< NVIDIA.

Instruction Cost Modelling: Can we do
better?

Sushant Gokhale (Nvidia), Madhur Amilkanthwar (Nvidia)

Presented by: Neil Hickey (Nvidia)

Agenda

Introduction to Cost modelling
What is it good at?
What challenges does its implementation present?

How could we extend it?

2 NVIDIA.

Introduction to cost modelling

Philosophy:
Simple/ Quick approximation of LLVM-IR cost from the perspective of code gen
High-level tunable heuristic or relative instruction costs mainly from the perspective of reciprocal throughput

Used to guide a number of optimisations in the LLVM backend

for (BasicBRlock &B : F) |
InstructionCost Cost (0) ;

for (Instruction &Inst : B) {
// Estimate intrinsic cost if the instruction is an intrinsic
1f (auto *II = dyn cast<IntrinsicInst>(&Inst)) {

IntrinsicCostAttributes ICA(II->getIntrinsicID(), *II);
Cost += TTI.getIntrinsicInstrCost (ICA, CostKind);

} else |
Cost += TTI.getInstructionCost (&Inst, CostKind);

}
OS << “Instruction Cost for BB: W << *Cost.getValue() << std::endl;

3 NVIDIA.

Backend defined

Implemented in the backend TargetTransforminfo class

switch (ISD) {
default:
return BaseT::getArithmeticInstrCost (Opcode, Ty, CostKind, OplInfo, OpZInfo);
case 15D::5D1IV:
1f (OpZInfo.isConstant () && Op2Info.isUniform() && OpZInfo.isPowerOf2()) {
// On AArch64, scalar signed division by constants power-of-two are
// normally expanded to the sequence ADD + CMP + SELECT + SRA.
// The OperandValue properties many not be same as that of previous
// operation; conservatively assume OP None.
InstructionCost Cost = getArithmeticInstrCost (
Instruction: :Add, Ty, CostKind,
OplInfo.getNoProps (), OpZInfo.getNoProps()):;
Cost += getArithmeticInstrCost (Instruction::Sub, Ty, CostKind,
OplInfo.getNoProps (), OpZInfo.getNoProps{());
Cost += getArithmeticInstrCost (
Instruction::Select, Ty, CostKind,
OplInfo.getNoProps (), Op2Info.getNoProps()):
Cost += getArithmeticInstrCost (Instruction::AShr, Ty, CostKind,
OplInfo.getNoProps (), Op2Info.getNoProps()):

return Cost;

4

NVIDIA.

Cost modelling example

LoopVectoriser:

Tries to decide, among different vector factors, what is the most work for minimal cost, comparing different strategies

// Load: Scalar load + broadcast
// Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
// FIXME: This cost is a significant under-estimate for tail folded
// memory ops.
const InstructionCost ScalarizationCost =
IsLegalToScalarize () ? getUniformMemOpCost (&I, VF)
InstructionCost: :getInvalid() ;

// Choose better solution for the current VF, Note that Invalid
// costs compare as maximumal large. If both are invalid, we get

// scalable invalid which signals a failure and a vectorization abort.

1f (GatherScatterCost < ScalarizationCost)

setWideningDecision (&I, VEF, CM GatherScatter, GatherScatterCost);
else

setWideningDecision (&I, VF, CM Scalarize, ScalarizationCost);
contilnue;

5

NVIDIA.

Pictorial depiction of cost calculation process

IR
seqguence

/ —— @
-
- Output IR
Input IR —» | Optimization Pass/ | —> Candidate }
Decision Maker C
: | L

Cost of
C
Cost of
IR
Y seguence
Min Cost
Candidate

6 NVIDIA.

Huh, what is it good for?

Thankfully, not absolutely nothing:
~0O(1) queries, not reliant on code gen
Composable and overridable by different backends
Common infrastructure shared across backends

Used as a decision tool, doesn’t have to be 100% accurate

7 NVIDIA.

What are the challenges

Maintainability

Heuristic based

Low-level of granularity (low numbers, and integers)

Used as a sum of IR costs.

Happens at the IR level not at what the hardware actually executes

8 NVIDIA.

Maintainability

Cost model spans 100,000+ lines across LLVM
LoopVectorize: 143 InstructionCost uses, 15+ cost functions
SLPVectorizer: 195 InstructionCost uses (26,691 lines)

563 TTI method calls across all transforms

Dual cost models in LoopVectorizer (lines 7079-7102)
Legacy cost model + VPlan cost model
Must be kept in sync with assertions
Comment: "TODO: Switch to more accurate costing based on VPlan"

Vectorizer cost computations are universal/generic across a backend not specified per core
LoopUnroll has its own summation logic, as does inliner, SLPVectorise and others

Not a simple case of updating a single TTl hook value for a backend, but tracing usage and calculations through many lines of code

9 NVIDIA.

Heuristic Based

Initially presented as a simple instruction cost metric to represent reciprocal throughput
Has evolved through tuning to be purely a heuristic to get the desired output

Often retroactively applied as lags behind codegen improvements

Instructions given different costing based on optimization goals

AArch64 reduction costs (Commit 828a867ee010, July 2025):

OR/XOR/AND v8i8: 15 - 5 (reduced by 10!)
OR/XOR/AND v16i8: 17 - 7 (reduced by 10!)
Reason: "Since the costs were added the codegen improved"

AArch64 il reductions (Commit e79fac2968dc, June 2023):
v32il: 91 - 3 (30x reduction!)
v64il: 181 - 5 (36x reduction!)
v128il: 362 - 9 (40x reduction!)

AArch64 trip count threshold (Commit d945a2c9efda, Aug 2022):

Added getMinTripCountTailFoldingThreshold() to TTl interface
Reason: "l noticed regressions... as a solution | propose threshold”

Regression-driven, not hardware-based!

10

NVIDIA.

Addis 1

All instructions represented as a multiple of an add instruction

Doesn’t allow finer-grained management of dispatch constraints and resource utilization

RISCV percentage cost system (Commit 81efb825703c, July 2021):
Problem: RVC compressed = 0.7%, need fractional costs
Solution: Scale by 100 (RVI=100, RVC=70, QCEXT=150)

Reason: "RVC instructions... can take longer to execute... we consider that two RVC instruction are slightly more costly”

Each target invents own scaling when integers insufficient

11 NVIDIA.

Sum of IR costs

Just trivially sums up basic blocks by querying each IR instruction

Doesn’t model modern complex hardware

12 NVIDIA.

Can’t capture complex backend fuses

Consider the output IR sequence as anticipated by the optimizer.

define 164 @fuse(i64 %x1, 164 %x2){ Fuse

entry: ldr X0, [x0, x1, 1sl #3]
%1l = mul 164 %x2, 8 ; X2 * 8 ret
%2 = add 164 %x1, %1 ; x1 + (x2 * 8)

saddr = 1nttoptr 164 %2 to ptr
%4 = load 164, ptr %addr
ret 164 %4

Cost model overestimates cost of highlighted instructions that don’t get materialized in final codegen !

Printing analysis 'Cost Model Analysis' for function 'fuse':

Cost Model: Found an estimated cost of 1 for instruction: %0 = mul 164 7%x2, 8

Cost Model: Found an estimated cost of 1 for instruction: %l = add 164 %x1, %0

Cost Model: Found an estimated cost of © for instruction: %addr = inttoptr 164 %1 to ptr
Cost Model: Found an estimated cost of 1 for instruction: %2 = load 164, ptr %addr, align 8

13 NVIDIA.

How can we improve things?

Simplify the specification of instruction costs

JSON configuration file simplifies experiments

Type-aware overrides (i32, 32, v4i32, v2f64)

Categories: arithmetic, memory, vector, compare select, intrinsics

Graceful fallback to default costs

Example JSON :
{
"instruction costs": {
"arithmetic": |

"add": { "132": 1, "1o064d4": 1, "v4132": 2 },

"mul": { "132": 3, "1064": 4, "v4132": 0 }

14 NVIDIA.

Critical path counting

For a given IR sequence, lower to target assembly (virtual)
Use existing codegen infrastructure
Don't emit, just analyze

Apply target scheduling model to the basic block
Use existing MachineScheduler infrastructure

Already has: instruction latencies, resource usage, dependencies

Extract critical path through the BB
Not sum of all instructions (avoids ILP overcounting)
Critical path = longest dependency chain

Accounts for: instruction fusion, resource conflicts, parallelism

Return critical path length as cost
Maps naturally to reciprocal throughput

Already target-specific via scheduling model

15 NVIDIA.

Derive costs from actual assembly

* We envision a system as below

Input IR

)

~

&

Optimization
pass

)

Output Cost

Candidate

\output IR

-/

Codegen

Assembly

T

Quantum size
(e.g. Basic Block)

-

Aggregator over

¥

Cc;st N

Input
quantum

16 <A NVIDIA. I

Vision: Automatic cost derivation

Input IR - Codegen - Measure assembly - Extract costs

Quantum size: Basic Block
Large enough to capture instruction fusion, selection

Small enough to be reusable across programs

Challenges to address:
1. Assembly analysis complexity (fusion, macro-ops, uops)
2. Mapping assembly back to IR constructs
3. Handling context-dependent costs (register pressure, dependencies)
4. Build time overhead

5. Cache/storage for cost databases

17 NVIDIA.

< NVIDIA.

	Slide 1: Instruction Cost Modelling: Can we do better?
	Slide 2: Agenda
	Slide 3: Introduction to cost modelling
	Slide 4: Backend defined
	Slide 5: Cost modelling example
	Slide 6: Pictorial depiction of cost calculation process
	Slide 7: Huh, what is it good for?
	Slide 8: What are the challenges
	Slide 9: Maintainability
	Slide 10: Heuristic Based
	Slide 11: Add is 1
	Slide 12: Sum of IR costs
	Slide 13: Can’t capture complex backend fuses
	Slide 14: How can we improve things?
	Slide 15: Critical path counting
	Slide 16: Derive costs from actual assembly
	Slide 17
	Slide 18

