Climbing the Ladder of Complete

LLVM-libc Past and Future

Who Am I?

Michael Jones

e Me Google 5 years
e Me libc guy
e Me have biiiig plan

Who Am I?

Michael Jones

e At Google for 5 years
e Started right out of college

o Learned a lot from the LLVM community

® Lead Maintainer of LLVM-libc

Robot Parking Lot

fﬁﬁ

[N

o

Presentation Outline

1. 2019 Proposal for LLVM-libc
2. Who are our users?

3. Updated LLVM-libc design

4. What do we do now?

00
www

2019 Proposal for LLVM-libc:

Guiding Principles:

1. Libc "as a library"

2. Support Static linking “The project should mesh with the
3. Standards as guidelines "as a library" philosophy of the

4. Careful with vendor extensions LLVM project: even though "the C
5. Exemplar of LLVM tooling Standard Library" is nominally "a

library," most implementations

Not Focuses: are, in practice, quite monolithic.”

1. Dynamic Loading
2. More architectures

- Siva Chandra, 2019

https://lists.llvm.org/pipermail/llvm-dev/2019-June/133269.html
https://lists.llvm.org/pipermail/llvm-dev/2019-June/133269.html

Where are we now?

>1000 functions implemented

6 Processor Architectures Supported
“50 people with >10 commits

~220 people with at least 1 commit

11 maintainers

00
www

00
www

00
www

What do people use LLVM-libc for?

e Known Environments
o Containerized servers (e.g. Google)

o Embedded devices
o GPUs

e Libc sources as a library
o Hand-in-hand
mlibctt
m OpenMP
m clang (soon) , lli(rms
o External C e R
m Bionic (Android's libc)
m Fuchsia
m Emscripten (Available experimentally)

¢ b
.
s 3

What do they need?

Libc in the application

(©)

(@)

(©)

Static Linking
Header Library
"Runtimes on demand"

“Application”

“System”

Main binary +
shared objects

libc.s0.6

Linux

“Application”
VS
syscall boundary
\
“System”

Application
components

System
libraries

0S

What do they need?

Libc in the application

(©)

(@)

(©)

Static Linking
Header Library
"Runtimes on demand"

Portability

(@)

O

Libc that's easy to port
Same API across different hardware

User API

Libc

Platform API

What do they need?

e Libcinthe application
o Static Linking

o Header Library
o "Runtimes on demand"

e Portability

o Libc that's easy to port
o Same API across different hardware

e Quality
o Performance
o code size
e Customizability
o No one size fits all

What is lower priority?

e Dynamic Loading
e ABI stability

e Legacy Misfeatures Locales as implicit

@??@ arguments

e |

Updated LLVM-libc design

Guiding Principles:

Modularity
Multiplatform
Community Oriented

-

Modularity

e [unctions are independent Functions
o Vertical Modularity

e APIstothe OS level are generic
o Horizontal Modularity

e Modules are reusable
o Using libc as a library

e Modules are replaceable
o E.g. downstream vendors optimizing

Library layers
OS layers

Multiplatform

Code is in C++, not assembly

Platform specific code is clearly separated
Most code is Platform independent
LLVM-libc has one frontend, many backends

FILE* fopen(path, mode) {
fd = open (path) ;
return fdopen (fd, mode) ;

Community Oriented

e A library doesn't appear, it's made by a community.

e A community that is welcoming to newcomers is one where people will join.

e A community that is friendly, respectful, and can handle disagreement is one
where people will stay.

e A project with new opportunities is one where people will grow.

What's the next step?

Il

{gz
I

LLVM-libc Production Ready
For Clang 2026

Why Clang?

Good stress test of LLVM-libc
Real, production program
Widely available

Lets LLVM be self hosting

It's exciting!

00
www

How do we get there?

Test each module

Overlay where possible

Set up LLVM-libc/clang buildbot

Refactor and Modularize

Clean up technical debt

End of 2025

4 Present Strategy
Jd Design Cleanups

Early 2026

Jd Implement Cleanups
J Add functions for Clang
d Set up Clang/LLVM-libc bot

End of 2026

Jd Polish For Clang
4 Complete sets
Jd Set new goal

We can do this!

(Questions?)

00
www

00

WwWw
00
www

