
Automatically generating
rewrite patterns in MLIR

* Programs

Rewrites

Representatives

Skippables

Generator

Filter

classifier

Enumerator

1Mathieu Fehr, Malo Monin

The promise of shared abstractions

Each domain get one dialect

Define optimizations for that
domain once

2By Alex Zinenko

How many MLIR dialects redefine integer arithmetic?

arith

index spirv

wasmssa tosa

smt
combfirrtl

calyx
hwarith

om

rtgtest

modarith

base2

bigint riscv

3

llvm

emit

How many MLIR dialects redefine integer arithmetic?

arith

index spirv

tosa

smt
combfirrtl

calyx
hwarith

om

rtgtest

modarith

base2

bigint riscv

4

llvm

wasmssa
emit

Why do we need so many arithmetic dialects?
arith
index
comb
hwarith
modarith
bigint
smt
riscv

5

arith
index
comb
hwarith
modarith
bigint
smt
riscv

Has poison semantics?

✅
✅
❌
❌
❌
❌
❌
❌

6

Why do we need so many arithmetic dialects?

Has 4 value logic

❌
❌
✅
✅
❌
❌
❌
❌

7

arith
index
comb
hwarith
modarith
bigint
smt
riscv

Why do we need so many arithmetic dialects?

Has undefined behavior for division

✅
✅
❌
❌
N/A
✅
❌
❌

8

arith
index
comb
hwarith
modarith
bigint
smt
riscv

Why do we need so many arithmetic dialects?

Can overflow happen?

✅
✅
✅
❌
✅
❌
✅ (bv) ❌
(int)
✅

9

arith
index
comb
hwarith
modarith
bigint
smt
riscv

Why do we need so many arithmetic dialects?

Is it cheap to add bits to the width?

❌
❌
✅
✅
❌
❌
❌
❌

10

arith
index
comb
hwarith
modarith
bigint
smt
riscv

Why do we need so many arithmetic dialects?

Why do we need so many arithmetic dialects?

Is it cheap to add bits to the width?

❌
❌
✅
✅
❌
❌
❌
❌

11

arith
index
comb
hwarith
modarith
bigint
smt
riscv

These dialects are very different from
each others !

This result in different sound optimizations

x + (y + z) = (x + y) + z

🤔
✅
✅
✅
✅
✅
✅
✅

12

arith
index
comb
hwarith
modarith
bigint
smt
riscv

This result in different sound optimizations

x * 2 ^ y = x << y if y < bitwidth

✅
❌
✅
✅
N/A
✅
✅
✅

13

arith
index
comb
hwarith
modarith
bigint
smt
riscv

This result in different sound optimizations

(x * y) / x = y if x != 0

🤔
❌
❌
✅
N/A
✅
✅ (int) ❌
(bv)
❌

14

arith
index
comb
hwarith
modarith
bigint
smt
riscv

This result in different sound optimizations

(x * y) / x = y if x != 0

🤔
❌
❌
✅
N/A
✅
✅ (int) ❌
(bv)
❌

15

arith
index
comb
hwarith
modarith
bigint
smt
riscv

These dialects have widely different
optimizations!

Defining arithmetic optimization passes is costly

16

Easy to get wrong Large amount of
dialects/ops

How to know if we
missed optimizations?

Our vision

17

InstCombine should be synthesized for each dialect

Our vision

18

Synthesize a base set of
optimizations and lowerings

with guarantees of
completeness

Use superoptimization
for additional rewrite

patterns

Tool 1 : Rewrite synthesizer

19

arith.irdl

+

0
x

+

0
x

+

0
x

+

0
x

+

0
x

 x + 0 = x

PDL

Tool 2 : Lowering synthesizer

20

arith.irdl
%0 = arith.constant 7 : i8
%1 = arith.minui %arg1, %0 : i8
%2 = arith.shrsi %arg0, %1 : i8

smt.bv.ashr %r = smt.bv.ashr %arg0, %arg1 -> !smt.bv<8>

%c = arith.constant 1 : i32
%r = arith.shli %arg0, %c : i32

Tool 3 : Superoptimizer

21

%c2 = arith.constant 2 : i32
%r = arith.muli %arg0, %c2 : i32

arith.irdl

%c2 = arith.constant 2 : i32
%r = arith.muli %arg0, %c2 : i32

Tool 3 : Superoptimizer

22

arith.irdl

+

0
x

+

0
x

+

0
x

+

0
x

+

0
x

 x - c
=

x + (-c)

PDL
program.mlir

index.irdl

Enumerative synthesis

23

Enumerative synthesis

24

Enumerative synthesis

25

Enumerative synthesis

26

Enumerator + Cost model

Equivalence checker

Enumerative synthesis

27

Equivalence checker

28

Program equivalence checking in MLIR

29

Program equivalence checking in MLIR

Program equivalence checking in MLIR

30

func.func @foo(%x : i32) {
...

}

func.func @bar(%x : i32) {
...

}

Program equivalence checking in MLIR

31

func.func @foo(%x : i32) {
...

}

func.func @bar(%x : i32) {
...

}

func.func @foo(%x : !smt.bv<32>) {
...

}

func.func @bar(%x : !smt.bv<32>) {
...

}
--arith-to-smt

Program equivalence checking in MLIR

32

func.func @foo(%x : i32) {
...

}

func.func @bar(%x : i32) {
...

}

func.func @foo(%x : !smt.bv<32>) {
...

}

func.func @bar(%x : !smt.bv<32>) {
...

}

%x = func.call @foo(%v)
%y = func.call @foo(%v)
%ne = smt.distinct %x, %y
smt.assert %ne

--arith-to-smt

Enumerative synthesis

33

Enumerator

Enumerating MLIR programs

34

Enumerating MLIR programs

35

int a = chooser->chose(2);
int b = chooser->chose(2);
llvm::errs() << a << "," << b << "\n";

Enumerating MLIR programs

36

while (auto chooser = guide.chooser()) {
int a = chooser->chose(2);
int b = chooser->chose(2);
llvm::errs() << a << "," << b << "\n";

}

Enumerating MLIR programs

37

while (auto chooser = guide.chooser()) {
int a = chooser->chose(2);
int b = chooser->chose(2);
llvm::errs() << a << "," << b << "\n";

}

Enumerating MLIR programs

38

while (auto chooser = guide.chooser()) {
int a = chooser->chose(2);
int b = chooser->chose(2);
llvm::errs() << a << "," << b << "\n";

}

a

b

0

0

0,0

Enumerating MLIR programs

39

while (auto chooser = guide.chooser()) {
int a = chooser->chose(2);
int b = chooser->chose(2);
llvm::errs() << a << "," << b << "\n";

}

a

b

0

0 1

0,0 0,1

Enumerating MLIR programs

40

while (auto chooser = guide.chooser()) {
int a = chooser->chose(2);
int b = chooser->chose(2);
llvm::errs() << a << "," << b << "\n";

}

a

b

0

0 1

b

0

1

0,0 0,1 1,0

Enumerating MLIR programs

41

while (auto chooser = guide.chooser()) {
int a = chooser->chose(2);
int b = chooser->chose(2);
llvm::errs() << a << "," << b << "\n";

}

a

b

0

0 1

b

0 1

1

0,0 0,1 1,0 1,1

Generating a program

42

Generating a program

43

i1

Generating a program

44

i1

(1) Chose op with the result type

Generating a program

45

<

i1

(1) Chose op with the result type

Generating a program

46

<

i1

(1) Chose op with the result type
(2) Chose number of operands

Generating a program

47

<

i1

(1) Chose op with the result type
(2) Chose number of operands

Generating a program

48

<

i1

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand

Generating a program

49

<

i1

i32

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand

Generating a program

50

<

i1

i32 i32

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand

Generating a program

51

<

i1

i32 i32

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand
(4) Recurse

Generating a program

52

<

i1

x

i32 i32

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand
(4) Recurse

Generating a program

53

<

i1

+x

i32 i32

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand
(4) Recurse

Generating a program

54

<

i1

+x

i32 i32

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand
(4) Recurse

Generating a program

55

<

i1

+x

i32 i32

i32

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand
(4) Recurse

Generating a program

56

<

i1

+x

i32 i32

i32 i32

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand
(4) Recurse

Generating a program

57

<

i1

+x

x

i32 i32

i32 i32

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand
(4) Recurse

Generating a program

58

<

i1

+x

1x

i32 i32

i32 i32

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand
(4) Recurse

Generating a verifying program

59

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand
(4) Recurse

Generating a verifying program

60

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand
(4) Recurse

Generating a verifying program

61

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand
(4) Recurse

irdl.dialect @arith {
 irdl.operation addi {
 %T = irdl.base "!builtin.integer"
 irdl.operands (lhs: %T, rhs: %T)
 irdl.results (res: %T)
 }
 ...
}

IRDL

Enumerative synthesis

62

Enumerative synthesis

63

Optimizations:
- Take input program
- Find equivalent

program

Enumerative synthesis

64

Optimizations:
- Take input program
- Find equivalent

program

Lowerings:
- Take input program
- Find refined program

Synthesizing all rewrites?

65

Synthesizing all rewrites?

66

- Enumerate LHS programs
- Synthesize RHS program

Synthesizing all rewrites?

67

- Enumerate LHS programs
- Synthesize RHS program

Synthesizing all rewrites?

~100 000 000 000 000 candidates 😱

68

- Enumerate LHS programs
- Synthesize RHS program

Intuition: A lot of candidates are redundant

69

Intuition: A lot of candidates are redundant

70

Our algorithm

Programs

Enumerator

71

Our algorithm

Programs

classifier

Enumerator

72

Our algorithm

Programs

Rewrites
classifier

Enumerator

73

Our algorithm

Programs

Rewrites

Representatives

Skippables

classifier

Enumerator

74

Our algorithm

* Programs

Rewrites

Skippables

Generator

classifier

Enumerator

75

Representatives

Our algorithm

* Programs

Rewrites

Skippables

Generator

Filter

classifier

Enumerator

76

Representatives

The classifier

Programs

Rewrites

Skippables

classifier

77

Representatives

Classifying programs progressively

78

Enumerated programs

Classifying programs progressively

79

Enumerated programs

Bucket 1 Bucket 2 Bucket 3

Classifying programs progressively

80

Enumerated programs

Bucket 1 Bucket 2 Bucket 3

E-class 1 E-class 2 E-class 3 E-class 4 E-class 5 E-class 6

Z3 Z3 Z3 Z3 Z3 Z3

Choosing candidates and skippables

81

Choosing candidates and skippables

82

Choosing candidates and skippables

83

Choosing candidates and skippables

84

Creating the rewrites

85

A better enumerator

* Programs

Skippables

Generator

Filter

Enumerator

86

Representatives

A generator using previous candidates

1) Choose an op with k operands

87

+

A generator using previous candidates

1) Choose an op with k operands
2) Choose k representative

88

+

x₀ + y₀ x₁

A generator using previous candidates

1) Choose an op with k operands
2) Choose k representative
3) Unify their parameters

89

+

x₀ + y₀ x₁

Removing programs with skippable subprograms

90

+

0
x

Removing programs with skippable subprograms

91

+

0
x

a b

0+

+ c

+

Removing programs with skippable subprograms

92

+

0
x

a b

0+

+ c

+

Removing programs with skippable subprograms

93

+

0
x

a b

0+

+ c

+
+

0
x

+

0
x

+

0
x

+

0
x

+

0
x

Removing programs with skippable subprograms

94

+

0
x

+

0
x

+

0
x

+

0
x

+

0
x

+

0
x

Removing programs with skippable subprograms

95

+

0
x

+

0
x

+

0
x

+

0
x

+

0
x

+

0
x

PDL

Removing programs with skippable subprograms

96

+

0
x

+

0
x

+

0
x

+

0
x

+

0
x

+

0
x

PDL

PDL Bytecode

Removing programs with skippable subprograms

97

+

0
x

+

0
x

+

0
x

+

0
x

+

0
x

+

0
x

PDL

PDL Bytecode

Our algorithm

* Programs

Rewrites

Skippables

Generator

Filter

e-class splitter

Enumerator

98

Representatives

Evaluating it on the SMT dialect

99

Evaluating it on the SMT dialect

100

Evaluating it on the SMT dialect

101

Evaluating it on the SMT dialect

102

Evaluating it on the SMT dialect

103

Speeding up our synthesis algorithm

104

This is a 3-5x speedup for superoptimization!

Synthesizing smt -> arith lowering

105

34 patterns total

Synthesizing smt -> arith lowering

106

34 patterns total

- 17 patterns lowers to 1 operations
- At most 1 minute each

Synthesizing smt -> arith lowering

107

34 patterns total

- 17 patterns lowers to 1 operations
- At most 1 minute each

- 2 patterns lowers to 2 operations (ashr and lhsr)
- Between 2 and 10 minutes each

Synthesizing smt -> arith lowering

108

%r = smt.bv.udiv(%arg0, %arg1) : !smt.bv<8>

%c0 = arith.constant 0 : i8
%zdiv = arith.cmpi eq, %arg1, %c0 : i8
%c-1 = arith.constant -1 : i8
%one = arith.constant 1 : i8
%lhs = arith.select %zdiv, %c-1, %arg0 : i8
%rhs = arith.select %zdiv, %one, %arg1 : i8
%r = arith.divui %lhs, %rhs : i8

Conclusion

109

- Simple peephole rewrites/lowerings should not be manually written

- This is a first step towards synthesizing instcombine for MLIR

- Still a lot of things to build (Generalization, Dataflow analysis)

* Programs

Rewrites

Skippables

Generator

Filter

e-class splitter

Enumerator

Representatives

