[
CO |In0r0 Arm Solutions at Lightspeed

Mind the Gap
LLVM Toolchain for Windows on Arm

Omair Javaid



[
w |In0r0 Arm Solutions at Lightspeed

Windows on Arm + LLVM

A Success Story in Progress

e Native LLVM toolchain on Windows on Arm is here and working
e Major components already build and run natively

e Code generation quality and runtime performance are strong

e We are now focused on closing the final capability gaps

e Goal: Parity with Linux and Windows x64 developer experience




[
CO |In0r0 Arm Solutions at Lightspeed

LLVM Delivers to Windows on Arm

Native, Production-Ready Toolchain

e Clang + LLD produce native Armé4 PE/COFF binaries

e clang-cl provides MSVC command-line + ABI compatibility

e Flang provides first native Fortran compiler on Windows on Arm
e LLDB supports native debugging workflows

e OpenMP enables parallel scientific + HPC workloads

e llvm-mingw provides GNU toolchain support using LLVM



[
CO |In0r0 Arm Solutions at Lightspeed

LLVM Pushed Windows on Arm Forward

Backend Reuse — Rapid Bring-Up

e AArché4 backend — shared across Windows, Linux, MacOS
e COFF, SEH, CodeView support — shared across x64 and Arm Windows
e One backend to optimize — performance benefits arrive everywhere

e Native performance delivered early — MSVC catching up

Multi-Language Enablement — Bigger Ecosystem

e Same backend serves C/C++, Rust, Swift, Fortran, R

e No new backend investments for each language



[
w |In0r0 Arm Solutions at Lightspeed

LLVM in Action!!!

Enabling real native applications on Windows on Arm

e Native Armé64 Windows apps like Python, Blender, LibreOffice
e Browsers powered by Clang — Chrome, Edge & Firefox
e Languages powered by LLVM — C/C++, Fortran, Rust, R/Swift/Julia progressing

e WorksOnWoA.com tracks the growing native WoA app ecosystem

@ @ @ Dupeofice




[
CO |In0r0 Arm Solutions at Lightspeed

Native Performance Today
LLVM performance is a strength, not a gap

e Native Armé4 builds outperform x86/x64 emulation by a large margin
e Performance: clang-cl > MSVC in SPEC 2017 and real workloads
e Flang performance acceptable but requires validation

e Windows LLVM builds are slow compared to Linux/MacOS
o NTFS Filesystem overhead

o Windows Process creation overhead



[
CQ |In0r0 Arm Solutions at Lightspeed

Debugging, Linking & Tooling Gaps

LLDB

o Armé4ec mixed-mode debugging is unsupported
o x64 emulated binary debugging by native Armé4 LLDB not yet possible
o SVE/SME register visibility missing
o Hardware watchpoints supported is limited and no hardware breakpoints
o LLDB-DAP experience on Windows is flaky at best
o PDB debugging experience lags behind MSVC
m No edit-and-continue

m Native PDB reader in LLDB needs more work — tests still failing



I lINQro™ am solutions at Lightspeed
Debugging, Linking & Tooling Gaps

LLD

o Armé4ec linking not supported. Projects must still fall back to link.exe

o LTO on Windows on Arm needs validation — capability and performance impact are unclear.

Flang

o lacks MSVC-style command-line driver compatibility, unlike ifort on Windows x64

o No performance data available. SPEC 2017 does not build out of the box.

Sanitizers

o Support on Windows on Arm remains incomplete and poorly validated

o Not part of native Windows on Arm releases.



[
w |InQr O™ Arm Solutions at Lightspeed

Armv9 Enablement Path

LLVM is ready — platform + hardware must catch up

e LLVM already supports Armv9 features
o SVE, SME, PAC, BTl in the AArché64 backend
e Windows debugging infrastructure is still behind
o SVE/SME register state not yet exposed to LLDB
e Hardware availability is limited on Windows
o SVE exists in the cloud today, but not widely validated for WoA
e Windows ABI requirements for Armv?

o Unwind info and debug state must be fully defined and implemented



[
w |In0r0 Arm Solutions at Lightspeed

Testing: Cl and Releases

e Linaro maintains multiple Armé4 Windows buildbots

o Single-stage bots are stable

o Testing Clang, Flang, LLD, LLDB, OpenMP, and compiler-rt

o 2-stage and Test-Suite bots face stability and resource constraints
o LNT recently enabled and runs a staging testsuite Flang buildbot

o Testsuite only runs Flang unit tests, full llvm-testsuite enablement in the works

%@]ﬁﬂ@ﬂb@‘&

GitHub Actions




[
w |In0r0 Arm Solutions at Lightspeed

Testing: Cl and Releases

e Linaro produces native Windows on Arm LLVM Release
e GitHub Actions native Windows on Arm runners now available
e Windows on Arm release will migrate to Github actions soon.

e SVE testing and validation suffers from Armv? hardware availability

%@]ﬁﬂdb@ﬁ

GitHub Actions



[
w |In0r0 Arm Solutions at Lightspeed

GCC Ecosystem Growth & Limitations

GCC Status on Windows on Arm
e GCC cross-compiler for Windows on Arm is available now.
e C++ exception handling (SEH) not fully enabled — work in progress

e Toolchain still cross-compile only — native GCC runtime evolving

12



[
w |In0r0 Arm Solutions at Lightspeed

GCC Ecosystem Growth & Limitations

Why GCC Helps LLVM
e Enables more llvm-testsuite coverage — GNU-dependent tests can run
e Expands ecosystem testing — unblocks binutils and various GNU-first tools

e Allows validation and performance comparisons

13






