
Taming GPU programming
with safe Rust

Manuel S. Drehwald
LLVM Developers’ Meeting, 2025

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344. LLNL-PRES-2012993.

Collaborators

Marcelo Domínguez
Universidad Rey Juan Carlos

Johannes Doerfert
LLNL

Manuel Drehwald
University of Toronto /
LLNL

Kevin Sala
LLNL

Challenges for safe GPU programming

● Every reference in Rust has alias guarantees(1):

(1) Excluding references to an UnsafeCell)

define void @foo(ptr noalias noundef readonly align 8 captures(none) dereferencable(8) %x,
 ptr noalias noundef align 8 captures(none) dereferencable(8) %y) {

Challenges for safe GPU programming

● Every reference in Rust has alias guarantees(1):

● Raw pointers have no alias guarantees, not even strict-aliasing (unlike C++):

(1) Excluding references to an UnsafeCell)

define void @foo(ptr noalias noundef readonly align 8 captures(none) dereferencable(8) %x,
 ptr noalias noundef align 8 captures(none) dereferencable(8) %y) {

define void @bar(ptr noundef readonly captures(none) %x,
 ptr noundef captures(none) %y) {

Challenges for safe GPU programming

A CUDA vector addition(1) Now let’s imagine it in safe Rust

Data can be immutably borrowed any number of times [..]
On the other hand, only one mutable borrow is allowed at a time.(2)

Assuming > 1 thread, C causes UB!

(2) https://doc.rust-lang.org/rust-by-example/scope/borrow/alias.html(1) https://github.com/NVIDIA/cuda-samples

Current GPU infrastructure in rustc

● rustc –print target-list:
○ nvptx64-nvidia-cuda (Tier 2 without Host Tools, “it compiles”),

○ amdgcn-amd-amdhsa (Tier 3, “it exists”)

● gpu-kernel ABI: lowered to ptx_kernel or amdgpu_kernel based on target

● core::arch::nvptx: A wrapper around ~30 basic, Nvidia specific gpu intrinsics.

Our wishlist for a gpu feature

● Safe & convenient by default. This includes automatic memory transfer

● Allow unsafe escape hatch for better control or performance

● Support “almost all” Rust functions and types. (see KernelAbstractions.jl)

● Support multiple vendors

Why offload?

● Able to support multiple vendors

● Already tested via OpenMP in C++ & Fortran

● Already provides helpful abstractions, but also supports “native” types.

● LLVM based, it works with std::autodiff (Enzyme), gpu-libc, and others

● Tested Rust support for AMD & NVIDIA (as of 30 minutes ago)

● Only AMD & NVIDIA support (More to come?)

Our current interface

● A CPU function called via our offload intrinsic

● Our intrinsic generates the needed calls to LLVM’s offload library

● Hard-coded Kernel Dimensions (for now)

● Single codebase compiled twice, for Host and Device

● Enable support for wrappers around libraries like CuBLAS

Our compilation pipeline

● cargo +offload build -r -v // Compile for the host

● rustc +offload src/lib.rs -C lto=fat [..]--emit=llvm-bc,llvm-ir -Zoffload=Enable -Zunstable-options

● RUSTFLAGS="-Ctarget-cpu=gfx90a --emit=llvm-bc,llvm-ir" cargo +offload build

-Zunstable-options -r -v --target amdgcn-amd-amdhsa -Zbuild-std=core // Compile for the device

● clang-offload-packager -o host.out

--image=file=device.bc,triple=amdgcn-amd-amdhsa,arch=gfx90a,kind=openmp

● [...]

● clang-linker-wrapper --should-extract=gfx90a --device-compiler=amdgcn-amd-amdhsa=-g

--device-linker=amdgcn-amd-amdhsa=-lompdevice --host-triple=x86_64-unknown-linux-gnu

http://lib.rs
http://device.bc

Looking at the IR

Each invocation currently generates three calls:

Tackling the safety challenge
Looking again at our unsound example

We can avoid such overlapping slices by going through their raw
parts (no-op).

Tackling the safety challenge
But now in sound Rust code

We “pre-divide” mutable output slices for users.

Looking again at our unsound example

We can avoid such overlapping slices by going through their raw
parts (no-op).

Tackling the safety challenge
But now in sound Rust code

We “pre-divide” mutable output slices for users.

Looking again at our unsound example

We can avoid such overlapping slices by going through their raw
parts (no-op).

Can be
auto-generated

Tackling the safety challenge

● The “right way” to split a mutable argument depends on the type and context
● We won’t predict all ways, but ~60% of the RajaPerf benchmarks we looked at follow simple index patterns

which we can cover.

● We provide a safe set of options (scalar, batched, …) where possible
● We provide an unsafe interface for user provided splitting otherwise

● By separating the (safe) Kernel code from the unsafe splitting, we can introduce safe abstractions

Looking at RajaPerf Benchmarks
Scalar output(s) Shuffled scalar outputs Advanced index patterns

VOL3D

NODAL_ACCUMULATION_3D
(including atomics)

FIR

ENERGY

MATVEC_3D_STENCIL

DEL_DOT_VEC_2D

ZONAL_ACCUMULATION_3D

MASS3DPA

MASS3DEA

LTIMES

LTIMES_NOVIEW

With minimal or no adjustments, we should be able to cover 4 (7) of the 11 benchmarks.

// SAFETY: For two different thread indices, a helper

// may not return the same reference (injective)

// MATVEC_3D_STENCIL reference implementation:

for (Index_type ii = ibegin; ii < iend; ++ii) {
 Index_type i = real_zones[ii];

 b[i] = dbl[i] * xdbl[i] + dbc[i] * xdbc[i] + …
}

A design for advanced output indexing

https://github.com/LLNL/RAJAPerf

// LTIMES_NOVIEW reference implementation:

for (Index_type z = 0; z < num_z; ++z) {
 for (Index_type g = 0; g < num_g; ++g) {
 for (Index_type m = 0; m < num_m; ++m) {
 for (Index_type d = 0; d < num_d; ++d) {

 phi[m+ (g * num_m) + (z * num_m * num_g)] +=
 ell[d+ (m * num_d)] * …;

A simple shuffle of indices (left) vs. multi-dimensional indexing (right)

Supporting unsafe Rust types

- All 3 mayor Rust linear algebra libraries (faer, nalgebra, ndarray) use raw pointers for matrix types.

- Can we really not support automatic data movement for them?

https://docs.rs/ndarray/0.16.1/src/ndarray/lib.rs.html#1280-1293

Supporting unsafe Rust types

- Many unsafe types implement the clone trait:

A common trait that allows explicit creation of a duplicate value.(1)

What if we just replace every `memcpy` with a `CopyHostToDevice`?

(1) https://doc.rust-lang.org/std/clone/trait.Clone.html

Optimizations (the fun part)

1. Only copy in the needed direction (const slices are not copied back)

2. Allocate a variable directly on the device, when possible.

3. Leave data on the device between kernels if unchanged/unused

4. Shared memory

5. Fusing kernels

Summary

● We need some unsafe code for splitting args, but look for safe abstractions

● We can handle 4/11 Benchmarks safely by hiding unsafety in the compiler
● We can handle additional 3/11 Benchmarks with trivial unsafe code.
● We need more advanced indexing logic for 4/11 Benchmarks

● We hope for more safe wrappers shared through user crates (libraries)

Questions?

