
Synthesizing Practical Transfer
Functions in Dataflow Analysis

Yuyou Fan, Xuanyu Peng, Dominic Kennedy, Ben Greenman, John Regehr, Loris D'Antoni

1

Dataflow Analysis Recap

2

Information/Properties that
holds among all executions

What Is Dataflow Analysis?

3

define i4 @func(i4 %arg0) {

 %and3 = and i4 %arg0, 3

 %and1 = and i4 %arg0, 1

 %xor = xor i4 %and3, %and1

 ret i4 %xor

}

Known Bits

Known Bits Information tries to determine if a certain bit is always one or

zero among all executions.

 0

 1

 ?

One known bit

define i4 @func(i4 %arg0) {

 %and3 = and i4 %arg0, 3

 %and1 = and i4 %arg0, 1

 %xor = xor i4 %and3, %and1

 ret i4 %xor

}

Known Bits

Known Bits Information tries to determine if a certain bit is always one or

zero among all executions.

5

00??

0000
0001
0010
0011

Possible runtime values 0

 1

 ?

One known bit

Known Bits

Known Bits Information tries to determine if a certain bit is always one or

zero among all executions.

6

000?

00??
define i4 @func(i4 %arg0) {

 %and3 = and i4 %arg0, 3

 %and1 = and i4 %arg0, 1

 %xor = xor i4 %and3, %and1

 ret i4 %xor

}

0000
0001
0010
0011

0000

0001

Possible runtime values 0

 1

 ?

One known bit

Implementation of Known Bits in LLVM

7

KnownBits
%knownZeros: integer

%knownOnes : integer

00??

11??

%knownZeros= 1100

%knownOnes= 0000

%knownZeros= 0000

%knownOnes= 1100

Compute Known Bits

8

define i4 @func(i4 %arg0) {

 ……
 %xor = xor i4 %and3, %and1

}
000?00??

xor 0 1 ?

0 0 1 ?

1 1 0 ?

? ? ? ?

Xor Truth Table on Known Bits

Compute Known Bits Fact by Transfer Function

9

define i4 @func(i4 %arg0) {

 ……
 %xor = xor i4 %and, %and1

}
000?00??00??

xor 0 1 ?

0 0 1 ?

1 1 0 ?

? ? ? ?

Xor Truth Table on Known Bits

Compute Known Bits Fact by Transfer Function

10

LLVM implements

transfer functions for

operations on Known

Bits, and some

operations are really

complicated.

KnownBits computeForAddCarry(

 KnownBits &LHS, KnownBits &RHS,

 bool CarryZero, bool CarryOne) {

 APInt PossibleSumZero = LHS.getMaxValue() + RHS.getMaxValue() + !CarryZero;

 APInt PossibleSumOne = LHS.getMinValue() + RHS.getMinValue() + CarryOne;

 APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero);

 APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One;

 APInt LHSKnownUnion = LHS.Zero | LHS.One;

 APInt RHSKnownUnion = RHS.Zero | RHS.One;

 APInt CarryKnownUnion = CarryKnownZero | CarryKnownOne;

 APInt Known = LHSKnownUnion & RHSKnownUnion & CarryKnownUnion;

 KnownBits KnownOut;

 KnownOut.Zero = ~PossibleSumZero & Known;

 KnownOut.One = PossibleSumOne & Known;

 return KnownOut;

}

Summary

11

Known Bits is a domain provided in LLVM, there are other domains

provided in LLVM and MLIR too.

They implement transfer functions for operations in the specification on all

domains.

The Need for a Synthesizer

12

What can our synthesizer do?

13

In short, it reads a specification and generates *correct* and *not bad*

transfer functions automatically.

Synthesizer Transfer FunctionsSpecification

What is known bits
domain?

The operation to be
applied e.g. xor

Correct!

In C++

The signature of
transfer function

Return reasonable
result

Generate more transfer functions

14

Provide transfer functions for unimplemented operations.

Target
Platform

Number of
Intrinsics
Implemented

Total
Number of
Intrinsics

X86 30 1713

AArch64 5 1673

RISCV 2 737

LLVM only implements a small number of intrinsics compared to the total

number of intrinsics

Generate more transfer functions

15

Provide transfer functions for unimplemented operations.

Dialect Domain Number of
implemented
transfer
functions

Number of
integer
operations

Comb Known
Bits

7 20

Arith Known
Bits

N/A N/A

Other dialects can get benefit from the synthesizer such as `wasmssa`, `emitc`,

`index`...

Difficulties in reusing existing transfer functions

16

Semantics between two operations might be different.

%res0 = comb.shl %arg0, 5 : i4

%res1 = llvm.shl %arg0, 5 : i4

0 : i4

poison

Difficulties in reusing existing transfer functions

17

Semantics might be different.

Arith InferIntegerRange

Index InferIntegerRange

Prove correctness of transfer functions.

18

Soundness: The analysis result covers all runtime values.

define i4 @func(i4 %arg0) {

 ……
 %and1 = and i4 %arg0, %c1

}

0000
unsound

doesn’t cover 0001

Prove correctness of transfer functions.

19

Soundness: The analysis result covers all runtime values.

define i4 @func(i4 %arg0) {

 ……
 %and1 = and i4 %arg0, %c1

}

0000
unsound

doesn’t cover 0001

The set of all runtime values

sound!

The set of all runtime values

unsound!

Prove correctness of transfer functions.

20

Precision: How many values that never occur at runtime included by the

analysis result.
define i4 @func(i4 %arg0) {

 ……
 %and1 = and i4 %arg0, %c1

}

000?

????
more precise

Prove correctness of transfer functions.

21

Precision: How many values that never occur at runtime included by the

analysis result.
define i4 @func(i4 %arg0) {

 ……
 %and1 = and i4 %arg0, %c1

}

000?

????
more precise

The set of all runtime values

B

A

A is more precise than B

How LLVM tests a transfer function

22

Let’s see how LLVM test soundness of transfer functions.

unsigned Bits = 4;

ForeachKnownBits(Bits, [&](const KnownBits &Known1) {

 ForeachKnownBits(Bits, [&](const KnownBits &Known2) {

 ForeachKnownBits(1, [&](const KnownBits &KnownCarry) {

 ForeachNumInKnownBits(Known1, [&](const APInt &N1) {

 ForeachNumInKnownBits(Known2, [&](const APInt &N2) {

 ForeachNumInKnownBits(KnownCarry, [&](const APInt &Carry) {

How the synthesizer verifies a transfer function

23

With SMT semantics of the operation and transfer dialect, the synthesizer

checks soundness as a SMT query :

KnownBits
%and1

KnownBits
%and3

xor

Transfer function xor

contains? contains

KnownBits
%xor

∀Integer
%runtime_and3

∀Integer
%runtime_and1

contains

∀Integer
%runtime_xor

Our previous work

24

We defined a Transfer Dialect in MLIR and it encodes LLVM APInt

operations in SMT Dialect.

Our Previous Work:

First-Class Verification Dialects for MLIR

2023 LLVM Dev Mtg - An SMT dialect for assigning semantics to MLIR dialects

Transfer Function in
MLIR Transfer Dialect

Transfer Function in
MLIR SMT Dialect

Query to Z3 Solver about
soundness

Transfer Function in
C++

Compute precision at low
bit widths

https://users.cs.utah.edu/~regehr/papers/pldi25.pdf
https://www.youtube.com/watch?v=gZdHrve9p40

Summary

25

Our goal is not to beta LLVM transfer functions.

Our goal is to provide sound and precise transfer functions in C++ for new

operations or domains.

Design of the Synthesizer

26

Big Picture

27

Our synthesizer comes with a synthesis loop

Generate Candidates

Maintain Solution Set

Evaluate Candidates

Generate ResultSpecification

Candidates

Sound Candidates

Pruning

Solution

Set

Input Specification

28

Our input specification is defined in MLIR.

Specification

Definition of the domain

Definition of the operation

Domain members

Domain Constraints

Constructors (top, meet)

Operation with SMT semantics

Operation constraints

Transfer function signature

Find candidates by stochastic search

29

Because the search space is extremely large, we adopt a stochastic search

strategy to explore candidate transfer functions.

Function Signature Transfer Function
Fill random

operations

One step mutation

Find candidates by stochastic search

30

Because the search space is extremely large, we adopt a stochastic search

strategy to explore candidate transfer functions.

……
APInt autogen9 = autogen3 & autogen7;

APInt autogen10 = smax(autogen6, autogen4);

APInt autogen11 = umin(autogen1, autogen8);

……

APInt autogen9 = autogen3 * autogen7;

APInt autogen10 = smax(autogen9, autogen4);

Both might

happen

Evaluation Engine verifies the soundness of a transfer function and produce

a precision score by the cost function.

Evaluate candidates

31

SMT Formal Verifier

C++ JIT

Candidate

sound
?

Exhaustive Testing at

low bit widths

Added to Solution Set

Evaluation Engine

Y

N

Precision

It saves two kinds of candidates.

What candidates does the synthesizer keep?

32

Solution set

Sound candidates and
with high precision

It saves two kinds of candidates.

What candidates does the synthesizer keep?

33

Solution set

Sound candidates and
with high precision

Candidates only
sound conditionally
and with high
precision

It saves two kinds of candidates.

What candidates does the synthesizer keep?

34

Solution set

Sound candidates and
with high precision

Candidates only
sound conditionally
and with high
precision

domain candidate(LHS, RHS);

if(candidate_guard(LHS, RHS))

 return candidate(LHS, RHS);

return top();

Maintain Solution Set

35

The synthesizer maintains a dynamic pool of candidate transfer functions.

Less effective ones are pruned to prevent the solution set from growing

excessively.

Old solution set

New solution set

Evaluate candidates based
on the new solution set

C>0?

The candidate with
most contribution

Y Ncandidate stop

continue

Generate result

36

The synthesizer generates the final solution by the

meet of all transfer functions.

Vec<2> xor_solution(Vec<2> autogen0,Vec<2> autogen1){

 Vec<2> autogen2 = xor_partial_solution_0(autogen0,autogen1);

 Vec<2> autogen3 = xor_partial_solution_1(autogen0,autogen1);

 Vec<2> autogen4 = meet(autogen2,autogen3);

 return autogen4;

}

Generate result

37

The synthesizer generates the final solution by the

meet of all transfer functions.

Vec<2> xor_solution(Vec<2> autogen0,Vec<2> autogen1){

 Vec<2> autogen2 = xor_partial_solution_0(autogen0,autogen1);

 Vec<2> autogen3 = xor_partial_solution_1(autogen0,autogen1);

 Vec<2> autogen4 = meet(autogen2,autogen3);

 return autogen4;

}

Generate result

38

The synthesizer generates the final solution by the

meet of all transfer functions.

Vec<2> xor_solution(Vec<2> autogen0,Vec<2> autogen1){

 Vec<2> autogen2 = xor_partial_solution_0(autogen0,autogen1);

 Vec<2> autogen3 = xor_partial_solution_1(autogen0,autogen1);

 Vec<2> autogen4 = meet(autogen2,autogen3);

 return autogen4;

}

Solution A

Solution CSolution B

Returned Solution

Experimental Results

39

Synthesis Result

40

Here is the partial result synthesizing 39 operations on KnownBits Domain.

Transfer functions are tested on random 8-bit inputs.

Operation Ours LLVM

And/Or/Xor 100% 100%

Modu 59% 52.7%

UShlSat 96.6% N/A

Mul 60.6% 73.2%

Operation Ours LLVM

AvgFloorS 39.3% 100%

Shl 56.9% 96.5%

Abds 60.1% 100%

Add 58.70% 100%

Sub 60.6% 100%The results are sensitive to random factors, leading

to variability between runs.

Evaluation on SPEC 2017 CPU

41

We also test transfer functions on SPEC 2017 CPU benchmarks. The table

below compares Known Bits found by LLVM and ours.

Project perlbench gcc mcf omnetpp xalancbmk x264 deepsjeng leela xz

KLOC 362 1,304 3 134 520 96 10 21 33

LLVM 1,356,555 4,272,154 910 62,251 475,736 247,344 15,578 25,207 76,907

Ours 1,305,537 4,195,918 910 62,102 442,838 218,171 14,780 19,353 72,090

Precision
Loss

3.76% 1.78% 0.00% 0.24% 6.29% 11.79% 5.12% 23.22% 6.26%

Summary

42

Our goal is not to beat LLVM, but generate correct and precise transfer

functions when it comes to a new dialect or new domain.

By giving the specification and the operation with SMT semantics, the

synthesizer can generate usable and sound transfer functions used in

dataflow analysis.

Thanks for listening!

43

Yuyou Fan
Fifth-year PhD student
 yuyou.fan@utah.edu
Looking for full-time job
around May 2026
<- My resume.

mailto:yuyou.fan@utah.edu

