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The compiler optimization problems 
that haunt your dreams

You

Your painstakingly 
handcrafted heuristics

It’s 2025!!!

Let’s use LLMs to slay the dragon!
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ML-Guided (compiler) Optimizations (aka MLGO)
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● Compiler optimization is a big $
lever for fleet efficiency

● ML can help with some compiler 
optimization problems

● Back in 2021…
○ Inlining for size, register allocation
○ Successfully deployed and used in 

Fuchsia OS, mobile Chrome, Android 
apps, and instrumented FDO data 
center, etc.
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How LLM accelerates heuristic optimization discovery?
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Deep
Dive

Manual
Labor

HypothesisFeedback

Slow, iterative, and labor-intensive

Deep
Dive

Feedback

Faster discovery & 
better sample efficiency

LLM acts as a force multiplier, improving the compiler engineers productivity and 
facilitating the novel optimization heuristics discovery.

Richer 
Feedback (NL)

The Conventional Workflow The LLM-in-the-loop Workflow

LLM



Evolutionary 
Search to select 

the best program

AlphaEvolve in a Nutshell
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AlphaEvolve

llvm

clang

Program (.cc)

Executable// llvm/lib/Analysis/AlphaEvolveRunner.cpp
// EVOLVE-BLOCK-START
void *AlphaEvolveRunner::evaluateUntyped() {
  int64_t CallerUsers =
      
*getTensor<int64_t>(FeatureIndex::caller_users);
  int64_t CalleeUsers =
      
*getTensor<int64_t>(FeatureIndex::callee_users);
  // ...

  Output = false;
  return &Output;
}
// EVOLVE-BLOCK-END

include

lib
llvm-project

llvm-size/ 
perf stat

score

② Local   Evaluate

bazel

① Policy
Propose

③ Feedback
Reward + (logs, profiling results, etc.)

The system works in an automated loop: AlphaEvolve (1) proposes a heuristic as C++ code, (2) the 
toolchain evaluates its performance, and (3) the resulting score provides the feedback (reward, logs, etc.).

System Architecture for Heuristic Discovery in LLVM 
(and XLA)
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Key Compiler Optimization Problems under LLVM & XLA
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● LLVM: Inlining for binary size reduction
○ This is the pilot - unambiguous reward signal used in MLGO
○ Currently in production, used by Chrome on mobile, Fuchsia, Android Google Search App
○ Good candidate for 1st milestone with AlphaEvolve

● LLVM: Inlining for performance
○ Using NNs is difficult b/c modeling performance reward is challenging for datacenter

● LLVM: Register allocation
○ Priority function that determines the order in which live ranges should be processed

● XLA: Graph rewrite
○ Determine the optimal tensor sharding strategy for a given deep learning model inside a 

distributed TPU environment
● XLA: Auto-sharding

○ Determine the optimal rewrite rules for a given computation graph to achieve high performance
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Case Study I: Function Inlining for Size
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1. Partial heuristic based on predefined
feature sets

a. Same input features as NN
b. Output boolean inlining decision
c. Implement evaluateUntyped

inherited from MLInlineAdvisor

2.    Entire heuristic based on arbitrary
       LLVM API calls

a. Input the CallBase CB
b. Implement getAdviceImpl

inherited from InlineAdvisor
c. Evolved code after correctness checks

// llvm/lib/Analysis/AlphaEvolveRunner.cpp
// EVOLVE-BLOCK-START
std::unique_ptr<InlineAdvice>
AEInlineAdvisor::getAdviceImpl(CallBase &CB) {
    bool IsInliningRecommended = false;
    Function *Callee = CB.getCalledFunction();
    Function *Caller = CB.getCaller();
    // ...
}
// EVOLVE-BLOCK-END

// llvm/lib/Analysis/AlphaEvolveRunner.cpp
// EVOLVE-BLOCK-START
void *AERunner::evaluateUntyped() {
  int64_t CallerUsers =
      *getTensor<int64_t>(FeatureIndex::caller_users);
  int64_t CalleeUsers =
      *getTensor<int64_t>(FeatureIndex::callee_users);
  // ...
}
// EVOLVE-BLOCK-END
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Case Study I: Function Inlining for Size
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● Automatically composed predefined feature sets to form a heuristic
○ Evaluated on the internal search engine and started from a naïve policy
○ Iterated for two days, score consistently improved

4.27% better than
the upstream LLVM heuristic,

iterating for just 1.5 days!

std::unique_ptr<InlineAdvice> AEInlineAdvisor::getAdviceImpl
(CallBase& CB) {
  bool IsInliningRecommended = false;
  return std::make_unique<InlineAdvice>(
      this, CB,
      FAM.getResult<OptimizationRemarkEmitterAnalysis>
      (*CB.getCaller()), IsInliningRecommended);
}
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Case Study I: Function Inlining for Size
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● Automatically discovered the entire heuristic based on arbitrary LLVM API calls
○ Evaluated on internal search application and started from a naïve heuristic
○ Require more trials and errors compared to giving pre-defined features
○ Production Ready → The generated heuristic is clean C++ that is ready to be 

directly deployed upstream with minimal manual intervention

5.23% better than

a human-developed heuristic after only 1.5 days!
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Case Study I: Function Inlining for Size
Temporal Generalization
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○ Evaluated on four different timestamps with one-month interval
○ Compared w/ a two-year old TensorFlow NN model (we didn’t retrain it!)
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Case Study I: Function Inlining for Size
Domain Generalization
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On average (10+ production applications), AlphaEvolve achieves a 8.79% 
size reduction on average, on par with the NN model's 8.52%.

Internal binaries with same 
compilation flags enabled
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AlphaEvolve-Generated Code Deep Dive
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● Human-readable C++ code

● Comments with rationale
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AlphaEvolve-Generated Code Deep Dive
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● ~15x shorter implementation but better code size reduction
○ Only counts the actual implementation lines – comments and empty lines are removed

● Newly discovered (simplified) features
○ Weighted instruction count based on instruction complexity

■ Categorize the instructions into three different types
■ InlineCost.cpp uses a more sophisticated cost model TargetTransformInfo (TTI)

○ Pointer type casting
■ Penalty for type mismatches
■ InlineCost.cpp doesn't give a simple bonus

Manual Heuristic AlphaEvolve

LoC of the policy 2115 143
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Case Study II: End-to-End Performance Optimization
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AlphaEvolve appears to have a much higher sampling complexity than
NN techniques. We (hope to) leapfrog the reward-shaping problem in ML

for compiler optimizations.

Inlining for End-to-End Performance on Clang
● Automatically recovered from an initial -33% regression to finish at -0.2%, on par with manual 

heuristics.

Register Allocation (priority queue) for End-to-End Performance on Search
● Discovered a simple, non-obvious heuristic. AlphaEvolve found a trivial on par with complex manual 

heuristics.

● Improved from an initial -0.55% regression to -0.15%.
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[WIP] Preliminary Results on XLA Problems
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● Graph rewrite w/ eqsat
○ Based on Enzyme-JAX [OOPSLA’25]
○ Heuristics for e-graph extraction
○ Rewrite cost based on a cost model
○ 7% better than manual heuristics

● Auto-sharding
○ Based on ASPLOS’25 contest held by Google
○ Transformer, Gemma, and diffusion models in 

SFT & inference
○ Achieve 4th place out of 20 teams compared 

to the participants’ solutions so far

* Disclaimer: Not yet conducted end-to-end evaluation in the XLA pipeline
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Trade Offs
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+ Improved compiler engineers productivity (at least for new heuristics)
- No need to manually train a new model

- Use macro benchmarks!

- Sparse and time-consuming reward & slow evaluation is ok (to some extent)

- Only need hundreds of samples (even for end-to-end metrics) to approximate SOTA

- Land the generated code as if manually-written

-  We haven’t done much study on the convergence / performance ceiling aspect

- The performance ceiling of AlphaEvolve is an open research question, despite it provided similar 

performance improvements as NNs.
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● Automated Discovery & Productivity Gain → AlphaEvolve boosts productivity by 
automating the labor-intensive process of heuristic design.

● Human-Competitive Results → The system consistently generates heuristics that 
perform on par with, and can sometimes surpass, those created by human experts.

            Next steps:

● Push Performance Boundaries: Explore new methods to surpass the current 
performance ceiling of discovered heuristics (e.g. better prompting, NL rewards, etc.)

● Tackle "Green-Field" Problems: Apply AlphaEvolve (or its variants) to novel compiler 
domains to evaluate its ability to innovate where little or no prior human expertise exists.

● Open-source Implementation: Based on OpenEvolve and OSS models

Takeaways & Future Work
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