
Lightweight Fault Isolation (LFI): LLVM
Support for Efficient Native Code

Sandboxing

Zachary Yedidia and Tal Garfinkel

Shout out

Nathan Egge, Sharjeel Khan, Daniel Moghimi, Shravan Narayan, Taehyun Noh, Abhishek

Sharma, Pirama Arumuga Nainar, Derek Schuff, Colin Cross, Matthew Maurer, Dan

Behrendt, Kris Adler, Wonsik Kim, Urs Hölzle, Cory Baker, Matthew Sotoudeh, Eli

Friedman, MaskRay, Alexis Engelke

Memory Safety is a Big Problem

Google Chrome: ~70% of bugs (2015–2020) Microsoft Windows: ~70% of bugs (2006–2018)

Image from the Chromium project blog
https://www.chromium.org/Home/chromium-security/memory-safety/

Image from the Microsoft security response center blog
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/

https://www.chromium.org/Home/chromium-security/memory-safety/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/

Limited Options

Unsound Mitigations: ASLR, stack canaries, CFI, bounds checks.
 +Works with existing code!

 -Often bypassed

 -Hard to reason about benefits + overheads

Rewrite code in safe language (Rust)?

 +Sound security properties

 -Huge engineering cost and time: rewrite, retest, support

 -Lose benefits of Cooperation: expertise, shared ownership

Sound Security + Works with Existing Code?

Process-based Sandboxing?
Process 1 Process 2

App Library

Kernel (Linux)

Shared mem Shared mem

The Good:

+ Sound Security Properties!
+ Works with existing library code!

The Bad: Expensive:

Slow context switches (IPC), Sandbox Creation, Memory
Overheads

Higher Latency, Lower Throughput, Poor scalability

The Ugly: Awkward + Complex

Refactoring, Developer experience 😞

application => distributed system

Is there another option?

Sandboxing in Firefox Render with WebAssembly

Firefox

libjpeg

0x41000000

0x42000000

libogg

0x43000000

jpeg.c memory isolation control isolation

Wasm Compiler and $0x0
mov 4, %
and $0x0
mov 4, %
libjpeg

https://www.usenix.org/conference/usenixsecurity20/presentation/narayan

100x faster startup

1000x faster context switches

Less memory

https://www.usenix.org/conference/usenixsecurity20/presentation/narayan

Font rendering

Audio playback

Decompression

XML parsing

Spell checking

Dec 2021
All platforms
(~200 million users)

Feb 2020

Mac, Linux

Deployed in Firefox since 2021

Wasm has many limitations…
Compatibility:

Very limited SIMD/intrinsics

No hand-written assembly

No dynamic code generation (JIT)

libc compat (WASI-libc – no glibc, bionic, etc.)

Limited POSIX

ABI differences (different pointer sizes)

Break’s existing tools: debuggers, perf,

sanitizers,...

Performance:

Wasm2c on ARM64:

37.5% Geomean on SPEC 2017

Limits optimization (😞):

e.g. Precise memory traps => no

truncating SFI

Breaks key library optimizations (😞)

- SIMD, Hand-written Assembly, JIT

Wasm - Good for the Web, LFI - Good for library sandboxing

High-level SFI – WebAssembly

>> target sandboxed IR <<

Platform Independence

Low-level SFI – LFI, (original SFI, NaCl)

>> low level instruction rewrites <<

Compatibility, Performance, Security, Simplicity

Android

Half of AOSP is Unsafe Third-Party Code

Third-party
native code

Total Code in AOSP (123M)

Lightweight Fault Isolation (LFI)

Low-level SFI for isolating buggy or malicious C/C++/Asm.

Performance: fully exploit architecture and compiler

Compatibility: Linux API, 64-bit ABI, hand-written Asm, existing tools (gdb, perf, etc.)

Security: simple, verifiable => high assurance isolation.

Usability: easy retrofitting in existing code; minimal change to dev experience

…Another tool in the LLVM memory safety toolbox… RFC on discourse

Lightweight Fault Isolation

LFI Compiler Pipeline
Compile

Rewrite

Assemble

Link

Verify

.c

MCInst

MCInst

.o

.elf

New architecture target: aarch64_lfi.
(example: aarch64_lfi-linux-musl)

Uses custom LFI MCStreamer to apply rewrites.
Goal: automatically handle hand-written asm.
Alternative: external .s/.o rewriter.

Other compiler stages remain unchanged*.
*only need to reserve a few registers.

clang

lld

lfi-verify

All sandboxed code goes through the rewriter:
Libc, dynamic linker, libc++, compiler-rt, …

LFI Execution Environment

Runtime handles syscalls (indirect branches) and enforces strict W^X.
Dynamic codegen can be supported: Run verifier before mprotect(PROT_EXEC).

48-bit address space: supports up to 64K sandboxes (80KiB guard pages).

64-bit ABI: matches host ABI, compatible with existing code.

Rewriting Memory Accesses

Reserve x27: sandbox base.

ldr x0, [x1]

add x28, x27, w2, uxtw
ldp x0, x1, [x28]

ldr x0, [x27, w1, uxtw]

ldp x0, x1, [x2]

Mask with addressing mode

Mask with guard instruction

Reserve x28: any sandbox address.

For experts: Arm64 fixed-width instructions ⇾ no bundling necessary. See paper for details.

Rewriting Control Flow

Mask all modifications to x28, x30.

Rewrite indirect branches to target x28.

add x28, x27, w0, uxtw
br x28

br x0 Key: Arm64 instructions are
fixed-width!

Safe as long as each individual
instruction is safe.

ret ret

Rewriting System Call Instructions

Runtime entrypoints: placed before the first page of the sandbox (read-only).

svc #0 ldur x30, [x27, #-8]
blr x30

→ x27 already points here!

Thread-local storage: reserve a register (x25), or alternatively rewrite to runtime call.

mrs x0, tpidr_el0 ldr x0, [x25, #TP]

LFI Runtime

LFI runtime: Loads sandbox, and handles system calls that come from the sandbox.

Implements a Linux API (similar to WASI, QEMU-user).

Many system calls are passed through with simple checks.

LFI runtime: virtualizes user mode

Sandbox 2

LFI Runtime (Linux API)

Sandbox 3Sandbox 1

Putting it all together

$ git clone https://github.com/lua/lua

$ cd lua

$ make CC=aarch64_lfi-linux-musl-clang

...

$ lfi-run ./lua

Lua 5.5.0 Copyright (C) 1994-2025 Lua.org, PUC-Rio

> print('hello world')

hello world

0000000000023900 <lua_xmove>:
 23900: eb01001f cmp x0, x1
 23904: 54000360 b.eq 0x23970 <lua_xmove+0x70>
 23908: 8b2042b2 add x28, x27, w0, uxtw
 2390c: f9400a48 ldr x8, [x28, #0x10]
 23910: 7100045f cmp w2, #0x1
 23914: cb22d108 sub x8, x8, w2, sxtw #4
 23918: f9000a48 str x8, [x28, #0x10]

Support for x86-64: Control Flow

Primary challenge: variable-width instructions.

● Simple solution: instruction bundles (32-byte chunks).

jmpq *%rax andl $0xfffffffe0, %eax
addq %r14, %rax
jmpq *%rax

Support for x86-64: Segmentation

Problem: no %rX + %eX addressing mode!

But there is %gs + %eX…

Store sandbox base in %gs, and use segment-relative addressing.

Cuts performance overhead from ~15% to ~7%!

See “Segue” paper: https://shravanrn.com/pubs/seguecg.pdf

movq %rax, (%rdi) movq %rax, %gs:(%edi)

https://shravanrn.com/pubs/seguecg.pdf

Performance

Performance: SPEC 2017

Geometric mean (full): 6.9%

Geometric mean (stores): 1.6%

Geometric mean (jumps): 0.9%

Performance (x86-64): SPEC 2017

Geometric mean (full): 7.1%

Geometric mean (stores): 5.5%

Geometric mean (jumps): 4.4%

Performance: libopus

Standalone opus_demo on Pixel 9, using LFI configured as store-only and load/store.

● Single-threaded, pinned to each
of the core sizes.

● Performance delta normalized
to unsandboxed decoder.

● Costs higher on A520 core
due to in-order execution.

Performance: libdav1d

dav1d is an AV1 decoder:

LOTS of hand-written assembly.

Performance critical, lots of asm: “stress test” for LFI!

Totals grouped by language:
asm: 234001 (85.33%)
ansic: 40075 (14.61%)
sh: 161 (0.06%)

Microbenchmark: Trampoline Overhead

Platform Cycles Time

Function call (native) 2 0.7ns

Function call (LFI) 74 23ns

System call (native) 358 130ns

Context switch (native) 15770 6807ns

Measured on Pixel 7

LFI: much better than inter-process communication (and less noisy).
Future: room for trampoline optimizations.

Ongoing Work

1. LFI-SpiderMonkey: Working on a secure production JIT engine.

Put the entire engine (C++ and generated code) in an LFI sandbox.

Update Gecko to use SpiderMonkey as a sandboxed library.

2. LFI Kernel Modules: Device driver isolation.

Conclusion

Lightweight Fault Isolation:

- Fast, Compatible, Simple, Secure.

- Coming soon to LLVM and Android!

How you can help!

- LFI Pilot Studies

- LFI FFI support: Java, Swift, Python,...

- LLVM implementation: optimizations, test suite, AArch64 MCInst info…

Check out RFC on Discourse!

https://lfi-project.org

Extra Slides

Simple Verification

Enables: supply chain (build) safety, safe closed-source libraries, verifies rewriter.

mov x28, x0add x28, x27, w0, uxtw

Fast (500+ MiB/s), Simple (~400 LoC), Easy to fuzz/formally verify

Verifyfoo.elf

RLBox for Retrofitting Safely in Existing Code
1. RLBox forces control flow to be explicit

2. RLBox forces data from the sandbox to be marked tainted

3. Tainted data must be checked before use

uint32_t size = jpeg_img->image_size; tainted<uint32_t> size = jpeg_img->image_size;

Compiler error

memcpy(/* ... */, size); memcpy(/* ... */, size.copy_and_verify(...));

Compiler error

jpeg_read_header(jpeg_img); sandbox.invoke(jpeg_read_header, jpeg_img);

Compiler error

Android…
3.5 billion devices and growing

45% of global OS market

72% of global smartphone market (over 3B devices)

>45% of tablets

Lots of (Unpatched) third-party native libraries in popular
Apps

Too Quiet in the Library: An Empirical Study of
Security Updates in Android Apps' Native
Code

Frequent vulnerabilities

https://arxiv.org/abs/1911.09716
https://arxiv.org/abs/1911.09716
https://arxiv.org/abs/1911.09716

