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Challenges for safe GPU programming

● Every reference in Rust has alias guarantees(1):

(1) Excluding references to an UnsafeCell)

define void @foo(ptr noalias noundef readonly align 8 captures(none) dereferencable(8) %x,
     ptr noalias noundef align 8 captures(none) dereferencable(8) %y) {



Challenges for safe GPU programming

● Every reference in Rust has alias guarantees(1):

● Raw pointers have no alias guarantees, not even strict-aliasing (unlike C++):

(1) Excluding references to an UnsafeCell)

define void @foo(ptr noalias noundef readonly align 8 captures(none) dereferencable(8) %x,
     ptr noalias noundef align 8 captures(none) dereferencable(8) %y) {

define void @bar(ptr noundef readonly captures(none) %x,
     ptr noundef captures(none) %y) {



Challenges for safe GPU programming

A CUDA vector addition(1) Now let’s imagine it in safe Rust

Data can be immutably borrowed any number of times [..] 
On the other hand, only one mutable borrow is allowed at a time.(2)

Assuming > 1 thread, C causes UB!

(2) https://doc.rust-lang.org/rust-by-example/scope/borrow/alias.html(1) https://github.com/NVIDIA/cuda-samples



Current GPU infrastructure in rustc

● rustc –print target-list: 
○ nvptx64-nvidia-cuda (Tier 2 without Host Tools, “it compiles”), 

○ amdgcn-amd-amdhsa (Tier 3, “it exists”)

● gpu-kernel ABI: lowered to ptx_kernel or amdgpu_kernel based on target

● core::arch::nvptx: A wrapper around ~30 basic, Nvidia specific gpu intrinsics.



Our wishlist for a gpu feature

● Safe & convenient by default. This includes automatic memory transfer

● Allow unsafe escape hatch for better control or performance

● Support “almost all” Rust functions and types. (see KernelAbstractions.jl)

● Support multiple vendors



Why offload?

● Able to support multiple vendors

● Already tested via OpenMP in C++ & Fortran

● Already provides helpful abstractions, but also supports “native” types.

● LLVM based, it works with std::autodiff (Enzyme), gpu-libc, and others

● Tested Rust support for AMD & NVIDIA (as of 30 minutes ago)

● Only AMD & NVIDIA support (More to come?)



Our current interface

● A CPU function called via our offload intrinsic

● Our intrinsic generates the needed calls to LLVM’s offload library

● Hard-coded Kernel Dimensions (for now)

● Single codebase compiled twice, for Host and Device

● Enable support for wrappers around libraries like CuBLAS



Our compilation pipeline

● cargo +offload build -r -v // Compile for the host

● rustc +offload src/lib.rs -C lto=fat [..]--emit=llvm-bc,llvm-ir  -Zoffload=Enable -Zunstable-options

● RUSTFLAGS="-Ctarget-cpu=gfx90a --emit=llvm-bc,llvm-ir" cargo +offload build 

-Zunstable-options -r -v --target amdgcn-amd-amdhsa -Zbuild-std=core // Compile for the device

● clang-offload-packager -o host.out 

--image=file=device.bc,triple=amdgcn-amd-amdhsa,arch=gfx90a,kind=openmp

● [...]

● clang-linker-wrapper --should-extract=gfx90a --device-compiler=amdgcn-amd-amdhsa=-g 

--device-linker=amdgcn-amd-amdhsa=-lompdevice --host-triple=x86_64-unknown-linux-gnu

http://lib.rs
http://device.bc


Looking at the IR

Each       invocation currently generates three calls:

  



Tackling the safety challenge
Looking again at our unsound example

We can avoid such overlapping slices by going through their raw 
parts (no-op).
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Tackling the safety challenge
But now in sound Rust code

We “pre-divide” mutable output slices for users.

Looking again at our unsound example

We can avoid such overlapping slices by going through their raw 
parts (no-op).

Can be 
auto-generated



Tackling the safety challenge

● The “right way” to split a mutable argument depends on the type and context
● We won’t predict all ways, but ~60% of the RajaPerf benchmarks we looked at follow simple index patterns 

which we can cover.

● We provide a safe set of options (scalar, batched, …) where possible
● We provide an unsafe interface for user provided splitting otherwise

● By separating the (safe) Kernel code from the unsafe splitting, we can introduce safe abstractions



Looking at RajaPerf Benchmarks
Scalar output(s) Shuffled scalar outputs Advanced index patterns

VOL3D

NODAL_ACCUMULATION_3D
(including atomics)

FIR

ENERGY

MATVEC_3D_STENCIL

DEL_DOT_VEC_2D

ZONAL_ACCUMULATION_3D

MASS3DPA

MASS3DEA

LTIMES

LTIMES_NOVIEW

With minimal or no adjustments, we should be able to cover 4 (7) of the 11 benchmarks.



// SAFETY: For two different thread indices,  a helper

//  may not return the same reference (injective)

// MATVEC_3D_STENCIL reference implementation:

for (Index_type ii = ibegin; ii < iend; ++ii ) {
  Index_type i = real_zones[ii];

  b[i] = dbl[i] * xdbl[i] + dbc[i] * xdbc[i] + …
}

A design for advanced output indexing 

https://github.com/LLNL/RAJAPerf

// LTIMES_NOVIEW reference implementation:

for (Index_type z = 0; z < num_z; ++z ) {
  for (Index_type g = 0; g < num_g; ++g ) {
    for (Index_type m = 0; m < num_m; ++m ) {
      for (Index_type d = 0; d < num_d; ++d ) {

        phi[m+ (g * num_m) + (z * num_m * num_g)] +=
          ell[d+ (m * num_d)] * …;

A simple shuffle of indices (left) vs. multi-dimensional indexing (right)



Supporting unsafe Rust types

- All 3 mayor Rust linear algebra libraries (faer, nalgebra, ndarray) use raw pointers for matrix types.

- Can we really not support automatic data movement for them?

https://docs.rs/ndarray/0.16.1/src/ndarray/lib.rs.html#1280-1293



Supporting unsafe Rust types

- Many unsafe types implement the clone trait:

A common trait that allows explicit creation of a duplicate value.(1)

What if we just replace every `memcpy` with a `CopyHostToDevice`?

(1) https://doc.rust-lang.org/std/clone/trait.Clone.html



Optimizations (the fun part)

1. Only copy in the needed direction (const slices are not copied back)

2. Allocate a variable directly on the device, when possible.

3. Leave data on the device between kernels if unchanged/unused

4. Shared memory

5. Fusing kernels



Summary

● We need some unsafe code for splitting args, but look for safe abstractions

● We can handle 4/11 Benchmarks safely by hiding unsafety in the compiler
● We can handle additional 3/11 Benchmarks with trivial unsafe code.
● We need more advanced indexing logic for 4/11 Benchmarks

● We hope for more safe wrappers shared through user crates (libraries)



Questions?


