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The promise of shared abstractions

Each domain get one dialect

Define optimizations for that 
domain once

2By Alex Zinenko
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Why do we need so many arithmetic dialects?
arith
index
comb
hwarith
modarith
bigint
smt
riscv
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arith
index
comb
hwarith
modarith
bigint
smt
riscv

Has poison semantics?

✅
✅
❌
❌
❌
❌
❌
❌
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Why do we need so many arithmetic dialects?



Has 4 value logic

❌
❌
✅
✅
❌
❌
❌
❌
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Has undefined behavior for division

✅
✅
❌
❌
N/A
✅
❌
❌
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Can overflow happen?

✅
✅
✅
❌
✅
❌
✅ (bv) ❌ 
(int)
✅
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Is it cheap to add bits to the width?

❌
❌
✅
✅
❌
❌
❌
❌
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Why do we need so many arithmetic dialects?

Is it cheap to add bits to the width?

❌
❌
✅
✅
❌
❌
❌
❌

11

arith
index
comb
hwarith
modarith
bigint
smt
riscv

These dialects are very different from 
each others !



This result in different sound optimizations

x + (y + z) = (x + y) + z

🤔
✅
✅
✅
✅
✅
✅
✅
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This result in different sound optimizations

x * 2 ^ y = x << y     if  y < bitwidth

✅
❌
✅
✅
N/A
✅
✅
✅
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This result in different sound optimizations

(x * y) / x = y       if   x != 0

🤔
❌
❌
✅
N/A
✅
✅ (int) ❌ 
(bv)
❌
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This result in different sound optimizations

(x * y) / x = y       if   x != 0

🤔
❌
❌
✅
N/A
✅
✅ (int) ❌ 
(bv)
❌
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arith
index
comb
hwarith
modarith
bigint
smt
riscv

These dialects have widely different 
optimizations!



Defining arithmetic optimization passes is costly
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Easy to get wrong Large amount of 
dialects/ops

How to know if we 
missed optimizations?



Our vision
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InstCombine should be synthesized for each dialect



Our vision
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Synthesize a base set of 
optimizations and lowerings 

with guarantees of 
completeness

Use superoptimization 
for additional rewrite 

patterns



Tool 1 : Rewrite synthesizer
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Tool 2 : Lowering synthesizer
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arith.irdl
%0 = arith.constant 7 : i8
%1 = arith.minui %arg1, %0 : i8
%2 = arith.shrsi %arg0, %1 : i8

smt.bv.ashr %r = smt.bv.ashr %arg0, %arg1 -> !smt.bv<8>



%c = arith.constant 1 : i32
%r = arith.shli %arg0, %c : i32

Tool 3 : Superoptimizer
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%c2 = arith.constant 2 : i32
%r = arith.muli %arg0, %c2 : i32

arith.irdl

%c2 = arith.constant 2 : i32
%r = arith.muli %arg0, %c2 : i32



Tool 3 : Superoptimizer
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Enumerative synthesis
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Enumerative synthesis
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Enumerative synthesis
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Enumerative synthesis
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Enumerator + Cost model

Equivalence checker



Enumerative synthesis
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Equivalence checker
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Program equivalence checking in MLIR
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func.func @foo(%x : i32) {
...

}

func.func @bar(%x : i32) {
...

}



Program equivalence checking in MLIR
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func.func @foo(%x : i32) {
...

}

func.func @bar(%x : i32) {
...

}

func.func @foo(%x : !smt.bv<32>) {
...

}

func.func @bar(%x : !smt.bv<32>) {
...

}
--arith-to-smt



Program equivalence checking in MLIR
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func.func @foo(%x : i32) {
...

}

func.func @bar(%x : i32) {
...

}

func.func @foo(%x : !smt.bv<32>) {
...

}

func.func @bar(%x : !smt.bv<32>) {
...

}

%x = func.call @foo(%v)
%y = func.call @foo(%v)
%ne = smt.distinct %x, %y
smt.assert %ne

--arith-to-smt



Enumerative synthesis
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Enumerator



Enumerating MLIR programs
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Enumerating MLIR programs
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int a = chooser->chose(2);
int b = chooser->chose(2);
llvm::errs() << a << "," << b << "\n"; 



Enumerating MLIR programs
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while (auto chooser = guide.chooser()) {
int a = chooser->chose(2);
int b = chooser->chose(2);
llvm::errs() << a << "," << b << "\n"; 

}



Enumerating MLIR programs
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while (auto chooser = guide.chooser()) {
int a = chooser->chose(2);
int b = chooser->chose(2);
llvm::errs() << a << "," << b << "\n"; 

}



Enumerating MLIR programs
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while (auto chooser = guide.chooser()) {
int a = chooser->chose(2);
int b = chooser->chose(2);
llvm::errs() << a << "," << b << "\n"; 

}

a

b

0

0

0,0



Enumerating MLIR programs
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while (auto chooser = guide.chooser()) {
int a = chooser->chose(2);
int b = chooser->chose(2);
llvm::errs() << a << "," << b << "\n"; 

}

a

b

0

0 1

0,0 0,1



Enumerating MLIR programs
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while (auto chooser = guide.chooser()) {
int a = chooser->chose(2);
int b = chooser->chose(2);
llvm::errs() << a << "," << b << "\n"; 

}

a

b

0

0 1

b

0

1

0,0 0,1 1,0



Enumerating MLIR programs
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while (auto chooser = guide.chooser()) {
int a = chooser->chose(2);
int b = chooser->chose(2);
llvm::errs() << a << "," << b << "\n"; 

}

a

b

0

0 1

b

0 1

1

0,0 0,1 1,0 1,1



Generating a program
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Generating a program
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Generating a program
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i1

(1) Chose op with the result type



Generating a program
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Generating a program
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(2) Chose number of operands



Generating a program
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Generating a program
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<

i1

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand



Generating a program
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<

i1

i32

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand



Generating a program
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<

i1

i32 i32

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand



Generating a program
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(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand
(4) Recurse



Generating a program
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x

i32 i32

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand
(4) Recurse



Generating a program
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i32 i32

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand
(4) Recurse



Generating a program

54

<

i1

+x

i32 i32

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand
(4) Recurse



Generating a program
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i32

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand
(4) Recurse



Generating a program
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Generating a program
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<

i1

+x

x

i32 i32

i32 i32

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand
(4) Recurse



Generating a program

58

<

i1

+x

1x

i32 i32

i32 i32

(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand
(4) Recurse



Generating a verifying program
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(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand
(4) Recurse



Generating a verifying program
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(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand
(4) Recurse



Generating a verifying program
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(1) Chose op with the result type
(2) Chose number of operands
(3) Chose type for each operand
(4) Recurse

irdl.dialect @arith {
  irdl.operation addi {
    %T = irdl.base "!builtin.integer"
    irdl.operands (lhs: %T, rhs: %T)
    irdl.results (res: %T)
  }
  ...
}

IRDL



Enumerative synthesis
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Enumerative synthesis
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Optimizations:
- Take input program
- Find equivalent 

program



Enumerative synthesis
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Optimizations:
- Take input program
- Find equivalent 

program

Lowerings:
- Take input program
- Find refined program



Synthesizing all rewrites?
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Synthesizing all rewrites?
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- Enumerate LHS programs
- Synthesize RHS program



Synthesizing all rewrites?
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- Enumerate LHS programs
- Synthesize RHS program



Synthesizing all rewrites?

~100 000 000 000 000 candidates 😱
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- Enumerate LHS programs
- Synthesize RHS program



Intuition: A lot of candidates are redundant
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Intuition: A lot of candidates are redundant

70



Our algorithm

Programs

Enumerator
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Our algorithm
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The classifier

Programs
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Representatives



Classifying programs progressively
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Enumerated programs



Classifying programs progressively
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Enumerated programs

Bucket 1 Bucket 2 Bucket 3



Classifying programs progressively
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Enumerated programs

Bucket 1 Bucket 2 Bucket 3

E-class 1 E-class 2 E-class 3 E-class 4 E-class 5 E-class 6

Z3 Z3 Z3 Z3 Z3 Z3



Choosing candidates and skippables
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Choosing candidates and skippables
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Choosing candidates and skippables
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Choosing candidates and skippables
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Creating the rewrites
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A better enumerator
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A generator using previous candidates

1) Choose an op with k operands
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+



A generator using previous candidates

1) Choose an op with k operands
2) Choose k representative

88

+

x₀ + y₀ x₁



A generator using previous candidates

1) Choose an op with k operands
2) Choose k representative
3) Unify their parameters

89

+

x₀ + y₀ x₁



Removing programs with skippable subprograms
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Removing programs with skippable subprograms
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Removing programs with skippable subprograms
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Removing programs with skippable subprograms
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Removing programs with skippable subprograms
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Removing programs with skippable subprograms
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Removing programs with skippable subprograms
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Removing programs with skippable subprograms
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Our algorithm
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Evaluating it on the SMT dialect
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Evaluating it on the SMT dialect
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Evaluating it on the SMT dialect
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Evaluating it on the SMT dialect
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Evaluating it on the SMT dialect
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Speeding up our synthesis algorithm
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This is a 3-5x speedup for superoptimization!



Synthesizing smt -> arith lowering
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34 patterns total



Synthesizing smt -> arith lowering
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34 patterns total

- 17 patterns lowers to 1 operations
- At most 1 minute each



Synthesizing smt -> arith lowering
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34 patterns total

- 17 patterns lowers to 1 operations
- At most 1 minute each

- 2 patterns lowers to 2 operations (ashr and lhsr) 
- Between 2 and 10 minutes each



Synthesizing smt -> arith lowering
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%r = smt.bv.udiv(%arg0, %arg1) : !smt.bv<8>

%c0 = arith.constant 0 : i8
%zdiv = arith.cmpi eq, %arg1, %c0 : i8
%c-1 = arith.constant -1 : i8
%one = arith.constant 1 : i8
%lhs = arith.select %zdiv, %c-1, %arg0 : i8
%rhs = arith.select %zdiv, %one, %arg1 : i8
%r = arith.divui %lhs, %rhs : i8



Conclusion
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- Simple peephole rewrites/lowerings should not be manually written

- This is a first step towards synthesizing instcombine for MLIR

- Still a lot of things to build (Generalization, Dataflow analysis)
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