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Agenda

Introduction to Cost modelling
What is it good at?
What challenges does its implementation present?

How could we extend it?
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Introduction to cost modelling

Philosophy:
Simple/ Quick approximation of LLVM-IR cost from the perspective of code gen
High-level tunable heuristic or relative instruction costs mainly from the perspective of reciprocal throughput

Used to guide a number of optimisations in the LLVM backend

for (BasicBRlock &B : F) |
InstructionCost Cost (0) ;

for (Instruction &Inst : B) {
// Estimate intrinsic cost if the instruction is an intrinsic
1f (auto *II = dyn cast<IntrinsicInst>(&Inst)) {

IntrinsicCostAttributes ICA(II->getIntrinsicID(), *II);
Cost += TTI.getIntrinsicInstrCost (ICA, CostKind);

} else |
Cost += TTI.getInstructionCost (&Inst, CostKind);

}
OS << “Instruction Cost for BB: W << *Cost.getValue() << std::endl;
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Backend defined

Implemented in the backend TargetTransforminfo class

switch (ISD) {
default:
return BaseT::getArithmeticInstrCost (Opcode, Ty, CostKind, OplInfo, OpZInfo);
case 15D::5D1IV:
1f (OpZInfo.isConstant () && Op2Info.isUniform() && OpZInfo.isPowerOf2()) {
// On AArch64, scalar signed division by constants power-of-two are
// normally expanded to the sequence ADD + CMP + SELECT + SRA.
// The OperandValue properties many not be same as that of previous
// operation; conservatively assume OP None.
InstructionCost Cost = getArithmeticInstrCost (
Instruction: :Add, Ty, CostKind,
OplInfo.getNoProps (), OpZInfo.getNoProps()):;
Cost += getArithmeticInstrCost (Instruction::Sub, Ty, CostKind,
OplInfo.getNoProps (), OpZInfo.getNoProps{());
Cost += getArithmeticInstrCost (
Instruction::Select, Ty, CostKind,
OplInfo.getNoProps (), Op2Info.getNoProps()):
Cost += getArithmeticInstrCost (Instruction::AShr, Ty, CostKind,
OplInfo.getNoProps (), Op2Info.getNoProps()):

return Cost;
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Cost modelling example

LoopVectoriser:

Tries to decide, among different vector factors, what is the most work for minimal cost, comparing different strategies

// Load: Scalar load + broadcast
// Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
// FIXME: This cost is a significant under-estimate for tail folded
// memory ops.
const InstructionCost ScalarizationCost =
IsLegalToScalarize () ? getUniformMemOpCost (&I, VF)
InstructionCost: :getInvalid() ;

// Choose better solution for the current VF, Note that Invalid
// costs compare as maximumal large. If both are invalid, we get

// scalable invalid which signals a failure and a vectorization abort.

1f (GatherScatterCost < ScalarizationCost)

setWideningDecision (&I, VEF, CM GatherScatter, GatherScatterCost);
else

setWideningDecision (&I, VF, CM Scalarize, ScalarizationCost);
contilnue;
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Pictorial depiction of cost calculation process
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Huh, what is it good for?

Thankfully, not absolutely nothing:
~0O(1) queries, not reliant on code gen
Composable and overridable by different backends
Common infrastructure shared across backends

Used as a decision tool, doesn’t have to be 100% accurate
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What are the challenges

Maintainability

Heuristic based

Low-level of granularity (low numbers, and integers)

Used as a sum of IR costs.

Happens at the IR level not at what the hardware actually executes
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Maintainability

Cost model spans 100,000+ lines across LLVM
LoopVectorize: 143 InstructionCost uses, 15+ cost functions
SLPVectorizer: 195 InstructionCost uses (26,691 lines)

563 TTI method calls across all transforms

Dual cost models in LoopVectorizer (lines 7079-7102)
Legacy cost model + VPlan cost model
Must be kept in sync with assertions
Comment: "TODO: Switch to more accurate costing based on VPlan"

Vectorizer cost computations are universal/generic across a backend not specified per core
LoopUnroll has its own summation logic, as does inliner, SLPVectorise and others

Not a simple case of updating a single TTl hook value for a backend, but tracing usage and calculations through many lines of code
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Heuristic Based

Initially presented as a simple instruction cost metric to represent reciprocal throughput
Has evolved through tuning to be purely a heuristic to get the desired output

Often retroactively applied as lags behind codegen improvements

Instructions given different costing based on optimization goals

AArch64 reduction costs (Commit 828a867ee010, July 2025):

OR/XOR/AND v8i8: 15 - 5 (reduced by 10!)
OR/XOR/AND v16i8: 17 - 7 (reduced by 10!)
Reason: "Since the costs were added the codegen improved"

AArch64 il reductions (Commit e79fac2968dc, June 2023):
v32il: 91 - 3 (30x reduction!)
v64il: 181 - 5 (36x reduction!)
v128il: 362 - 9 (40x reduction!)

AArch64 trip count threshold (Commit d945a2c9efda, Aug 2022):

Added getMinTripCountTailFoldingThreshold() to TTl interface
Reason: "l noticed regressions... as a solution | propose threshold”

Regression-driven, not hardware-based!
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Addis 1

All instructions represented as a multiple of an add instruction

Doesn’t allow finer-grained management of dispatch constraints and resource utilization

RISCV percentage cost system (Commit 81efb825703c, July 2021):
Problem: RVC compressed = 0.7%, need fractional costs
Solution: Scale by 100 (RVI=100, RVC=70, QCEXT=150)

Reason: "RVC instructions... can take longer to execute... we consider that two RVC instruction are slightly more costly”

Each target invents own scaling when integers insufficient
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Sum of IR costs

Just trivially sums up basic blocks by querying each IR instruction

Doesn’t model modern complex hardware
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Can’t capture complex backend fuses

Consider the output IR sequence as anticipated by the optimizer.

define 164 @fuse(i64 %x1, 164 %x2){ Fuse

entry: ldr X0, [x0, x1, 1sl #3]
%1l = mul 164 %x2, 8 ; X2 * 8 ret
%2 = add 164 %x1, %1 ; x1 + (x2 * 8)

saddr = 1nttoptr 164 %2 to ptr
%4 = load 164, ptr %addr
ret 164 %4

Cost model overestimates cost of highlighted instructions that don’t get materialized in final codegen !

Printing analysis 'Cost Model Analysis' for function 'fuse':

Cost Model: Found an estimated cost of 1 for instruction: %0 = mul 164 7%x2, 8

Cost Model: Found an estimated cost of 1 for instruction: %l = add 164 %x1, %0

Cost Model: Found an estimated cost of © for instruction: %addr = inttoptr 164 %1 to ptr
Cost Model: Found an estimated cost of 1 for instruction: %2 = load 164, ptr %addr, align 8
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How can we improve things?

Simplify the specification of instruction costs

JSON configuration file simplifies experiments

Type-aware overrides (i32, 32, v4i32, v2f64)

Categories: arithmetic, memory, vector, compare select, intrinsics

Graceful fallback to default costs

Example JSON :
{
"instruction costs": {
"arithmetic": |

"add": { "132": 1, "1o064d4": 1, "v4132": 2 },

"mul": { "132": 3, "1064": 4, "v4132": 0 }
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Critical path counting

For a given IR sequence, lower to target assembly (virtual)
Use existing codegen infrastructure
Don't emit, just analyze

Apply target scheduling model to the basic block
Use existing MachineScheduler infrastructure

Already has: instruction latencies, resource usage, dependencies

Extract critical path through the BB
Not sum of all instructions (avoids ILP overcounting)
Critical path = longest dependency chain

Accounts for: instruction fusion, resource conflicts, parallelism

Return critical path length as cost
Maps naturally to reciprocal throughput

Already target-specific via scheduling model
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Derive costs from actual assembly

* We envision a system as below
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Vision: Automatic cost derivation

Input IR - Codegen - Measure assembly - Extract costs

Quantum size: Basic Block
Large enough to capture instruction fusion, selection

Small enough to be reusable across programs

Challenges to address:
1. Assembly analysis complexity (fusion, macro-ops, uops)
2. Mapping assembly back to IR constructs
3. Handling context-dependent costs (register pressure, dependencies)
4. Build time overhead

5. Cache/storage for cost databases
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