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The race of quantum modalities

Quantum computer is a heterogeneous system (distributed - when scaled into quantum networks or multi-QPU setups)

to perform quantum computations, we need to translate a quantum algorithm to instructions for hardware tools
that control, measure and, if possible, move a qubit in the device qubits

Historical parallels: the mission to build a universal computer

the early 20th century to the mid-20th century: mechanical and electro-mechanical modalities, analog computing

the rise of electrical digital computing: vacuum tubes, transistors, integrated circuits

niche solutions: optical and sound-related modalities (propagation of sound waves to store information)

compare with quantum computing news (August, 2025): a team of Caltech scientists is “using sound to
remember quantum information”

Variety of quantum modalities

« Superconducting (IBM, Google, Rigetti, OQC) and Microsoft's topological qubits

Trapped-lon (lonQ, Quantinuum), Neutral-Atom Qubits (QuEra Computing, Pasgal), Photonic Qubits (Xanadu,
PsiQuantum), and so forth
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Superconducting Qubits

Created using superconducting circuits where
quantum states are encoded in electrical currents or
voltages

- Most widely available devices
- Fast gate operations

- Large physical footprint

- Massive cooling requirements
- Limited connectivity

- Horizontal scaling limitations

- Expensive and technically challenging to scale
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Majorana Topological Qubits

Based upon exotic half-abelian anyons at
superconductor/semiconductor interfaces

Protected from local noise and decoherence

Long coherence times

Challenging to control

Inefficient interconnect

- Concerns scaling controls
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Trapped lons

Based on the electronic and nuclear spin states of
individual ions that are trapped using electromagnetic
fields and manipulated using lasers

- High-fidelity gates

Long coherence times

All-to-all connectivity

Slow trapping & constant re-cooling

Slow shuttling & slow gates

Vertical & horizontal scaling limitations
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a Hyperboloid (90 sites) b Mébius strip (85 sites)

Neutral Atoms

Realized by manipulating the quantum states of
individual neutral atoms using laser beams

- Large qubit count
c Cg, fullerene-like (84 sites) d Cone (100 sites)
Error correction progress
Room temperature operations
Slow probabilistic loading & constant re-cooling
Slow shuttling & slow readout

Vertical & horizontal scaling limitations f Eiffel tower (126 sites)
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Pure Silicon Spin Qubits

Formed by the quantum spin states of particles, such
as electrons or nuclei or quantum dots, often
controlled using magnetic or electric fields

- Cost effective manufacturing
- Record coherence times

- Limited connectivity

- Horizontal scaling limitations

- Expensive to scale

lllll

\\\\\\\

W

¥

%
A

/!

! i
; /
-

\

!\!\

-

l




Pure Photon Based Qubits

Based on the quantum properties of light, such as
polarization and phase, with manipulations via optical
components

Room temperature operations

High connectivity = easy scale out

Challenged by photon loss

High footprint and energy requirements (expensive)

Inefficient error correction
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Design Principles: Scaling Up vs. Scaling Out
Even if quantum advantage is years away for most breathtaking use cases, architecture-centric decision-making defines
future winners in quantum race
* quantum systems modularity matters: networking individual modules together
* highly parallelized entanglement distribution as a foundational aspect of the horizontally scalable architecture

* animportant requirement that guides development of the compiler toolchain

=
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Noisy Intermediate-Scale Quantum (NISQ) Monolithic, Small-Scale Logical Networked Logical Systems, Utility Scale
* No known commercial applications * No known commercial applications » Commercial applications
* Qaa$S market limited to training & upskilling * Drug discovery & development

* Materials development
+ Catalyst development

-
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Examples of MLIR in Compilers for Quantum Computing

IBM, ge-compiler: an MLIR-based compiler for OpenQASM 3

*  QUIR (QUantum Intermediate Representation, circuit-level definitions), OQ3 (OpenQASM 3, classical and quantum
abstractions), Pulse (OpenPulse, a language of “pulses programming”), QCS (Quantum Computing System,
execution and synchronizing over the system of multiple controllers)

NVIDIA CUDA-O: heterogeneous quantum-classical workflows

*  Quake (circuit-level definitions, “not tied to a particular quantum hardware/machine”), CC (classical compute for the
programming model)

Xanadu Quantum Technologies Inc., Catalyst in PennylLane, hybrid quantum programs

«  Quantum (qubit management, gate operations, measurements and more), QEC (support for quantum error

correction schemes)

Munich Quantum Toolkit, software tools for quantum computing
*  mqgtopt (MQTOpt) — value-semantics / running optimization dialect

* maqtref (MQTRef) — reference semantics / compatibility dialect (translations to and from Qiskit, OpenQASM, QIR)

-
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https://github.com/openqasm/qe-compiler
https://github.com/openqasm/qe-compiler
https://github.com/openqasm/qe-compiler
https://github.com/NVIDIA/cuda-quantum
https://github.com/NVIDIA/cuda-quantum
https://github.com/NVIDIA/cuda-quantum
https://github.com/PennyLaneAI/catalyst/
https://github.com/munich-quantum-toolkit
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Photonic: a hybrid modality for distributed quantum computing

Spin-photon quantum modality: optically linked silicon spin qubits
* adual-purpose physical component serves as both a quantum “processor” and a quantum “network node”
« technology is essentially different from the single-chip, local-gate model
* adistributed and modular system that uses photons to link silicon spin qubits

* the computation model is not based on direct physical gates but on the distribution and consumption of
entanglement resources

How the quantum modality shapes design principles for the compiler toolchain

 classical computation and data transfer that happens during quantum execution
must fit within the coherence time of the quantum state

* qguantum gates comprise more complicated series of control and measurement steps

* probabilistic and network-aware process with retries

« control flow in the low-level language ® Silicon atom
Carbon nuclear spin qubits
* hard real-time feedback loop at the hardware controllers: ® Hydrogen nuclear spin qubit
deterministic and latency-critical ® Electron spin qubit

* mid-circuit measurements and interactions with low latency

photonic?,
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From Hardware to Compiler: Defining Requirements

Distributed quantum computing within a hybrid (spin-photon) modality introduces specific compiler requirements
* Photonic’s quantum control system consists of a network of interconnected qubit controllers
« Distributed embedded systems compiler

 translates a global control model into synchronized code for a network of controllers with timing and
communication constraints and control flow at the pulse level

Modular architecture
* asystem is a hierarchy with independent, interchangeable components on each layer
« entanglement distribution and consumption is a first-class citizen of the architecture
« well-defined interface between modules
* base of better error correction codes due to all-to-all connectivity
Efficiency of the quantum computer design:
* maximize computing and reduce decision-making overhead (ref: Todd Austin’s LEAN),

« fundamental need and primary constraint of physical qubits properties: nanoscale control is necessary photone
Y
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LLVM Takes the Stage

A solid engineering foundation
* no need to reimplement basic infrastructure
MLIR provides a compiler infrastructure and a tool to reason about transformations, data flow and stable IRs

* toleverage MLIR upstream dialects to express domain specific types, operations, control flow and use MLIR
modeling and expressive capabilities (e.g., tensor, complex, and linalg to work with the quantum state, matrices
and vectors operations)

* aconvenient way to define a Virtual ISA
LLVM IR enables further code transformations and unlocks required backends (RISC-V)
* qubit controllers execute Photonic’s ISA, which is a superset of RISC-V
LLVM helps, but backing is limited
* quantum compilation vs. pulses-level compilation: more help closer to the hardware

*  MLIR: no upstream dialect for lower levels of distributed quantum computing (modeling time, synchronization,
distributed environment , real-time constraints): time semantics is an opaque effect for analysis

-
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From Quantum Architecture to Compiler Stack

Overcoming the challenge of entanglement distribution: to support logical compilation and quantum execution on scale

* treat entangled qubits as a resource that requires a dedicated subsystem managing the lifecycle (allocation,
routing, scheduling)

* balance local and distributed capabilities to support both distributed computing and communication

Hardware and Software co-design:
* ahardware tool is controlled by a dedicated processing unit

« straightforward execution of the instruction stream to work with a qubit, no speculative execution

« decisions how to perform control are made at compile time if possible

* the compiler deals with the specific physical properties of the qubits (relaxation time T1, decoherence time T2)

coherence times of silicon spin (longer) and photons used for networking (shorter) anyway mean nanoscale
precision and close-loop logic whenever feasible

 error detection and recovery means constant interaction with QEC subsystem: less of an isolated component

like in classic software environments, a library/tool to support quantum execution adaptive w.r.t the qubits state

-
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A Compiler Toolchain for Fault-tolerant Quantum Computing

Quantum Error Correction (QEC) and non-deterministic quantum protocols (e.g., Magic State Distillation)
Quantum (specialized) compilation vs. low-level (general) compilation
* both translate high-level instructions into a set of instructions
« different meaning of “instructions” (target machine code vs. native quantum gates)
* both heavily rely on optimization
« focus on different resources (speed, memory, ... vs. circuit depths, gate count, ...)
* hardware limits of ISA and xPU architecture vs. physical properties on the underlying qubits technology
The compiler software stack may be naturally divided into several integrated but rather dissimilar architectural layers

« diverse scope and goals means different users, input languages, requirements and constraints

-
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Compiler Layers: From Language to Control

e |deal logical qubits and gates
Logical circuit e | ogical entities must be decomposed, and circuit must
be altered to support fault-tolerance

e e e e QEC and non-deterministic guantum protocols require
Y T repeated measurements and conditional corrections

syndrome extraction rounds e Auxiliary computational qubits for new operations

e Decompose ideal gates into hardware-native basis

e £ g, teleport CNOT for the spin-photon Photonic
architecture

Computational Gates to

Native Physical

e Gates are compiled according to the operations/gates
Gates Compilation library (an analogy is standard library)
e The program is represented as a schedule of pulses

e Use system configuration, transform the schedule
Produce Controller-Level Code according to devices calibration(an analogy is intrinsics)
e Precise real-time schedule of pulses and waveforms

A
A
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Photonic’s Multi-Layer Compiler Stack
front-end languages: Q# & others

[

Q#, other languages & IRs

)

QIR

Photonic HL MLIR

[

]

low-level language(s):
pulses and waveforms

[

Photonic Realtime MLIR
user-supplied & internal ops

)

stable portable IR

Photonic Controller MLIR
ISA-aware dialect

{

),

RISC-V
code

middle-end components & languages
/f QEC & Scheduler \\

Configuration
J

4 )

Vs

Operations (Gates) Library

-
\\

~
J

System Configuration

resource management and scheduling

4 N

QEC Decoders

L J
4 N\
Scheduler
L J
4 N\

Qubit Controllers
K control and detector units /
\\§ J
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Virtual ISA
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One of the core goals is to provide a unified representation for programmable manipulations on qubits:

* to comprise intermediate representation(s) of programs execution in the Photonic system architecture along with the

underlying programming mode|

* toserve as an anchor and origin of stabilization for points after quantum compilation and before fully hardware aware

lowering

>

Logical vISA _

Physical vISA  mms)

* tospan multiple hardware designs and generations of Photonic computing devices

Q#, other languages & IRs

QEC & Scheduler Configuration

——

—

QIR

—

Operations (Gates) Library

Photonic HL MLIR

N’

—

System Configuration

N’

Photonic Realtime MLIR
user-supplied & internal ops

QEC Decoders

P

N’/

stable portable IR

Photonic Controller MLIR
ISA-aware dialect

N’/

Qubit Controllers
control and detector units

e ——

N’/

* toisolate concerns, providing abstractions to bridge run-time with hardware control instruments and multiple

front-ends with lowering and optimization

Ay
photonic?;



20

Examples of Technical Challenges in the Compiler

Integrate non-LLVM languages and instruments with the LLVM-based toolchain
* QIR extends LLVM IR with quantum-specific operations

« representation for qubits, measurements, and runtime interactions using LLVM types and calls for different
tools/backends to interoperate

* needs to be integrated with Photonic MLIR concepts
* Users of middle- and low-level languages expect to work with Python or at least something Python-ish
*  LLVM and MLIR are technologies at the core of our compiler infrastructure
*  Python(-ish) language must be translated into Photonic MLIR dialects
Generation of distributed code for real-time software/hardware cooperation
« A programming model to support distributed computations, control flow and messaging at the nanoseconds scale
Code generation that helps to support compatibility across multiple hardware designs

« A stable representation across diverse hardware designs and generations of Photonic computing devices

-
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Language of Pulses and Waveforms

The program is represented as a schedule of pulses
+ the level of physical qubits and pulses/waveforms used to control and measure quantum states
* requires alignment and messaging between control and measurement devices behind physical qubits

Translation process

* outputs a precise real-time nanoscale schedule of pulses and waveforms in a form of RISC-V instructions and

annotations

* use system configuration, transform the schedule according to devices calibration
* hardware controller-level code, proprietary micro-operations
Operation examples

 send/receive

hardware-specific series of measurements coupled between devices

« perform a pulse or a waveform

-
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Language of Pulses and Waveforms Expressed in MLIR

Dialects

* Physical Virtual ISA and “a source of truth” w.r.t. the execution model

gx.channel "CtrlGroup" ["OPTA", "OPTB"] gx.device "DETA" {
gx.channel "DetGroup" [“DETA", “DETB"] ce
gx.kernel @Init _e() { gx.barrier "DetGroup"
scf.for %1 = %cO to %clo step %cl : 132 { %do = gx.detect 100
gx.pulse 500 %d1l = gx.receive "DETB"
gx.delay 500 e
} gx.send %heralded

gx.barrier "CtrlGroup"

}
gx.kernel @rt_x() {

gx.waveform "rtx_e"

}

* low level ISA-aware IR: MLIR dialects (cf, arith, lvm) and precise real-time schedule; proprietary; lowered to RISC-V

llvm.inline asm has_side effects asm dialect = att "\@9#COM x31 = GETTS", "" : () -> ()
%14 = llvm.inline asm has_side effects asm dialect = att "\@9.word 0x06007f8b", "={x31}“ : () -> i32

Ay
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Language of Pulses and Waveforms: Infrastructure

C++ core on LLVM/MLIR: performance, extensibility, upstream passes and standard pass management
Compiler as a library: Python package interface via MLIR bindings
* APl above C++ passes; pybind/nanobind
* introspection exposed through the API: mid-translation analyses; reconfigurable pipeline
* integration with lab software and system configs
* hardware topology
 calibration profiles
* pipeline options

Python ergonomics for notebooks, automation, orchestration and testing

23
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Bridging non-LLVM frontends with the MLIR based toolchain: Q#

Microsoft Q# compiler stack

The public microsoft/gsharp repository: Rust, non-LLVM toolchain

QIR is based on LLVM IR

namespace Test {
@EntryPoint() %) ®
operation Main() : Result[] {

use ql = Qubit(); i

use g2 = Qubit();

H(q1); ;) N
CNOT(ql, q2); ' L/
MResetEachZ([ql, q2])

[ Q# } { QIR ]7? 4{ Photonic HL MLIR ]

-
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Bridging non-LLVM frontends with the MLIR based toolchain: Q#

Microsoft Q# compiler stack

The public microsoft/gsharp repository: Rust, non-LLVM toolchain

QIR is based on LLVM IR

namespace Test {
@EntryPoint() %) ®

operation Main() : Result[] {

Qubit(); i

use ql
use (2

Qubit();

H(ql); ;) 1\
CNOT(q1, q2); ! L/

MResetEachZ([ql, q2])

[ Q# { QIR } Lift to H[ Photonic HL MLIR ]
) 1 MLIR scf

f [ Standard/User Libraries ]
AST HIR FIR RIR 7

-

-

Intercept IR with structured control flow photoned)
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Bridging non-LLVM frontends with the MLIR based toolchain: Q# and QIR

QIR extends LLVM IR with quantum-specific operations and it's architecture-neutral, but
* memory-semantics and intrinsics, representing gates as side effects on qubits
* missing value-semantics mode, where changes in quantum states are represented in a functional style
* integration with compiler toolchains misses fine-grained control over lowering (e.g., qubits-gates level of annotation)
* attaching metadata via attributes could be used by quantum compilation as hints or directives
* reasoning on a low level of (quantum concepts) abstraction: no support of fault-tolerant quantum computing
* too big a gap between logical circuit level and QIR operations
Two ways to address the problem
* add custom MLIR dialects inspired by QIR with explicit support of quantum compilation concepts
« update QIR to state-of-the-art
* introduce support for quantum compilation

* become MLIR friendly

-
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Quantum Computing DSL and Standard Library

Logical circuit

The representation gap between compiler layers is too big: Conditional Corrections

on the outcomes of syndrome extraction rounds
* Logical circuit to Conditional Corrections
Computational Gates to Native Physical

»  Computational Gates to Native Physical

Gates Compilation

*  Gates Compilation

Produce Controller-Level Code

Some middle-end layers can be parameterized via a “standard library”:

* the task can be offloaded to non-compiler engineers using high-level languages/Python DSLs: wrappers above
MLIR dialects for different levels of abstraction

Use cases for Python DSLs: apply when MLIR real-time pulses dialects are too low level to express pages of business logics

»  QEC and related non-deterministic quantum protocols-aware extensions to the Photonic HL MLIR dialect: to
describe various repeat-until-success control flow chains and semantics of the interaction with the compiler pipeline
and run-time (e.g., details of the syndrome extraction, magic-state injection, configurable transformations)

*  Operations/Gate library: to define logics of mapping more complicated (teleporting) quantum gates

* wrap MLIR-encoded pulses and waveforms language(s) for native gates compilation: benchmarking, prototyping,

calibration, experimentation (used independently from higher levels in the compiler stack) .
photonic?;



Compilation (compile-time) vs. Execution (run-time)

Compile-time

Domain specific languages
(e.g., a subset of Python)

Photonic HLQO MLIR

/ Compiler for pulse languages \

-

Photonic Pulse-level MLIR

| user-supplied & internal ops

4 N\
Photonic Controller-level MLIR

ISA-aware dialect

2

_/

classical
control flow

RISC-V: ops
offloading

Run-time

Qubit Controllers
control and detector units

Classical components

System Configuration

/ Quantum runtime system

- Mapping between logical,
computational qubits and
hardware controllers

- Tracing computational qubits

- Schedule execution
kl\/lanage resources

J

28
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Python DSLs: a need for a native frontend for MLIR

Many Python features are not a quick and easy fit for MLIR: requires substantial analysis and runtime support

«  MLIR: SSA, explicit types and dialects, structured control flow dialect restrictions

* Python: dynamic types, object model, and reflection; generators, exceptions and dynamic control flow
There are intersections between Mojo ideas and design goals and needs of quantum computing

* ambitions to rearrange the domain of heterogenous computing where quantum also belongs (in a way of
thinking about hybrid computing environments)

* a Python-like syntax that functions as "syntax sugar for MLIR": direct programming support for MLIR concepts
* abstracting away the complexities of manual IR construction and making MLIR accessible to a broader audience

* match a high-level language concepts: e.g., early exits with region terminators
(rcf.yield , rcf.break, rcf.continue), see the 2024 Eurol VM talk and the RFC Classical
Region-based control-flow with early exits in MLIR

Can this lead eventually to a more general form of “a native frontend for MLIR"? Al Bantum

* supporting custom dialects’ need for a Python-like syntax with less boilerplate

-
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https://llvm.org/devmtg/2024-04/slides/TechnicalTalks/Chen-Efficient-Data-Flow-Analysis-on-Region-based-Control-Flow-in-MLIR.pdf
https://llvm.org/devmtg/2024-04/slides/TechnicalTalks/Chen-Efficient-Data-Flow-Analysis-on-Region-based-Control-Flow-in-MLIR.pdf
https://llvm.org/devmtg/2024-04/slides/TechnicalTalks/Chen-Efficient-Data-Flow-Analysis-on-Region-based-Control-Flow-in-MLIR.pdf
https://discourse.llvm.org/t/rfc-region-based-control-flow-with-early-exits-in-mlir/76998
https://discourse.llvm.org/t/rfc-region-based-control-flow-with-early-exits-in-mlir/76998
https://discourse.llvm.org/t/rfc-region-based-control-flow-with-early-exits-in-mlir/76998
https://discourse.llvm.org/t/rfc-region-based-control-flow-with-early-exits-in-mlir/76998
https://discourse.llvm.org/t/rfc-region-based-control-flow-with-early-exits-in-mlir/76998
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Controlling maintenance burden

What LLVM version to target?
* QIR and opaque pointers; the industry overall targets almost anything in between LLVM 14 and 21
What should be owned/customized?
* LLVMis a huge code base with fast pacing changes
« staying up-to-date requires more maintenance efforts
« example: the language of pulses and waveforms utilizes the RISC-V backend target
« domain specific MLIR is lowered to the LLVM dialect, LLVM IR, and passed into the upstream backend

« owning and customization would help to address certain engineering challenges of nanoscale control and

monitoring, giving more fine-grained control instead of workarounds
We rely on stable releases and even then, upgrade the version conservatively
* atradeoff between the latest features and higher risks: research/experiments pose specific requirements

* balance components of the stack: stability of the backend is more important than usability of middle/front-end

-
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Quantum Computing: a Quest for Talents from Classical Software Science

More historical parallels: metaphorically speaking, are we in the 20th or the 17th century?
« John Wilkins: the Real Character, Gottfried Leibniz: The Calculus Ratiocinator and the Characteristica Universalis
 after 300 years with the advent of LLMs and generative Al, we are witnessing the advanced realization of this dream

* open questions about the nature of "understanding," "consciousness," and "reason" in the context of LLMs

Quantum Computing: Substantial uncertainty and technical challenges vs. risks to miss the opportunity

«  CMOS transistors vs. Qubits: extremely reliable (0.99999999...) vs. ~0.995-0.999 (two or three nines) for 2-qubit
fidelity

* the risk to miss advent of practically useful quantum computing is too high — given its high promises, think about
scientific revolution of the 17th century — to ignore the domain even when the technical difficulty level is so high

Growing industry demand for talents
* big funding rounds, large valuations and government support
* practical quantum systems: Hybrid systems, Compilers & runtimes, Algorithms & simulation, Tooling & platforms

-
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