
Proprietary + Confidential

Hongzheng Chen, Alexander Novikov, Ngân Vũ
Mircea Trofin, Amir Yazdanbakhsh

LLVM Developers’ Meeting
10/28/25

Magellan: Autonomous Discovery of Novel
Compiler Optimization Heuristics with AlphaEvolve

Proprietary + Confidential

The compiler optimization problems
that haunt your dreams

You

Your painstakingly
handcrafted heuristics

It’s 2025!!!

Let’s use LLMs to slay the dragon!

2

Proprietary + Confidential

ML-Guided (compiler) Optimizations (aka MLGO)

3

● Compiler optimization is a big $
lever for fleet efficiency

● ML can help with some compiler
optimization problems

● Back in 2021…
○ Inlining for size, register allocation
○ Successfully deployed and used in

Fuchsia OS, mobile Chrome, Android
apps, and instrumented FDO data
center, etc.

Proprietary + Confidential

How LLM accelerates heuristic optimization discovery?

4

Deep
Dive

Manual
Labor

HypothesisFeedback

Slow, iterative, and labor-intensive

Deep
Dive

Feedback

Faster discovery &
better sample efficiency

LLM acts as a force multiplier, improving the compiler engineers productivity and
facilitating the novel optimization heuristics discovery.

Richer
Feedback (NL)

The Conventional Workflow The LLM-in-the-loop Workflow

LLM

Evolutionary
Search to select

the best program

AlphaEvolve in a Nutshell

5

Proprietary + Confidential 6

AlphaEvolve

llvm

clang

Program (.cc)

Executable// llvm/lib/Analysis/AlphaEvolveRunner.cpp
// EVOLVE-BLOCK-START
void *AlphaEvolveRunner::evaluateUntyped() {
 int64_t CallerUsers =

*getTensor<int64_t>(FeatureIndex::caller_users);
 int64_t CalleeUsers =

*getTensor<int64_t>(FeatureIndex::callee_users);
 // ...

 Output = false;
 return &Output;
}
// EVOLVE-BLOCK-END

include

lib
llvm-project

llvm-size/
perf stat

score

② Local Evaluate

bazel

① Policy
Propose

③ Feedback
Reward + (logs, profiling results, etc.)

The system works in an automated loop: AlphaEvolve (1) proposes a heuristic as C++ code, (2) the
toolchain evaluates its performance, and (3) the resulting score provides the feedback (reward, logs, etc.).

System Architecture for Heuristic Discovery in LLVM
(and XLA)

Proprietary + Confidential

Key Compiler Optimization Problems under LLVM & XLA

7

● LLVM: Inlining for binary size reduction
○ This is the pilot - unambiguous reward signal used in MLGO
○ Currently in production, used by Chrome on mobile, Fuchsia, Android Google Search App
○ Good candidate for 1st milestone with AlphaEvolve

● LLVM: Inlining for performance
○ Using NNs is difficult b/c modeling performance reward is challenging for datacenter

● LLVM: Register allocation
○ Priority function that determines the order in which live ranges should be processed

● XLA: Graph rewrite
○ Determine the optimal tensor sharding strategy for a given deep learning model inside a

distributed TPU environment
● XLA: Auto-sharding

○ Determine the optimal rewrite rules for a given computation graph to achieve high performance

Proprietary + Confidential

Case Study I: Function Inlining for Size

8

1. Partial heuristic based on predefined
feature sets

a. Same input features as NN
b. Output boolean inlining decision
c. Implement evaluateUntyped

inherited from MLInlineAdvisor

2. Entire heuristic based on arbitrary
 LLVM API calls

a. Input the CallBase CB
b. Implement getAdviceImpl

inherited from InlineAdvisor
c. Evolved code after correctness checks

// llvm/lib/Analysis/AlphaEvolveRunner.cpp
// EVOLVE-BLOCK-START
std::unique_ptr<InlineAdvice>
AEInlineAdvisor::getAdviceImpl(CallBase &CB) {
 bool IsInliningRecommended = false;
 Function *Callee = CB.getCalledFunction();
 Function *Caller = CB.getCaller();
 // ...
}
// EVOLVE-BLOCK-END

// llvm/lib/Analysis/AlphaEvolveRunner.cpp
// EVOLVE-BLOCK-START
void *AERunner::evaluateUntyped() {
 int64_t CallerUsers =
 *getTensor<int64_t>(FeatureIndex::caller_users);
 int64_t CalleeUsers =
 *getTensor<int64_t>(FeatureIndex::callee_users);
 // ...
}
// EVOLVE-BLOCK-END

Proprietary + Confidential

Case Study I: Function Inlining for Size

9

● Automatically composed predefined feature sets to form a heuristic
○ Evaluated on the internal search engine and started from a naïve policy
○ Iterated for two days, score consistently improved

4.27% better than
the upstream LLVM heuristic,

iterating for just 1.5 days!

std::unique_ptr<InlineAdvice> AEInlineAdvisor::getAdviceImpl
(CallBase& CB) {
 bool IsInliningRecommended = false;
 return std::make_unique<InlineAdvice>(
 this, CB,
 FAM.getResult<OptimizationRemarkEmitterAnalysis>
 (*CB.getCaller()), IsInliningRecommended);
}

Proprietary + Confidential

Case Study I: Function Inlining for Size

10

● Automatically discovered the entire heuristic based on arbitrary LLVM API calls
○ Evaluated on internal search application and started from a naïve heuristic
○ Require more trials and errors compared to giving pre-defined features
○ Production Ready → The generated heuristic is clean C++ that is ready to be

directly deployed upstream with minimal manual intervention

5.23% better than

a human-developed heuristic after only 1.5 days!

Proprietary + Confidential

Case Study I: Function Inlining for Size
Temporal Generalization

11

○ Evaluated on four different timestamps with one-month interval
○ Compared w/ a two-year old TensorFlow NN model (we didn’t retrain it!)

Proprietary + Confidential

Case Study I: Function Inlining for Size
Domain Generalization

12

On average (10+ production applications), AlphaEvolve achieves a 8.79%
size reduction on average, on par with the NN model's 8.52%.

Internal binaries with same
compilation flags enabled

Proprietary + Confidential

AlphaEvolve-Generated Code Deep Dive

13

● Human-readable C++ code

● Comments with rationale

Proprietary + Confidential

AlphaEvolve-Generated Code Deep Dive

14

● ~15x shorter implementation but better code size reduction
○ Only counts the actual implementation lines – comments and empty lines are removed

● Newly discovered (simplified) features
○ Weighted instruction count based on instruction complexity

■ Categorize the instructions into three different types
■ InlineCost.cpp uses a more sophisticated cost model TargetTransformInfo (TTI)

○ Pointer type casting
■ Penalty for type mismatches
■ InlineCost.cpp doesn't give a simple bonus

Manual Heuristic AlphaEvolve

LoC of the policy 2115 143

Proprietary + Confidential

Case Study II: End-to-End Performance Optimization

15

AlphaEvolve appears to have a much higher sampling complexity than
NN techniques. We (hope to) leapfrog the reward-shaping problem in ML

for compiler optimizations.

Inlining for End-to-End Performance on Clang
● Automatically recovered from an initial -33% regression to finish at -0.2%, on par with manual

heuristics.

Register Allocation (priority queue) for End-to-End Performance on Search
● Discovered a simple, non-obvious heuristic. AlphaEvolve found a trivial on par with complex manual

heuristics.

● Improved from an initial -0.55% regression to -0.15%.

Proprietary + Confidential

[WIP] Preliminary Results on XLA Problems

16

● Graph rewrite w/ eqsat
○ Based on Enzyme-JAX [OOPSLA’25]
○ Heuristics for e-graph extraction
○ Rewrite cost based on a cost model
○ 7% better than manual heuristics

● Auto-sharding
○ Based on ASPLOS’25 contest held by Google
○ Transformer, Gemma, and diffusion models in

SFT & inference
○ Achieve 4th place out of 20 teams compared

to the participants’ solutions so far

* Disclaimer: Not yet conducted end-to-end evaluation in the XLA pipeline

Proprietary + Confidential

Trade Offs

17

+ Improved compiler engineers productivity (at least for new heuristics)
- No need to manually train a new model

- Use macro benchmarks!

- Sparse and time-consuming reward & slow evaluation is ok (to some extent)

- Only need hundreds of samples (even for end-to-end metrics) to approximate SOTA

- Land the generated code as if manually-written

- We haven’t done much study on the convergence / performance ceiling aspect

- The performance ceiling of AlphaEvolve is an open research question, despite it provided similar

performance improvements as NNs.

Proprietary + Confidential

● Automated Discovery & Productivity Gain → AlphaEvolve boosts productivity by
automating the labor-intensive process of heuristic design.

● Human-Competitive Results → The system consistently generates heuristics that
perform on par with, and can sometimes surpass, those created by human experts.

 Next steps:

● Push Performance Boundaries: Explore new methods to surpass the current
performance ceiling of discovered heuristics (e.g. better prompting, NL rewards, etc.)

● Tackle "Green-Field" Problems: Apply AlphaEvolve (or its variants) to novel compiler
domains to evaluate its ability to innovate where little or no prior human expertise exists.

● Open-source Implementation: Based on OpenEvolve and OSS models

Takeaways & Future Work

18

