
A Better HLSL Compiler



LLVM Dev 2024

• TL;DR: Document your stuff


• https://www.youtube.com/
watch?v=sVq5khCXkbw

Previously:

https://www.youtube.com/watch?v=sVq5khCXkbw
https://www.youtube.com/watch?v=sVq5khCXkbw


Chris Bieneman

“Test your stuff”



The End



How we’re testing HLSL

What problem are we trying to solve?

How does the offload-test-suite help?

Where has our team integrated it to our process?

What value are we already seeing from it?



HLSL in Clang

• Adding HLSL to Clang is the _first_ step


• Migrate existing users from DXC to Clang


• HLSL users have decades of legacy code and tooling


• Clang needs a high degree of source compatibility


• Comparable or better usability



Testing as Substitute for Specification

• “correct” behavior is implementation 
defined


• We need a way to test and compare DXC 
and Clang


• Needs to support a variety of hardware 
and software environments



What makes this hard?

• Defining common abstractions across 
ecosystems is hard


• Different hardware devices can be wildly 
different in how they execute


• Runtime APIs have very different abstraction 
decisions


• No single runtime works flawlessly everywhere 
(even the cross-platform ones)



Other approaches

• Existing infrastructure like llvm-test-suite is designed for C/C++ code


• Builds driven with CMake


• Requires multiple configurations to change testing parameters


• CUDA/HIP/OpenMP have device unit testing too


• Google’s Amber project


• Very shader focused


• Not part of LLVM



Goals

• Simple workflow for writing single file tests


• Also should be possible to write larger more complex tests!


• No complex custom grammar


• Test multiple compilers, languages and runtimes from a single configuration


• HLSL goal: DXC and Clang generate functionally equivalent programs


• Utilize LLVM infrastructure and methodologies



Simple Example

• Tests use split-file


• Shader source, data to operate on and 
validation



Simple Example



Simple Example



Simple Example



Simple Example



Simple Example



Simple Example



Simple Example

• Clean abstraction for simple things


• Simple tests are simple to write


• And we wrote a lot of them!



A little more complicated…



A little more complicated…



A little more complicated…



A little more complicated…



A little more complicated…



A little more complicated…



Also supports graphics!



Also supports graphics!



Also supports graphics!



Also supports graphics!



Also supports graphics!



Also supports graphics!



Also supports graphics!



Also supports graphics!

• Logic for fuzzy-matching buffers and images


• Buffers: exact, epsilon and ULP


• Images: CIELAB distance, RMS, flexible 
thresholds


• LIT features for API features


• Gives us a good basis for portability



Growing set of hardware

• Writing tests before implementing clang 
features


• Representative not exhaustive


• Valuing cross-API and cross-
hardware


• Configurations that we don’t have CI 
for


• Vulkan on macOS


• Linux, WSL (DX and VK)



Measuring Success

• First 180 days of team use


• Found 17 GPU driver bugs


• Found 13 bugs in DXC


• Found 26 bugs in Clang/LLVM


• Found 4 bugs in SPIRV-Cross


• Found 8 bugs in the Metal Shader Converter


• Learned some cool things!


• Discovered a lot of un-specified behaviors



Cool things?!

• DXC failed to generate 16-bit float 
versions of some operations


• Resulted in drivers not handling them


• GPU drivers don’t like treating resources 
as arrays of memory…


• tanh is _crazy_ imprecise on NV 50-
series GPUs under DX but not VK


• It is _really_ hard to write portable GPU 
code…



Every bug we find is 
a testing gap!



Where simple doesn’t work

• Floating point behavior


• Accuracy tolerances


• NaN, INF, denorm


• Mismatched feature sets


• Mismatched UB sets


• Places where HLSL is just weird


• Complex scenarios



Key Takeaways

• It is amazing anyone ever ships GPU code


• More tests is good


• Making it easier to write tests is always 
worthwhile


• Tests written by inexperienced engineers are 
extremely valuable


• We still have a lot of work to do


• Bugs in tests, compilers, and drivers



Future Directions for HLSL

• Building out more API features


• Expanding our test matrix 


• Using this framework to build a language conformance suite


• Pull these tests into Microsoft Hardware Lab Kit (HLK) test suite



Future Directions

• Compiler and runtime performance!


• Additional language and API support


• I’ve written local tests for GLSL and MSL


• Played with an OpenCL backend


• Cleanup lingering “HLSL-isms”



Get Involved

• Offload Test Suite


• https://github.com/llvm/offload-test-suite/


• WG-HLSL


• https://github.com/llvm/wg-hlsl


• Find our weekly meetings on the LLVM 
community Calendar


• #hlsl on LLVM Discord


• https://discord.gg/xS7Z362

https://github.com/llvm/offload-test-suite/
https://github.com/llvm/wg-hlsl
https://discord.gg/xS7Z362

