Lightweight Fault Isolation (LFl): LLVM
Support for Efficient Native Code
Sandboxing

Zachary Yedidia and Tal Garfinkel

Google

Shout out

Nathan Egge, Sharjeel Khan, Daniel Moghimi, Shravan Narayan, Taehyun Noh, Abhishek
Sharma, Pirama Arumuga Nainar, Derek Schuff, Colin Cross, Matthew Maurer, Dan

Behrendt, Kris Adler, Wonsik Kim, Urs Holzle, Cory Baker, Matthew Sotoudeh, Eli
Friedman, MaskRay, Alexis Engelke

Android Google
TEXAS

The University of Texas at Austin

Memory Safety is a Big Problem

Google Chrome: ~70% of bugs (2015-2020) Microsoft Windows: ~70% of bugs (2006—2018)

High+, impacting stable

Security-related assert

Other Use-after-free

% of CVEs

2012 2013 2014 2015 2016 2017 2018
Patch Year

2006 2007 2008 2009 2010 20m

Other memory unsafety
W Memory safety @ Not memory safety

Image from the Microsoft security response center blog

Image from the Chromium project blog
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/

https://www.chromium.org/Home/chromium-security/memory-safety/

https://www.chromium.org/Home/chromium-security/memory-safety/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/

Limited Options

Unsound Mitigations: ASLR, stack canaries, CFl, bounds checks.
+Works with existing code!

-Often bypassed
-Hard to reason about benefits + overheads
Rewrite code in safe language (Rust)?
+Sound security properties
-Huge engineering cost and time: rewrite, retest, support

-Lose benefits of Cooperation: expertise, shared ownership

Sound Security + Works with Existing Code?

Process-based Sandboxing?
The Good:

+ Sound Security Properties!
+ Works with existing library code!

The Bad: Expensive:

Slow context switches (IPC), Sandbox Creation, Memory
Overheads

Higher Latency, Lower Throughput, Poor scalability
The Ugly: Awkward + Complex
Refactoring, Developer experience &

application => distributed system

Process 1 Process 2

App Library

A A

Kernel (Linux)

Is there another option?

Sandboxing in Firefox Render with WebAssembly

Wasm Compiler M

memory isolation

control isolation

100x faster startup

1000x faster context switches

Less memory

> libjpeg |

0x41000000
& libjpeg ﬂ

0x42000000
& libogg m

, = 9x43000000

Securing Firefox with WebAssembly

By Nathan Froyd

Posted on February 25. 2020 in Featured Article, Firefox, Rust, Security, and WebAssembly,

Protecting the security and privacy of individuals is a central tenet of Mozilla's
mission, and so we constantly endeavor to make our users safer online. With a

https://www.usenix.org/conference/usenixsecurity20/presentation/naravan

https://www.usenix.org/conference/usenixsecurity20/presentation/narayan

Deployed in Firefox since 2021

Securing Firefox with WebAssembly

By Nathan Froyd

osted on February 25. 2020 in Featured Article, Firefox, Rust, Security, and WebAssembly,

Protecting the security and privacy of individuals is a central tenet of Mozilla's
mission, and so we constantly endeavor to make our users safer online. With a

WebAssembly and Back Again: Fine-
Grained Sandboxing in Firefox 95

-~y By Bobby Holley
)
@ Posted on December 6, 2021.in Featured Article, Firefox, and JavaS

In Firefox 95, we're shipping a novel sandboxing technology called RLBox —

o0 20 /{ Font rendering
Mac, Linux Audio playback
Decompression

XML parsing
Spell checking

i -
Dec 2021
All platforms

./ (~200 million users)

Wasm has many limitations...
Compatibilitym

Very limited SIMD/intrinsics

No hand-written assembly

No dynamic code generation (JIT)

libc compat (WASI-libc — no glibc, bionic, etc.)
Limited POSIX

ABI differences (different pointer sizes)

Break’s existing tools: debuggers, perf,
sanitizers,...

37.5% Geomean on SPEC 2017

PerformanceQ

Wasm2c on ARM64:

Limits optimization ((=)):

e.g. Precise memory traps => no
truncating SFI

Breaks key library optimizations (=)

- SIMD, Hand-written Assembly, JIT

Wasm - Good for the Web, LFI - Good for library sandboxing

High-level SFI - WebAssembly Low-level SFI - LFl, (original SFI, NaCl)
>> target sandboxed IR << >> low level instruction rewrites <<
Platform Independence Compatibility, Performance, Security, Simplicity

WA oo JER

arm

Android

Half of AOSP is Unsafe Third-Party Code
Total Code in AOSP (123M)

(" Assembly (1.5M)

1.2%

C++ (33M)

26.8%
Third-party o

er

native code 29.5%

C (28M)

22.5%

Lightweight Fault Isolation (LFI)

Low-level SFI for isolating buggy or malicious C/C++/Asm.

Performance: fully exploit architecture and compiler
Compatibility: Linux API, 64-bit ABI, hand-written Asm, existing tools (gdb, perf, etc.)
Security: simple, verifiable => high assurance isolation.

Usability: easy retrofitting in existing code; minimal change to dev experience

...Another tool in the LLVM memory safety toolbox... RFC on discourse

Lightweight Fault Isolation

LFI Compiler Pipeline

New architecture target: aarch64_1f1i.
(example: aarch64_1fi-linux-musl)

Uses custom LFI MCStreamer to apply rewrites.

Goal: automatically handle hand-written asm.

Alternative: external .s/.o rewriter.

Other compiler stages remain unchanged*®.
*only need to reserve a few registers.

All sandboxed code goes through the rewriter:
Libc, dynamic linker, libc++, compiler-rt, ...

clang <<

11ld

1fi-verify

-

{
{

E.c

Compile

MCInst

A

Rewrite

MCInst

A

Assemble

.0

Link

.elf

Verify

LFl Execution Environment

4GiB

code | 32.bit pointer data .

Runtime handles syscalls (indirect branches) and enforces strict WAX.
Dynamic codegen can be supported: Run verifier before mprotect (PROT_EXEC).

48-bit address space: supports up to 64K sandboxes (80KiB guard pages).

64-bit ABI: matches host ABI, compatible with existing code.

Rewriting Memory Accesses

Reserve x27: sandbox base.

Reserve x28: any sandbox address.

4GiB

ldr x0, [x1]

ldr x0, [x27, wl, uxtw]

ldp x0, x1, [x2]

add x28, x27, w2, uxtw
ldp x0, x1, [x28]

code | 30.pit pointer data

Mask with addressing mode

Mask with guard instruction

For experts: Arm64 fixed-width instructions — no bundling necessary. See paper for details.

Rewriting Control Flow

Mask all modifications to x28, x30.

Rewrite indirect branches to target x28.

4GiB

code 32-bit pointer data .

br x0

add x28, x27, w0, uxtw
br x28

ret

ret

Key: Arm64 instructions are
fixed-width!

Safe as long as each individual
instruction is safe.

Rewriting System Call Instructions

Runtime entrypoints: placed before the first page of the sandbox (read-only).

— Xx27 already points here!

svc #0 ldur x30, [x27, #-8]
blr x30

Thread-local storage: reserve a register (x25), or alternatively rewrite to runtime call.

mrs x0, tpidr_el0O ldr x0, [x25, #TP]

LFl Runtime

LFl runtime: virtualizes user mode

Sandbox 1 Sandbox 2 Sandbox 3

LFI Runtime (Linux API)

16)

LFI runtime: Loads sandbox, and handles system calls that come from the sandbox.

Implements a Linux API (similar to WASI, QEMU-user).

Many system calls are passed through with simple checks.

Putting it all together

$ git clone https://github.com/lua/lua

0000000000023900 <lua_xmove>:
23900: eb01001f cmp x0, x1
S cd lua 23904: 54000360 b.eq 0x23970 <lua_xmove+0x70>
23908: 8b2042b2 add Xx28, x27, w0, uxtw
. . 2390c: f9400a48 1dr x8, [x28, #0x10]
$ make CC=aarch64_1fi-1linux-musl-clang 23910: 7100045f cmp w2, #Ox1
23914: cb22d108 sub X8, X8, w2, sxtw #4
23918: f9000a48 str x8, [x28, #0x10]

$ Lfi-run ./lua

Lua 5.5.0 Copyright (C) 1994-2025 Lua.org, PUC-Rio
> print('hello world')

hello world

; @
, :
, \
| \
| ,
\ ,
: :

\ ;

\ ,

Support for x86-64: Control Flow

Primary challenge: variable-width instructions.

Simple solution: instruction bundles (32-byte chunks).

!

!

jmpq *%rax

andl SOxfffffffed, %eax
addq %ri14, %rax
jmpq *%rax

Support for x86-64: Segmentation

Problem: no %rX + %eX addressing mode! 4GiB

code | 32.pit pointer data .

Store sandbox base in %gs, and use segment-relative addressing.

But there is %gs + %eX...

movq %rax, (%rdi) movq %rax, %gs:(%edi)

Cuts performance overhead from ~15% to ~7%!

See “Segue” paper: https://shravanrn.com/pubs/seguecg.pdf

https://shravanrn.com/pubs/seguecg.pdf

Performance

Performance: SPEC 2017

Percent increase over native runtime

20

-
o

=
o

Overhead on SPEC 2017 benchmarks - Apple M2 (Arm64)

6.3

4.8

8.3

6.7

8:3

9.3

LFI =
LFI-stores B
LFl-jumps 3

6.9
6.3

Geometric mean (full): 6.9%
Geometric mean (stores): 1.6%

Geometric mean (jumps): 0.9%

Performance (x86-64): SPEC 2017

Percent increase over native runtime

20

Py
o

=y
o

Overhead on SPEC 2017 benchmarks - AMD Ryzen 9 7950X (x86-64)

LFI mm
LFI-stores B
LFl-jumps B3

Geometric mean (full): 7.1%
Geometric mean (stores): 5.5%

Geometric mean (jumps): 4.4%

Performance: libopus OopPUS

Standalone opus_demo on Pixel 9, using LFI configured as store-only and load/store.

e Single-threaded, pinned to each Pixel 9 Opus+LFlI (higher is worse)

Of the core sizes B Opus M Opus+LFIW [l Opus+LFIRW
120%

® Performance delta normalized
to unsandboxed decoder. 110%

® Costs higher on A520 core 100%
due to in-order execution. I I I

Medium Small

Performance: libdavld

davld is an AV1 decoder:

LOTS of hand-written assembly.

Totals grouped by language:

asm: 234001 (85.33%)
ansic: 40075 (14.61%)
sh: 161 (0.06%)

d=Vi

LFI dav1d - percent overhead

B stores only loads and stores
15.00%
10.00%
5.00%
0.00% J -] . . I .
8-hit 10-hit 8-hit 10-hit 8-hit 10-hit
Big Big Medium Medium Small Small

Performance critical, lots of asm: “stress test” for LFI!

Microbenchmark: Trampoline Overhead

Measured on Pixel 7

Platform Cycles Time
Function call (native) 2 0.7ns
Function call (LFI) 74 23ns
System call (native) 358 130ns
Context switch (native) | 15770 6807ns

LFI: much better than inter-process communication (and less noisy).
Future: room for trampoline optimizations.

Ongoing Work
¥piderMonkey

1. LFI-SpiderMonkey: Working on a secure production JIT engine.
Put the entire engine (C++ and generated code) in an LFI sandbox.

Update Gecko to use SpiderMonkey as a sandboxed library.

May 2, 2024 08:23AM
lium > Blink > JavaScript > Sandbox " 361279118 > 40931165 > 338381304 ~

Qualcomm components

These vulnerabilities affect Qualcomm components and are described in further detail in the appropriate Qualcomm

V8 Sand bOX Bypass. StaCk corru ption d ue to parameter count m IsmatCh security bulletin or security alert. The severity assessment of these issues is provided directly by Qualcomm.

CVE References Severity Subcomponent

CVE-2024-45569 A-377311993 Critical WLAN
QC-CR#3852339

CVE-2024-45571 A-377313069 High WLAN
QC-CR#3834424
. . . .
2. LFl Kernel Modules: Device driver isolation R camee
L . . QC-CR#3868093
CVE-2024-49832 A-377312238 High Camera
QC-CR#3874301
CVE-2024-49833 A-377312639 High Camera

QC-CR#3874372 [2] [3] [4]

CVE-2024-49834 A-377312055 High Camera
QC-CR#3875406

GVE-2024-49839 A-377311997 High WLAN
QC-CR#3895196
GVE-2024-49843 A-377313194 High Display

QC-CR#3883522

Conclusion

Lightweight Fault Isolation:

- Fast, Compatible, Simple, Secure.
- Coming soon to LLVM and Android!

How you can help! L F I
LFI Pilot Studies

- LFI FFI support: Java, Swift, Python,...

LLVM implementation: optimizations, test suite, AArch64 MClnst info...

Check out RFC on Discourse!

https://Ifi-project.org

Extra Slides

Simple Verification

Enables: supply chain (build) safety, safe closed-source libraries, verifies rewriter.

foo.elf —

Verify

%

add x28, x27, w0, uxtw

v

X

mov Xx28, X0

Fast (500+ MiB/s), Simple (~400 LoC), Easy to fuzz/formally verify

X

RLBox for Retrofitting Safely in Existing Code

1. RLBox forces control flow to be explicit

Compiler error
jpeg_read_header(jpeg_img); sandbox.invoke(jpeg _read_header, jpeg img);

2. RLBox forces data from the sandbox to be marked tainted

tainted<uint32_t> size = jpeg _img->image_size; ;

3. Tainted data must be checked before use

Compiler error
memcpy (, size); memcpy (, size.copy_and verify(...)) ;%

Compiler error

uint32_t size = jpeg_img->image_size;

1@

Android...

3.5 billion devices and growing

45% of global OS market

72% of global smartphone market (over 3B devices)

>45% of tablets

Lots of (Unpatched) third-party native libraries in popular

Apps

amazon
N .
music

2

DOORDASH

€ MUSIC I

TikTok

kindle

o~

Norton VPN

200Mm ® chrome

Frequent vulnerabilities

App Name Vul Lib Version Vul TTRP TTAF

Announced (Days) (Days)
Xbox XML2-2.7.7 2014-11-04 12 1956
Apple Music XML2-2.7.7 2014-11-04 12 1704
TikTok GIFLib-5.1.1 2015-12-21 87 1429
Zoom Meetings OpenSSL-1.0.0a 2010-08-17 91 1323
Amazon Alexa OpenSSL-1.0.1s 2016-05-04 12 1086
Amazon Kindle Libpng-1.6.34 2017-01-30 330 1019
StarMaker FFmpeg-3.2 2016-12-23 4 1001
eBay OpenCV-2.4.13 2017-08-06 41 905
Fitbit SQlite3-3.20.1 2017-10-12 12 902
Uber OpenCV-2.4.13 2017-08-06 41 830
Snapchat SQlite3-3.20.1 2017-10-12 12 670
Discord GIFLib-5.1.1 2015-12-21 87 665
Lyft OpenCV-2.4.11 2017-08-06 41 662
Twitter GIFLib-5.1.1 2015-12-21 87 457
Instagram FFmpeg-2.8.0 2017-01-23 2 267

Too Quiet in the Library: An Empirical Study of
Security Updates in Android Apps' Native
Code

https://arxiv.org/abs/1911.09716
https://arxiv.org/abs/1911.09716
https://arxiv.org/abs/1911.09716

