Powering Xcode Previews
with LLVM's JIT

Dynamic Development Workflows
LLVM JIT's Role

- Reuse existing compiler pipelines and compiled libraries in dynamic contexts

- LLDB expression evaluation, Cling /[clang—repl (interactive C++),
CpplnterOp (Python + C++)1, Jank (Clojure + C++), Clasp (LISP + C++)2, ...

. All know when they're targeting the LLVM JIT

- What about programs that weren’t intended to be run under LLVM's JIT?
- I.e. Projects with regular build systems targeting static compilers
- Can run them under the JIT and preserve behavior? Can the JIT scale?

- What could we build with this?

1. Enabling Interactive C++ in Clang, youtu.be/33ncblQoa4c
2. Implementing Common Lisp with LLVM, youtu.be/mbdXeRBbgDM

http://youtu.be/33ncbIQoa4c
http://youtu.be/mbdXeRBbgDM

ORC — On Request Compilation
LLVM's JIT APIs

- A foundation for concurrent, heterogeneous, cross-process/architecture/OS JITing
- Reuse static compilers in a dynamic context
- Provide access to LLVM optimizations to existing JITs
- Mix-and-match — build one JIT'd program using multiple compilers [languages
- Compilers don't need to coordinate with one another

- Three components: a coordination layer, a just-in-time linker, and a runtime

Component 1: ORC Core

Coordination — Common Language

1ibFoo
- Symbols have...

1000abcO foo: (strong)
- Addresses (once resolved)
- Content (once emitted)

- Dependencies on one another

- Containers (JITDylibs), linker attributes

. ORC Core is agnostic with regards to... libBar

which address space, o
how content is produced, 1000abd4 bar: (weak)

how dependencies identified

Component 1: ORC Core

Coordination — APIs

- MaterializationUnits encapsulate the process of producing symbols

- Declare an interface (a set of symbols and linkages), added to JITDylibs

. Triggered on first Lookup of any symbol within them

- resolve callback maps symbols to addresses (content needn’t be written yet)

. em1t callback notifies ORC that content has been written, what symbol dependencies are
- Lookup may be issued on any thread at any time for any set of symbols

- Dependence info ensures that reachable symbols are emitted before lookup returns

Component 2: JITLink

- JITLInk links object files into JIT'd memory (it's an object file materializer)
- Trivially JIT LLVM IR: > CodeGen - > JITL1ink =
. Or: > YourCompililer = > JITLink =
- Precompiled object files, archives can just be loaded directly
- Customizable memory manager controls how linked code is transferred to JIT'd memory

- Plugin interface allows customization of the link process

Component 3: ORC runtime

- Lives in the executing process with JIT'd code
- Supports advanced features

- Initializers, exceptions, thread locals, ...

- POSIX APl emulation: dlopen, dlsym, ...

- Supports calls (including via IPC/RPC) from JIT'd code to ORC support functions

ORC Components
Core, JITLInk, and the Orc Runtime

Other
Materializers

JITL1nk

ORC Components
Core, JITLInk, and the Orc Runtime

Other
Materializers

JITL1nk

See the ORCv2 Deep Dive talk for more details — youtu.be/i-inxFudrgl

http://youtu.be/i-inxFudrgI

Xcode Previews

> H Foo Foo: Ready | Today at 1:17 PM

main

> Foo) Foo) ContentView) No Selection

import SwiftUI g © ContentView

struct ContentView: View {
var body: some View {
VStack {
Image(systemName: "globe")
.1mageScale(.large)
. foregroundStyle(.tint)
Text("Hello, world!")
} @
.padding() Hello, world!

Swift Ul

Code . .
| Live Preview
#Preview {

ContentView() NOW JlT'dl
i Preview macro

SwiftUl Programs

- Can get large... - Can get weird...
- Thousands of files - Mixed languages, static archives
- Hundreds of megabytes code and data - Multiple slices (armé4, x86-64...)
- Hundreds of thousands of relocations - Entitlements (e.g. hardened runtime)
. Often split into multiple frameworks / . Interesting linker options (-1, ...)

dynamic libraries
. Interesting assembly options
(no .subsections_via_symbols)

Xcode Previews JIT Setup

- Cross process
- Object files in (no laziness)

- Override Plugin (OP) applied
- Custom memory management
- Dynamic Loader Integration

presents JIT'd code as-if
statically linked

User App ,

Custom Dynamic
- Concurrency for performance Obiject Files

Memory Loader
Manager Integration

Override Plugin
Fast Function Body Replacement

- JITLink APIs can rename, add code [data

- On first definition

. Introduce stub with original name,
stub pointer pointed at original body

Function Body Overrides

- JITLink APIs can rename, add code [data

- On first definition

- Introduce stub with original name,
stub pointer pointed at original body foo$body_1:
SP, SP; #OX50

- On subseqguent definition
- Rename function, set scope to local

- Update pointer to point at new body

Custom Memory Management

- Applies code-signing to JIT'd code

- Used to ensure that we don't affect the
behavior of Hardened Runtime apps

- Uses a custom Preview signature type
Only usable for apps in development mode

- Data transported via shared memory

- Code is written to disk, signed, and then
mmap'd in the executing process

Data via
shared
memory

Text sections written
to disk, signed

lllﬂmap,d

Dynamic Loader Integration
Overview

- What should d1sym(“foo") returnif foo is JIT'd?
- Answer: &fToo0 (same as-if precompiled)
. But: call to d1sym might be in precompiled code — we'll need the dynamic loader’s help
- Teach the dynamic loader to treat JIT'd code as if it were regular dylibs...
. ... A “pseudo-dylib” defined by callbacks rather than a file (callbacks implemented by our JIT)
- POSIX APIs like d1sym naturally supported

- Precompiled code can bind against JIT'd code — selectively JIT individual dynamic libraries

Dynamic Loader Integration
A Performance Opportunity

Say that we want to edit Ul code in 11bMyUTI...

Dynamic Loader Integration
A Performance Opportunity

- JIT'd code not visible to precompiled?

« Must JIT back to the root

. = JIT compiled
. = Precompiled

Dynamic Loader Integration
A Performance Opportunity

- JIT'd code not visible to precompiled?
- Must JIT back to the root

- JIT'd code visible to precompiled?
- JIT only what you want
- JIT what is changing

Statically link the rest
The best of both worlds

. = JIT compiled

= Precompiled

- Use TextAPI to statically link against JIT'd libraries™

1. Using TAPI to Understand APIls & Speed Up Builds, youtu.be/BOIlIGEKD5zA

http://youtu.be/B9li6EkD5zA

Dynamic Loader Integration
Dynamic Library Operations

- Create a new library at a path

- [oad library at path — runs initializers

- Look up symbols or addresses (binding code, dlsym, dladdr)
« Close a library — runs deinitializers

- Delete a library — no longer openable

Dynamic Loader Integration
Dynamic Library Operations via callbacks

- Create = Register — takes callbacks, address range, and a “loadable-at-path” predicate
- Load - Initialize — runs initializers
- Lookup = Lookup — lookup symbols (forwarded to ORC Core lookup in our implementation)
- Symbols needn’t exist until they're looked up — pseudo-dylibs can be populated lazily
- Using ORC lazy-reexports you could defer function body compilation until first call
- Close = Deinitialize — runs deinitializers

- Delete = Deregister — no longer openable

Dynamic Loader Integration
ORC Runtime Implementation

- The ORC runtime already implemented similar operations (for emulated dlopen, dlsym, etc.)
- For Xcode Previews we...

- Added glue code to align interfaces

- Modified the internals to add caching, adapt to dyld’'s locking scheme

- Added auto-registration / de-registration when JITDylibs are created [destroyed

Dynamic Loader Integration
Binding JIT'd Symbols from Precompiled Code

_—

Loading precompiled 11bFoo.dylib
reference to bar needs to be bound

bar is in pseudo-dylib 11bBar,
has not been linked yet

bar defined in relocatable object file
registered with the Previews JIT

Dynamic Loader Integration
Binding JIT'd Symbols from Precompiled Code

1. dyld encounters bind(”bar"”) operation

Dynamic Loader Integration
Binding JIT'd Symbols from Precompiled Code

1. dyld encounters bind(”bar"”) operation

2. Calls lookup (implemented by ORC-RT)

Dynamic Loader Integration
Binding JIT'd Symbols from Precompiled Code

1. dyld encounters bind(”bar"”) operation
2. Calls lookup (implemented by ORC-RT)

3. ORC-RT forwards (via IPC) to ORC lookup

Dynamic Loader Integration
Binding JIT'd Symbols from Precompiled Code

1. dyld encounters bind(”bar"”) operation
2. Calls lookup (implemented by ORC-RT)
3. ORC-RT forwards (via IPC) to ORC lookup

4. ORC lookup triggers linking of bar

Dynamic Loader Integration
Binding JIT'd Symbols from Precompiled Code

1. dyld encounters bind(”bar"”) operation
2. Calls lookup (implemented by ORC-RT)
3. ORC-RT forwards (via IPC) to ORC lookup

4. ORC lookup triggers linking of bar

Dynamic Loader Integration
Binding JIT'd Symbols from Precompiled Code

1. dyld encounters bind(”bar"”) operation
2. Calls lookup (implemented by ORC-RT)
3. ORC-RT forwards (via IPC) to ORC lookup
4. ORC lookup triggers linking of bar

5. ORC returns address of bar to ORC runtime

Dynamic Loader Integration
Binding JIT'd Symbols from Precompiled Code

1. dyld encounters bind(”bar"”) operation
2. Calls 1lookup (implemented by ORC-RT)

3. ORC-RT forwards (via IPC) to ORC lookup
4. ORC lookup triggers linking of bar

5. ORC returns address of bar to ORC runtime

6. ORC runtime returns address of bar to dyld

Dynamic Loader Integration
Binding JIT'd Symbols from Precompiled Code

1. dyld encounters bind(”bar"”) operation
2. Calls 1lookup (implemented by ORC-RT)

3. ORC-RT forwards (via IPC) to ORC lookup

4. ORC lookup triggers linking of bar

5. ORC returns address of bar to ORC runtime
6. ORC runtime returns address of bar to dyld

/. dyld binds call to bar

Dynamic Loader Integration
Practical Impact and Challenges

- Best of both worlds — JIT changing code, statically link the rest
- Substantial performance win on some previews
« ORC Runtime caches addresses to minimize IPC (this IPC is once-per-object-file-linked)

. Works, but adds IPC in the middle of dlopen #

- May trigger IPC call back into dyld on a different thread (e.g. to resolve externals in bar)

» Recursion could be avoided by adding something like “bind” operations to the JIT
(these would be returned to the executing app, triggering lookup on the dlopen thread)

Performance

Performance
The Easy Stuff

 urn on concurrency

- Easy to do since ORC was designed for concurrency

- Found and fixed some race conditions, especially in MachOPlatform

- DynamicThreadPoolTaskDispatcher — N materializers, unbound # request handlers

- Improvements to many utility functions

- E.g. L1nkGraph: :splitBlock was O(n2) for repeated applications, now O(nlogn)

- Biggest changes were to dependence tracking...

Wa1ti1ngOnGraph

WaitingOnGraph
What is it? What was it?

- Enables lookup safety guarantee by tracking which symbols each symbol is waiting on

. Better than tracking dependencies: waiting on relationships are transient:
Graph scales with the size of outstanding work, not the size of the program

- Was...
. Embedded within (and across) JITDy11b objects (ORC's symbol tables)
- Not unit testable
- Not profilable

- An arbitrary directed graph, due to add—-dependencies ...

Wai1tingOnGraph

add—dependencies

- Add-dependencies permits arbitrary graphs...
. add—-dependencies({a > {b}})

. add-dependencies({b > {c}})

. add-dependencies({c > {a}})

.
>

WaitingOnGraph

Merging add—dependenciles into emit

Not Yet
Emitted

Emitted

- Causes the graph to become bipartite
. emitted = not-yet-emitted nodes

. temporary cycles removed before emit returns

. eg.emit({(a » {b})});
- emit({(b > {c, a})})..

WaitingOnGraph

Merging add—dependenciles into emit

Not Yet
Emitted

Emitted

- Causes the graph to become bipartite
. emitted = not-yet-emitted nodes

. temporary cycles removed before emit returns

. eg.emit({(a » {b})});
- emit({(b > {c, a})})..

WaitingOnGraph

Merging add—dependenciles into emit

Not Yet
Emitted

Emitted

- Causes the graph to become bipartite
. emitted = not-yet-emitted nodes

. temporary cycles removed before emit returns

. eg.emit({(a » {b})});
- emit({(b > {c, a})})..

- Propagate edges to not-yet-emitted nodes...

WaitingOnGraph

Merging add—dependenciles into emit

Not Yet
Emitted

Emitted

- Causes the graph to become bipartite
. emitted = not-yet-emitted nodes

. temporary cycles removed before emit returns

- eg.emit({(a > {b})});
- emit({(b > {c, a})})..
- Propagate edges to not-yet-emitted nodes...

- a dependsonc,notb

WaitingOnGraph

Merging add—dependenciles into emit

Not Yet
Emitted

Emitted

- Causes the graph to become bipartite
. emitted = not-yet-emitted nodes

. temporary cycles removed before emit returns

- eg.emit({(a > {b})});
- emit({(b > {c, a})})..
- Propagate edges to not-yet-emitted nodes...
- a dependsonc, notb

- b depends on c, not a (redundant, so discard)

. Preprocess em1t arg: same algorithm, outside lock

WaitingOnGraph

Further improvements — Coalescing

. Shrink graph by merging nodes with same edges

- E.g. a, bshareedgesets{d, e}, somerge

- Currently applied to...

. em1t input after preprocessing, but
before taking global lock

. em1t output before releasing global lock

. Effective in practice:
Many nodes depend on same heavily used symbols

WaitingOnGraph
Wrapping Up

- Wa1tingOnGraph extracted from JITDyl1bs into its own class template
. Directly unit and perf testable, tests covering previous error cases added
- Node labels have been changed to eliminate redundant reference counting
. Significant improvements on pathological cases (e.g. from >500s to ~2s)
. Laziness would further simplify this problem

. Lazy stubs don't wait on their implementations, they're terminals in Wa1t1ngOnGraph

Performance Results
Time for Previews JIT Update

> 28

< 2S
<Ts

- Rough numbers (includes some build time)
- Many small projects contribute to fast times

- Previews that take too long lead to users
avoiding the feature, suppressing slow times

- Pathological cases remain

< 300ms

. Performance work will continue

The Weird Cases...

Naming archives “.0" (CUPpo~~
- ORC's APIs are strict: addObjectFi1le expects objects; 11nkArchives, archives

- Darwin’s linker, 1d, is chill — just wants you to succeed

- Extensions don't matter, as long as your paths resolve to something linkable
(objects, archives, universal binaries, etc.)

- We've added orc: :1loadLinkableFile(Path, Triple, LoadArchives)

- Handles objects, archives, universal objects, universal archives, non-universal archives of
universal objects...

Local symbol names may not be unique : Ep
- |d -r merges relocatable object files
- 1d —r'd objects may contain duplicate symbol names (local linkage only)

. E.g.two C files containing static 1int X = 1, combined using 1d -r, will have two Xs.

- Swift package manager does it, so transitively everyone does it

- We've removed all assumptions that locally scoped symbol names are unique

Pointer Authentication

- armb64e pointer authentication is supported
. Without introducing a trivial oracle

- Authentication edges become instructions
In a sighing function run as initializer

P = XPAUTH(1a,0)

Pointer Authentication

- armé4e pointer authentication is supported P = null

- Without introducing a trivial oracle

- Authentication edges become instructions
In a signhing function run as initializer

- Writes fixed values to fixed locations _S 1 gn_p trs:
mov X0, X

- Does anyone know Iif this is exploitable? qut 1 a9 X0
mov X1, p

str x1, xO

So much more!

- Compact unwind support — C++ exceptions on Darwin/farmé4

- .Subsections_via_symbols directive — can now be omitted

. Weak-loading (—weak—1), hidden-linking (-h1dden—-1) — see 11vm—3jitlink for examples
- —all load, —0ObjC options — force loading of all (or all Obj-C) objects in an archive

. Objective-C stub synthesis (call _objc_msgSend$foo)

Conclusion
Xcode Previews

- ORC can...
. JIT-load programs that were intended to be statically linked
. Scale to non-trivial programs
- Support unusual build configurations, execution environments
- With dynamic loader support, precompiled code can interact with JIT'd code as-if precompiled

- Many improvements made for Previews should flow to other ORC clients:
clang-repl, Jank, Clasp, Julia, Mojo, PostgreSQL, ...

Conclusion
Developer Workflow Opportunities

- JIT mode for edit/test — rather than building what has changed, build only what you need
- Faster compiles, no need to select build options/targets to avoid unnecessary compilation
. Incremental builds still required to validate — ideally we share compiled code between modes

- Use Content Addressable Storage with fine-grained sharing — youtu.be/E9GdNK|GZ7Y

- Straw-man — take the LTO approach
- Generate ".0" files with symbol interface (via TextAPIl) & compile command only, feed to JIT

- Per-function requests to front-ends? How would this affect build systems? Tooling?

http://youtu.be/E9GdNKjGZ7Y

Conclusion
ORC — Future Work

- Move LLDB from MCJIT to ORC — would allow LLDB to benefit from these improvements

- In-tree memory manager implementations could be improved (esp. to reduce fragmentation)
- New ORC Runtime — all asynchronous operations, new features

- Dynamic loader integration for ELF? COFF?

- There are, shockingly, still some open JIT bugs

- Contributions very welcome!

- Github Issues, PRs, Discourse, Discord (#jit)

TM and © 2025 Apple Inc. All rights reserved.

Wait, how does ORC laziness work?

- Symbols are produced when you ask for their address: they're lazily generated upon reference
- lazyReexport produces stubs that look-up and then call function body symbols at runtime
- |.e. Stubs are produced upon reference, and defer reference of function body until first call
- With this scheme, laziness inherits lookup safety:
- Call any stub on any thread at any time

. Safe regardless of which compiles are invoked, or what's happening on any other thread

