Compiler Optimization Heuristics with AlphaEvolve

Hongzheng Chen, Alexander Novikov, Ngan Vu
Mircea Trofin, Amir Yazdanbakhsh

Google b Google DeepMind

LLVM Developers’ Meeting
10/28/25

Google

The compiler optimization problems
that haunt your dreams

?
Your painstakingly It S 2025!!!
handcrafted heuristics
Let’s use LLMS to slay the dragon!

ML_GUided (compiler) OptimizatiOnS (

Compiler optimization is a big $
lever for fleet efficiency

ML can help with some compiler
optimization problems

Back in 2021...
o Inlining for size, register allocation
o Successfully deployed and used in
Fuchsia OS, mobile Chrome, Android
apps, and instrumented FDO data
center, etc.

aka MLGO)

MLGO: a Machine Learning Guided Compiler
Optimizations Framework

2101.04808v1 [cs.PL] 13 Jan 2021

arXiv

Mircea Trofin* Yundi Qian* Eugene Brevdo
Google, Inc. Google, Inc. Google, Inc.
mtrofin@google.com yundi@google.com ebrevdo@google.com
Zinan Lin Krzysztof Choromanski David Li
Carnegie Mellon University Google, Inc. Google, Inc.

zinanl@andrew.cmu.edu

Abstract

Leveraging machine-learning (ML) techniques for compiler
optimizations has been widely studied and explored in academia.
However, the adoption of ML in general-purpose, industry
strength compilers has yet to happen.

We propose MLGO!, a framework for integrating ML tech-
niques systematically in an industrial compiler — LLVM. As
a case study, we present the details and results of replacing
the heuristics-based inlining-for-size optimization in LLVM
with machine learned models. To the best of our knowledge,
this work is the first full integration of ML in a complex
compiler pass in a real-world setting. It is available in the
main LLVM repository.

We use two different ML algorithms: Policy Gradient and
Evolution Strategies, to train the inlining-for-size model, and
achieve up to 7% size reduction, when compared to state of
the art LLVM -Oz. The same model, trained on one corpus,
generalizes well to a diversity of real-world targets, as well as
to the same set of targets after months of active development.
This property of the trained models is beneficial to deploy
ML techniques in real-world settings.

1 Introduction

Previous work [13, 25] has shown promise in replacing com-
piler optimization heuristics with machine-learned policies.
Heuristics are algorithms that, empirically, produce reason-
ably optimal results for hard problems, within pragmatic con-
straints (e.g. "reasonably fast"). In the compiler case, heuris-

kchoro@google.com

davidxl@google.com

Our focus is ahead-of-time (AOT) compilers, specifically,
C/C++. In a real-world setting, we expect two main bene-
fits from machine learning techniques: first, heuristics are
human-trained based on a human-manageable set of bench-
marks and regression cases. Machine learning easily scales
to large corpora of training examples - which we expect to
increase the likelihood of obtaining policies that generalize
well. This is important because, as we will explore in detail,
we do not want to retrain policies too frequently (it is an
adoption blocker), nor do we want to train ‘online’, while the
compiler is running in production (it would affect determin-
ism). Second, heuristics are human-written code that needs
to be maintained. This places a downward pressure on the
number of program properties ("features") and the combi-
nations between them that can be practically leveraged. We
believe using more features and feature combinations would
result in better optimization decisions. ML scales well with
the addition of features, and can discover profitable feature

binations. While ML tect may be able to address
these two points, a trade-off is that maintaining and evolving
them requires practices and approaches different from those
used for heuristics.

As pointed out, applying ML to compiler optimizations has
been explored by academia, but it has not been adopted in
production environments. To explore why, we chose a pilot
optimization problem and approached it with the intention
to deploy in production. The goal of the pilot is to inform
problem framing and design choices. Other than performing
better than the tip-of-tree production compiler, we did not

Google

How LLM accelerates heuristic optimization discovery?

The Conventional Workflow The LLM-in-the-loop Workflow

i Deep
_\\\& i Dive
Hypothesis R Richer \4

Feedback (NL)

~—

Slow, iterative, and labor-intensive Faster discovery &
| better sample efficiency

LLM acts as a force multiplier, improving the compiler engineers productivity and
facilitating the novel optimization heuristics discovery. 4

AlphaEvolve in a Nutshell

Specification

Evolutionary
Search to select
the best program

Google

System Architecture for Heuristic Discovery in LLVM

(and XLA)

Program (.cc)

S

]
|
I
; G

I

| Y —> clang
L

llvm-project

(-D Polic 1 : /1 livm/lib/Analysis/AlphaEvolveRunner.cpp Executable
AlphaEvolve y || //EVOLVE-BLOCK-START —
Propose I | void *AlphaEvolveRunner::evaluateUntyped() { .
A I inté4_t CallerUsers = llvm-size/
|
|
I | *getTensor<int64_t>(Featurelndex:caller_users); perf stat
I

| inté4_t CalleeUsers =

1

| *getTensor<inté4_t>(Featurelndex:callee_users);
1 /..

I Output = false;
I return &Output;
1}
| _ _
(3 Feedback '/EVOWEBLOCKEND _ _ _ _ _______

@ Local |Evaluate

Reward + (logs, profiling results, etc.)

The system works in an automated loop: AlphaEvolve (1) proposes a heuristic as C++ code, (2) the
toolchain evaluates its performance, and (3) the resulting score provides the feedback (reward, logs, etc.).

Key Compiler Optimization Problems under LLVM & XLA

e LLVM: Inlining for binary size reduction
o Thisis the pilot - unambiguous reward signal used in MLGO
o Currently in production, used by Chrome on mobile, Fuchsia, Android Google Search App
o Good candidate for 1st milestone with AlphaEvolve
e LLVM: Inlining for performance
o Using NNs is difficult b/c modeling performance reward is challenging for datacenter
e LLVM: Register allocation
o Priority function that determines the order in which live ranges should be processed
e XLA: Graph rewrite
o Determine the optimal tensor sharding strategy for a given deep learning model inside a
distributed TPU environment
e XLA: Auto-sharding

o Determine the optimal rewrite rules for a given computation graph to achieve high performance

Case Study I: Function Inlining for Size

1. Partial heuristic based on predefined

feature sets
a. Same input features as NN
b. Output boolean inlining decision
c. Implement evaluateUntyped
inherited fromMLInlineAdvisor

2. Entire heuristic based on arbitrary

LLVM API calls
a. Inputthe CallBase CB
b. Implement getAdvicelImpl
inherited from InlineAdvisor
c. Evolved code after correctness checks

e e e e e M e e e M e e M M e e M M e e e e

: // llvm/lib/Analysis/AlphaEvolveRunner.cpp I
I // EVOLVE-BLOCK-START :
I void *AERunner::evaluateUntyped() { I
int64_t CallerUsers = I
*getTensor<int64_t>(Featurelndex::caller_users); :
int64_t CalleeUsers = I
|

|

|

|

|

|

e e e e e M e e e M e e M M e e M M e e e e

: // llvm/lib/Analysis/AlphaEvolveRunner.cpp I
1 // EVOLVE-BLOCK-START :
std::unique_ptr<inlineAdvice> I
AEInlineAdvisor::getAdvicelmpl(CallBase &CB) { I
bool IsInliningRecommended = false; :
Function *Callee = CB.getCalledFunction(); I
Function *Caller = CB.getCaller(); '
/... :

|

I

|

|
| |
I I
| |
| |
: *getTensor<int64_t>(Featurelndex::callee_users); :
/. [
| |
| } |
1/ I

/ EVOLVE-BLOCK-END

}
// EVOLVE-BLOCK-END

Case Study I: Function Inlining for Size

0.042 o

0.038 -

0.036 o

0.034 o

0.032 o

0.028 -

0.026 -

0.024 o

0.022 -

Automatically composed predefined feature sets to form a heuristic
o Evaluated on the internal search engine and started from a naive policy
o lterated for two days, score consistently improved \
, std::unique_ptr<InlineAdvice> AEInlineAdvisor::getAdvicelmpl
18 (CallBase& CB) {

bool IsInliningRecommended = false;

return std::make_unique<InlineAdvice>(
this, CB,
FAM.getResult<OptimizationRemarkEmitterAnalysis>
(*CB.getCaller()), IsInliningRecommended);

4.27 % better than
the upstream LLVM heuiristic,

iterating for just 1.5 days!

T T T T T T T n
oo © o & & o o0 &

Case Study I: Function Inlining for Size

e
005 g
o

0.045 —|
0.04
0.035 —|
0.03
0.025 —|

0.02

0.015
0.01

0.005

=

Automatically discovered the entire heuristic based on arbitrary LLVM API calls

o Evaluated on internal search application and started from a naive heuristic
Require more trials and errors compared to giving pre-defined features
Production Ready — The generated heuristic is clean C++ that is ready to be
directly deployed upstream with minimal manual intervention

5.23% better than
a human-developed heuristic after only 1.5 days!

lim/num_samples

N

T T T T T T T T T T T
® & @ P P P P P @ P P

10

Google

Case Study I: Function Inlining for Size
Temporal Generalization

@ AlphaEvolve [NN Model

9.95% 5.82% ; 5.91%
6.00% - 5.69% 5.56% 5.75%¢ 50, 5.67%

May 1, 2025 June 1, 2025 July 1, 2025 Aug 1, 2025

o Evaluated on four different timestamps with one-month interval

o Compared w/ a two-year old TensorFlow NN model (we didn’t retrain it!)
11

Google

Case Study I: Function Inlining for Size
Domain Generalization

Internal binaries with same
W AiphaEvalve B NN Nodel compilation flags enabled

12.50%

Q
10.1%%g59, 10610 30%

0
. 0
10.00% RN 8.66¢ 8.76%
8:55% g 358,909, 8.558.57%
A o,
7.627:57% 7197.19% 7.33% 7.25%
7.50%
5.86% 5.77%
0,
. ()
5.00%
2.50%

0.00%
Binary 1 Binary 2 Binary 3 Binary 4 Binary 5 Binary 6 Binary 7 Binary 8 Binary 9 Binary 10 Binary 11 Binary 12 Binary 13

Size Reduction

On average (10+ production applications), AlphaEvolve achieves a 8.79%

size reduction on average, on par with the NN model's 8.52%.
12

AlphaEvolve-Generated Code Deep Dive

42 std::unique_ptr<InlineAdvice> AEInlineAdvisor::getAdviceImpl(CallBase &CB) {

43 // Implementation of inlining strategy. Do not change the function interface.
44 // Default to not inlining.
45 constexpr unsigned CONSERVATIVE_INLINE_PENALTY = 20;

. Human_readable C++ Code 46 constexpr unsigned HOT_FUNCTION_BONUS = 50;
47 bool IsInliningRecommended = false;
48 Function *Callee = CB.getCalledFunction();
49
50 // Define weights for different instruction types to calculate a "complexity score"
51 // rather than a raw instruction count.
52 constexpr unsigned WEIGHT_HIGH_COMPLEXITY_INST = 3;

C . h M I 53 constexpr unsigned WEIGHT_MEDIUM_COMPLEXITY_INST = 2;

. Omments Wlt ratlona e 54 constexpr unsigned WEIGHT_LOW_COMPLEXITY_INST =
55
56 // If the callee is null (indirect call) or a declaration (no body to inline),
57 // we cannot inline.
58 if (!Callee || Callee->isDeclaration()) {
59 // If the callee is null (indirect call) or a declaration (no body to inline),
60 // we cannot inline. Return advice to not inline.
61 IsInliningRecommended = false;
62 return std::make_unique<InlineAdvice>(
63 this, CB,
64 FAM.getResult<OptimizationRemarkEmitterAnalysis>(*CB.getCaller()),
65 IsInliningRecommended);
66 }

67
// Check for explicit inlining attributes first, as they override heuristics.
69 :I if (Callee->hasFnAttribute(Attribute::NoInline)) {

70 // Explicitly prevent inlining. IsInliningRecommended remains false.
7 // Fall through to the final return.

72 } else if (Callee->hasFnAttribute(Attribute::AlwaysInline)) {

73 IsInliningRecommended = true;

74 }else {

75 // Crazy Idea: Calculate a weighted instruction count based on instruction complexity.
76 // This gives a more nuanced "size" estimation for inlining decisions.
7l unsigned WeightedCalleeInstructionCount = 0;

78 for (const BasicBlock &BB : *Callee) {

79 for (const Instruction &I : BB) {

80 switch (I.getOpcode()) {

81 case Instruction::Call:

82 case Instruction::Invoke:

83 case Instruction::CallBr:

84 case Instruction::
85 case Instructio
86 case Instructio

AlphaEvolve-Generated Code Deep Dive

e ~15x shorter implementation but better code size reduction
o Only counts the actual implementation lines — comments and empty lines are removed

Manual Heuristic | AlphaEvolve

LoC of the policy 2115 143

e Newly discovered (simplified) features
o Weighted instruction count based on instruction complexity
m Categorize the instructions into three different types
m InlineCost.cpp uses a more sophisticated cost model TargetTransforminfo (TTI)
o Pointer type casting
m Penalty for type mismatches
m InlineCost.cpp doesn't give a simple bonus

14

Case Study Il: End-to-End Performance Optimization

AlphaEvolve appears to have a much higher sampling complexity than
NN techniques. We (hope to) leapfrog the reward-shaping problem in ML
for compiler optimizations.

Inlining for End-to-End Performance on Clang

e Automatically recovered from an initial -33% regression to finish at -0.2%, on par with manual

heuristics.

Register Allocation (priority queue) for End-to-End Performance on Search

e Discovered a simple, non-obvious heuristic. AlphaEvolve found a trivial on par with complex manual
heuristics.

e Improved from an initial -0.55% regression to -0.15%.

15

[WIP] Preliminary Results on XLA Problems

* Disclaimer: Not yet conducted end-to-end evaluation in the XLA pipeline

e Graph rewrite w/ egsat e Auto-sharding
o Based on Enzyme-JAX [OOPSLA25] o Based on ASPLOS’25 contest held by Google
o Heuristics for e-graph extraction o Transformer, Gemma, and diffusion models in
o Rewrite cost based on a cost model SFT & inference
o 7% better than manual heuristics o Achieve 4th place out of 20 teams compared

to the participants’ solutions so far

- 033 ¢

-71.4k 4 g 0.35 §
716k @ —=)
71.8k | e ; — = 0.4 N

-72k — Y e -0.45
-72.2k / -0.5
-72.4k - [-0.55 -
-72.6k 06
-72.8k H .

-73k o -0.65
-73.2k -0.7
-73.4k { -0.75
-73.6k / o8
-73.8k | J N [—

[-0.85 B —
74k) : =
bt L0909 llm/num_samples
REESS”. lim/num_samples R Ny 7 L) 7 7 7 "
T T T T T T T T T T T 1 A0 ® o N o N A o o
N & R o o P oSt oot o K o ot

16

Trade Offs

@ Improved compiler engineers productivity (at least for new heuristics)

No need to manually train a new model

Use macro benchmarks!

Sparse and time-consuming reward & slow evaluation is ok (to some extent)

Only need hundreds of samples (even for end-to-end metrics) to approximate SOTA

Land the generated code as if manually-written

X We haven't done much study on the convergence / performance ceiling aspect

The performance ceiling of AlphaEvolve is an open research question, despite it provided similar

performance improvements as NNs.

17

Takeaways & Future Work

e Automated Discovery & Productivity Gain — AlphaEvolve boosts productivity by
automating the labor-intensive process of heuristic design.

e Human-Competitive Results — The system consistently generates heuristics that
perform on par with, and can sometimes surpass, those created by human experts.

%ﬂ Next steps:

Push Performance Boundaries: Explore new methods to surpass the current
performance ceiling of discovered heuristics (e.g. better prompting, NL rewards, etc.)
e Tackle "Green-Field" Problems: Apply AlphaEvolve (or its variants) to novel compiler
domains to evaluate its ability to innovate where little or no prior human expertise exists.
e Open-source Implementation: Based on OpenEvolve and OSS models

18

