updated manually.
○ Optionally cached through mlir::SymbolTableCollection.
○ However, caching is rarely used. A few passes (Bufferization and ToLLVM conversion) were

scaling quadratically. They have been fixed, but...
○ Should the Symbol Table trait automatically attach a property, to be automatically updated by

the core infrastructure?

Difficulties & Possible Improvements

Difficulties & Possible Improvements

● Hardware cost model
○ For now, parallelization of equations does not take into consideration the runtime

computational costs
○ A cost model is needed
○ Is there already something in LLVM? Can we leverage it?
○ Should an interface / analysis be developed within upstream MLIR?
○ What should be the level of detail?
○ How do we allow for arbitrary user-defined architectures?

● Early exits
○ (Base) Modelica allows for early exits within its functions
○ The bmodelica dialect has its own “scf.if”, “scf.while”, “scf.for”

Thanks for your attention!

https://github.com/marco-compiler/marco
michele.scuttari@polimi.it

https://github.com/marco-compiler/marco
mailto:michele.scuttari@polimi.it

