
Lang Hames

Powering Xcode Previews
with LLVM’s JIT

Dynamic Development Workflows
LLVM JIT’s Role

• Reuse existing compiler pipelines and compiled libraries in dynamic contexts

• LLDB expression evaluation, Cling / clang-repl (interactive C++),
CppInterOp (Python + C++)1, Jank (Clojure + C++), Clasp (LISP + C++)2, …

• All know when they’re targeting the LLVM JIT

• What about programs that weren’t intended to be run under LLVM’s JIT?

• i.e. Projects with regular build systems targeting static compilers

• Can run them under the JIT and preserve behavior? Can the JIT scale?

• What could we build with this?
1. Enabling Interactive C++ in Clang, youtu.be/33ncbIQoa4c
2. Implementing Common Lisp with LLVM, youtu.be/mbdXeRBbgDM

http://youtu.be/33ncbIQoa4c
http://youtu.be/mbdXeRBbgDM

• A foundation for concurrent, heterogeneous, cross-process/architecture/OS JITing

• Reuse static compilers in a dynamic context

• Provide access to LLVM optimizations to existing JITs

• Mix-and-match — build one JIT’d program using multiple compilers / languages

• Compilers don’t need to coordinate with one another

• Three components: a coordination layer, a just-in-time linker, and a runtime

ORC — On Request Compilation
LLVM’s JIT APIs

libBar

libFoo
• Symbols

• Addresses (once resolved)

• Content (once emitted)

• Dependencies on one another

• Containers (JITDylibs), linker attributes

• ORC Core is agnostic with regards to…
which address space,
how content is produced,
how dependencies identified

Component 1: ORC Core
Coordination — Common Language

foo1000abc0 : stp x29, …
 mov x29, …
 bl bar
 ldp x29, …
 ret

bar1000abd4 : mov w0, #42
 ret

(strong)

(weak)

have…

• MaterializationUnits encapsulate the process of producing symbols

• Declare an interface (a set of symbols and linkages), added to JITDylibs

• Triggered on first lookup of any symbol within them

• resolve callback maps symbols to addresses (content needn’t be written yet)

• emit callback notifies ORC that content has been written, what symbol dependencies are

• Lookup may be issued on any thread at any time for any set of symbols

• Dependence info ensures that reachable symbols are emitted before lookup returns

Component 1: ORC Core
Coordination — APIs

Component 2: JITLink

• JITLink links object files into JIT’d memory (it’s an object file materializer)

• Trivially JIT LLVM IR: LLVM IR → CodeGen → Object → JITLink → JIT’d memory

• Or: YourLanguage → YourCompiler → Object → JITLink → JIT’d memory

• Precompiled object files, archives can just be loaded directly

• Customizable memory manager controls how linked code is transferred to JIT’d memory

• Plugin interface allows customization of the link process

Component 3: ORC runtime

• Lives in the executing process with JIT’d code

• Supports advanced features

• Initializers, exceptions, thread locals, …

• POSIX API emulation: dlopen, dlsym, …

• Supports calls (including via IPC/RPC) from JIT’d code to ORC support functions

ORC Components

Process

Orc Core

JITLink

Orc Runtime

JIT’d codeOther
Materializers

Core, JITLink, and the Orc Runtime

ORC Components

Controller Process Executor Process

Orc Core

JITLink

Orc Runtime

JIT’d codeOther
Materializers

Core, JITLink, and the Orc Runtime

See the ORCv2 Deep Dive talk for more details — youtu.be/i-inxFudrgI

http://youtu.be/i-inxFudrgI

Xcode Previews

Live Preview
Swift UI
Code

#Preview macro
now JIT’d!

SwiftUI Programs

• Can get weird…

• Mixed languages, static archives

• Multiple slices (arm64, x86-64…)

• Entitlements (e.g. hardened runtime)

• Interesting linker options (-r, …)

• Interesting assembly options
(no .subsections_via_symbols)

• Can get large…

• Thousands of files

• Hundreds of megabytes code and data

• Hundreds of thousands of relocations

• Often split into multiple frameworks /
dynamic libraries

• Cross process

• Object files in (no laziness)

• Override Plugin (OP) applied

• Custom memory management

• Dynamic Loader Integration
presents JIT’d code as-if
statically linked

• Concurrency for performance

Xcode Previews JIT Setup

Controller

Executor

Previews
JIT JIT’d User App

.oUser App
Object Files

Custom
Memory
Manager

Dynamic
Loader

Integration

JIT-runtime

OP

• JITLink APIs can rename, add code / data

• On first definition

• Rename function, set scope to local

• Introduce stub with original name,
stub pointer pointed at original body foo:

 sub sp, sp, #0x50
 …

foo$body_1: ; now locally scoped
 sub sp, sp, #0x50
 …

Override Plugin
Fast Function Body Replacement

foo: ; stub takes original name
 adrp x8, foo_ptr@PAGE
 ldr x0, [x8, foo_ptr@PAGEOFF]
 br x0

foo_ptr:
 .quad foo$body_1

• JITLink APIs can rename, add code / data

• On first definition

• Rename function, set scope to local

• Introduce stub with original name,
stub pointer pointed at original body

• On subsequent definition

• Rename function, set scope to local

• Update pointer to point at new body

foo$body_1: ; now locally scoped
 sub sp, sp, #0x50
 …

Function Body Overrides

foo: ; stub takes original name
 adrp x8, foo_ptr@PAGE
 ldr x0, [x8, foo_ptr@PAGEOFF]
 br x0

foo$body_2:
 sub sp, sp, #0x60
 …

foo_ptr:
 .quad foo$body_2

• Applies code-signing to JIT’d code

• Used to ensure that we don’t affect the
behavior of Hardened Runtime apps

• Uses a custom Preview signature type
Only usable for apps in development mode

• Data transported via shared memory

• Code is written to disk, signed, and then
mmap’d in the executing process

Custom Memory Management

Controller

Executor
Data via
shared
memory

Text sections written
to disk, signed

mmap’d

Dynamic Loader Integration
Overview

• What should dlsym(“foo”) return if foo is JIT’d?

• Answer: &foo (same as-if precompiled)

• But: call to dlsym might be in precompiled code — we’ll need the dynamic loader’s help

• Teach the dynamic loader to treat JIT’d code as if it were regular dylibs…

• … A “pseudo-dylib” defined by callbacks rather than a file (callbacks implemented by our JIT)

• POSIX APIs like dlsym naturally supported

• Precompiled code can bind against JIT’d code — selectively JIT individual dynamic libraries

Dynamic Loader Integration
A Performance Opportunity

Say that we want to edit UI code in libMyUI…

MyApp

libFoo libBar

libBazlibMyUI

Dynamic Loader Integration
A Performance Opportunity

MyApp

libFoo libBar

libBazlibMyUI

= JIT compiled

= Precompiled

• JIT’d code not visible to precompiled?

• Must JIT back to the root

Dynamic Loader Integration
A Performance Opportunity

MyApp

libFoo libBar

libBazlibMyUI

= JIT compiled

= Precompiled

• JIT’d code not visible to precompiled?

• Must JIT back to the root

• JIT’d code visible to precompiled?

• JIT only what you want

• JIT what is changing
Statically link the rest
The best of both worlds

• Use TextAPI to statically link against JIT’d libraries1

1. Using TAPI to Understand APIs & Speed Up Builds, youtu.be/B9li6EkD5zA

http://youtu.be/B9li6EkD5zA

Dynamic Loader Integration
Dynamic Library Operations

• Create a new library at a path

• Load library at path — runs initializers

• Look up symbols or addresses (binding code, dlsym, dladdr)

• Close a library — runs deinitializers

• Delete a library — no longer openable

Dynamic Loader Integration
Dynamic Library Operations via callbacks

• Create → Register — takes callbacks, address range, and a “loadable-at-path” predicate

• Load → Initialize — runs initializers

• Lookup → Lookup — lookup symbols (forwarded to ORC Core lookup in our implementation)

• Symbols needn’t exist until they’re looked up — pseudo-dylibs can be populated lazily

• Using ORC lazy-reexports you could defer function body compilation until first call

• Close → Deinitialize — runs deinitializers

• Delete → Deregister — no longer openable

Dynamic Loader Integration
ORC Runtime Implementation

• The ORC runtime already implemented similar operations (for emulated dlopen, dlsym, etc.)

• For Xcode Previews we…

• Added glue code to align interfaces

• Modified the internals to add caching, adapt to dyld’s locking scheme

• Added auto-registration / de-registration when JITDylibs are created / destroyed

Executor

Dynamic Loader Integration
Binding JIT’d Symbols from Precompiled Code

ORC-RT

dyld

Controller
JIT

Loading precompiled libFoo.dylib
reference to bar needs to be bound

bar is in pseudo-dylib libBar,
has not been linked yet

libFoo.dylib
foo:
 b bar

bar defined in relocatable object file
registered with the Previews JIT

libBar(pseudodylib)
bar:
 …

bar:
 …

Executor

Dynamic Loader Integration
Binding JIT’d Symbols from Precompiled Code

ORC-RT

dyld

Controller
JIT

1. dyld encounters bind(“bar”) operation libFoo.dylib
foo:
 b bar

libBar(pseudodylib)
bar:
 …

bar:
 …

Executor

Dynamic Loader Integration
Binding JIT’d Symbols from Precompiled Code

ORC-RT

dyld

Controller
JIT

1. dyld encounters bind(“bar”) operation

2. Calls lookup (implemented by ORC-RT)

libFoo.dylib
foo:
 b bar

libBar(pseudodylib)
bar:
 …

bar:
 …

Executor

Dynamic Loader Integration
Binding JIT’d Symbols from Precompiled Code

ORC-RT

dyld

Controller
JIT

1. dyld encounters bind(“bar”) operation

2. Calls lookup (implemented by ORC-RT)

3. ORC-RT forwards (via IPC) to ORC lookup

libFoo.dylib
foo:
 b bar

libBar(pseudodylib)
bar:
 …

bar:
 …

Executor

Dynamic Loader Integration
Binding JIT’d Symbols from Precompiled Code

ORC-RT

dyld

Controller
JIT

1. dyld encounters bind(“bar”) operation

2. Calls lookup (implemented by ORC-RT)

3. ORC-RT forwards (via IPC) to ORC lookup

4. ORC lookup triggers linking of bar

libFoo.dylib
foo:
 b bar

libBar(pseudodylib)
bar:
 …

bar:
 …

Executor

Dynamic Loader Integration
Binding JIT’d Symbols from Precompiled Code

ORC-RT

dyld

Controller
JIT

1. dyld encounters bind(“bar”) operation

2. Calls lookup (implemented by ORC-RT)

3. ORC-RT forwards (via IPC) to ORC lookup

4. ORC lookup triggers linking of bar

libFoo.dylib
foo:
 b bar

libBar(pseudodylib)
bar:
 …
bar:
 …

Executor

Dynamic Loader Integration
Binding JIT’d Symbols from Precompiled Code

ORC-RT

dyld

Controller
JIT

1. dyld encounters bind(“bar”) operation

2. Calls lookup (implemented by ORC-RT)

3. ORC-RT forwards (via IPC) to ORC lookup

4. ORC lookup triggers linking of bar

5. ORC returns address of bar to ORC runtime

libFoo.dylib
foo:
 b bar

libBar(pseudodylib)
bar:
 …
bar:
 …

Executor

Dynamic Loader Integration
Binding JIT’d Symbols from Precompiled Code

ORC-RT

dyld

Controller
JIT

1. dyld encounters bind(“bar”) operation

2. Calls lookup (implemented by ORC-RT)

3. ORC-RT forwards (via IPC) to ORC lookup

4. ORC lookup triggers linking of bar

5. ORC returns address of bar to ORC runtime

6. ORC runtime returns address of bar to dyld

libFoo.dylib
foo:
 b bar

libBar(pseudodylib)
bar:
 …
bar:
 …

Executor

Dynamic Loader Integration
Binding JIT’d Symbols from Precompiled Code

ORC-RT

dyld

Controller
JIT

1. dyld encounters bind(“bar”) operation

2. Calls lookup (implemented by ORC-RT)

3. ORC-RT forwards (via IPC) to ORC lookup

4. ORC lookup triggers linking of bar

5. ORC returns address of bar to ORC runtime

6. ORC runtime returns address of bar to dyld

7. dyld binds call to bar

libFoo.dylib
foo:
 b bar

libBar(pseudodylib)
bar:
 …
bar:
 …

Dynamic Loader Integration
Practical Impact and Challenges

• Best of both worlds — JIT changing code, statically link the rest

• Substantial performance win on some previews

• ORC Runtime caches addresses to minimize IPC (this IPC is once-per-object-file-linked)

• Works, but adds IPC in the middle of dlopen 🌶

• May trigger IPC call back into dyld on a different thread (e.g. to resolve externals in bar)

• Recursion could be avoided by adding something like “bind” operations to the JIT
(these would be returned to the executing app, triggering lookup on the dlopen thread)

Performance

Performance
The Easy Stuff

• Turn on concurrency

• Easy to do since ORC was designed for concurrency

• Found and fixed some race conditions, especially in MachOPlatform

• DynamicThreadPoolTaskDispatcher — N materializers, unbound # request handlers

• Improvements to many utility functions

• E.g. LinkGraph::splitBlock was O(n2) for repeated applications, now O(nlogn)

• Biggest changes were to dependence tracking…

WaitingOnGraph

WaitingOnGraph
What is it? What was it?

• Enables lookup safety guarantee by tracking which symbols each symbol is waiting on

• Better than tracking dependencies: waiting on relationships are transient:
Graph scales with the size of outstanding work, not the size of the program

• Was…

• Embedded within (and across) JITDylib objects (ORC’s symbol tables)

• Not unit testable

• Not profilable

• An arbitrary directed graph, due to add-dependencies …add-dependencies

WaitingOnGraph
add-dependencies

• Add-dependencies permits arbitrary graphs…

• add-dependencies({a → {b}})

• add-dependencies({b → {c}})

• add-dependencies({c → {a}})

• …

a

b

c

WaitingOnGraph
Merging add-dependencies into emit

a

Not Yet
EmittedEmitted

b

• Causes the graph to become bipartite

• emitted → not-yet-emitted nodes

• temporary cycles removed before emit returns

• e.g. emit({(a → {b})});
• emit({(b → {c, a})})…

WaitingOnGraph
Merging add-dependencies into emit

a

b

Not Yet
EmittedEmitted

c

• Causes the graph to become bipartite

• emitted → not-yet-emitted nodes

• temporary cycles removed before emit returns

• e.g. emit({(a → {b})});
• emit({(b → {c, a})})…

WaitingOnGraph
Merging add-dependencies into emit

• Causes the graph to become bipartite

• emitted → not-yet-emitted nodes

• temporary cycles removed before emit returns

• e.g. emit({(a → {b})});
• emit({(b → {c, a})})…
• Propagate edges to not-yet-emitted nodes…

a

b

Not Yet
EmittedEmitted

c

WaitingOnGraph
Merging add-dependencies into emit

a

b

Not Yet
EmittedEmitted

c

• Causes the graph to become bipartite

• emitted → not-yet-emitted nodes

• temporary cycles removed before emit returns

• e.g. emit({(a → {b})});
• emit({(b → {c, a})})…
• Propagate edges to not-yet-emitted nodes…
• a depends on c, not b

WaitingOnGraph
Merging add-dependencies into emit

• Causes the graph to become bipartite

• emitted → not-yet-emitted nodes

• temporary cycles removed before emit returns

• e.g. emit({(a → {b})});
• emit({(b → {c, a})})…
• Propagate edges to not-yet-emitted nodes…
• a depends on c, not b
• b depends on c, not a (redundant, so discard)

• Preprocess emit arg: same algorithm, outside lock

a

b

Not Yet
EmittedEmitted

c

• Shrink graph by merging nodes with same edges

• E.g. a, b share edge sets {d, e}, so merge

• Currently applied to…

• emit input after preprocessing, but
before taking global lock

• emit output before releasing global lock

• Effective in practice:
Many nodes depend on same heavily used symbols

WaitingOnGraph
Further improvements — Coalescing

a

b

d

e

c f

a,b
d

e

c f

WaitingOnGraph
Wrapping Up

• WaitingOnGraph extracted from JITDylibs into its own class template

• Directly unit and perf testable, tests covering previous error cases added

• Node labels have been changed to eliminate redundant reference counting

• Significant improvements on pathological cases (e.g. from >500s to ~2s)

• Laziness would further simplify this problem

• Lazy stubs don’t wait on their implementations, they’re terminals in WaitingOnGraph

Performance Results
Time for Previews JIT Update

• Rough numbers (includes some build time)

• Many small projects contribute to fast times

• Previews that take too long lead to users
avoiding the feature, suppressing slow times

• Pathological cases remain

• Performance work will continue

> 2s
≤ 2s
≤ 1s

≤ 300ms

The Weird Cases…

Naming archives “.o”

• ORC’s APIs are strict: addObjectFile expects objects; linkArchives, archives

• Darwin’s linker, ld, is chill — just wants you to succeed

• Extensions don’t matter, as long as your paths resolve to something linkable
(objects, archives, universal binaries, etc.)

• We’ve added orc::loadLinkableFile(Path, Triple, LoadArchives)

• Handles objects, archives, universal objects, universal archives, non-universal archives of
universal objects…

SUPPORTED

ld -r
Local symbol names may not be unique

• ld -r merges relocatable object files

• ld -r’d objects may contain duplicate symbol names (local linkage only)

• E.g. two C files containing static int X = 1, combined using ld -r, will have two Xs.

• Swift package manager does it, so transitively everyone does it

• We’ve removed all assumptions that locally scoped symbol names are unique

SUPPORTED

Pointer Authentication

• arm64e pointer authentication is supported

• Without introducing a trivial oracle

• Authentication edges become instructions
in a signing function run as initializer

P X

P = X@AUTH(ia,0)

Pointer Authentication

• arm64e pointer authentication is supported

• Without introducing a trivial oracle

• Authentication edges become instructions
in a signing function run as initializer

• Writes fixed values to fixed locations

• Does anyone know if this is exploitable?

SUPPORTED

P X

P = null

_sign_ptrs:
 mov x0, x
 autia x0
 mov x1, p
 str x1, x0

So much more!

• Compact unwind support — C++ exceptions on Darwin/arm64

• .subsections_via_symbols directive — can now be omitted

• Weak-loading (-weak-l), hidden-linking (-hidden-l) — see llvm-jitlink for examples

• -all_load, -ObjC options — force loading of all (or all Obj-C) objects in an archive

• Objective-C stub synthesis (call _objc_msgSend$foo)

SUPPORTED

Conclusion
Xcode Previews

• ORC can…

• JIT-load programs that were intended to be statically linked

• Scale to non-trivial programs

• Support unusual build configurations, execution environments

• With dynamic loader support, precompiled code can interact with JIT’d code as-if precompiled

• Many improvements made for Previews should flow to other ORC clients:
clang-repl, Jank, Clasp, Julia, Mojo, PostgreSQL, …

Conclusion
Developer Workflow Opportunities

• JIT mode for edit/test — rather than building what has changed, build only what you need

• Faster compiles, no need to select build options/targets to avoid unnecessary compilation

• Incremental builds still required to validate — ideally we share compiled code between modes

• Use Content Addressable Storage with fine-grained sharing — youtu.be/E9GdNKjGZ7Y

• Straw-man — take the LTO approach

• Generate “.o” files with symbol interface (via TextAPI) & compile command only, feed to JIT

• Per-function requests to front-ends? How would this affect build systems? Tooling?

http://youtu.be/E9GdNKjGZ7Y

Conclusion
ORC — Future Work

• Move LLDB from MCJIT to ORC — would allow LLDB to benefit from these improvements

• In-tree memory manager implementations could be improved (esp. to reduce fragmentation)

• New ORC Runtime — all asynchronous operations, new features

• Dynamic loader integration for ELF? COFF?

• There are, shockingly, still some open JIT bugs

• Contributions very welcome!

• Github Issues, PRs, Discourse, Discord (#jit)

TM and © 2025 Apple Inc. All rights reserved.

Wait, how does ORC laziness work?

• Symbols are produced when you ask for their address: they’re lazily generated upon reference

• lazyReexport produces stubs that look-up and then call function body symbols at runtime

• I.e. Stubs are produced upon reference, and defer reference of function body until first call

• With this scheme, laziness inherits lookup safety:

• Call any stub on any thread at any time

• Safe regardless of which compiles are invoked, or what’s happening on any other thread

