
Manasij Mukherjee

Iago: AI Driven Superoptimization for LLVM

John Regehr
University of Utah

1

Iago

NVIDIA

2

Talk Organization

Motivation

Design

Results

Why solve this problem?

What worked and what doesn’t?

How well does it work?

3

What is Superoptimization?

Can a piece of code be improved?

Specifically, by searching for a refinement.

Searching for a refinement

4

Enumerate a bunch
of candidates

Attempt to verify each

Superoptimizing sqlite3 (53.94k lines of code)
takes ~24 hours with 128 cores with Souper

What’s on the table?

5

10 instructions?

100 instructions? ?
1-5 instruction(s)

0-2
instruction(s)

What we usually put into
InstCombine today:

One off pattern in
your important code
that is not generally

useful

Do we really need
to optimize long
sequences?

6

?

Superoptimization examples

7

ctpop %x

Why replace the enumeration with AI?

8

Just a few plausible
candidates

Attempt to verify each

Reach far deeper
into the search space

9

Example - guess what this is!
(root) (root)

10

Superoptimization → Compilers

Can a piece of code be improved?

Can we improve the compiler such that -
it improves this piece of code?

... and does not regress anything else?
... it improves other, similar, pieces of code?Hyd

ra

11

Talk Organization

Motivation

Design

Results

Why solve this problem?

What worked and what doesn’t?

How well does it work?

12

Baseline: just asking the LLM!

GPT-5,
solve this!

?

The expression you've given seems to be
an incomplete logical expression. The "=>"
symbol typically indicates implication,
suggesting that ...

13

Two significant issues

GPT-5,
solve this!

?

The expression you've given seems to be
an incomplete logical expression. The "=>"
symbol typically indicates implication,
suggesting that ...

Wrong syntax!

Wrong semantics!

14

Iago’s System Prompt

● Explain the idea of peephole
optimizations

● Describe available operations
● Negative statements about what to

avoid
● Examples

No correctness guarantee from an LLM

15

Getting the right syntax

Prompt

Result

Parser error
message!

LLM Parser

16

Fixing seemingly consistent issues

LLM results kept redefining values

%x = add i32 %a, %b
%x = add i32 %x, 1

%x = add i32 %a, %b
%x’ = add i32 %x, 1

Wrong types

%x = or i32 %a, %b
%c = select i32 %x, ...

Insert appropriate icmp
or trunc

17

What about correctness?

Prompt

Result

Counter-example

LLM Alive2

18

Does not work, at all.

Prompt

Result

Counter-example

LLM Alive2

LLMs do not seem
to understand

counterexamples

19

Works, sort of...

BLAH

Just try again!

LLM Alive2
BLAAAAH

Just try again!

20

Can we do better?

21

Formal Methods to the rescue again!

Verify Results Fix Results

No correctness guarantee from an LLM

Alive2 + Z3 CEGIS

?

with with

22

Fixing Incorrect Results

Extract a sketch

Fill in the blanks with an
SMT solver

+

42

1

+

?

?

+

2

1

23

How do we fill in the blanks with an SMT solver?

Counterexample Guided Inductive Synthesis

This is the logical formula in question

Solving Exists/Forall Problems With Yices [Dutertre]

https://yices.csl.sri.com/papers/smt2015.pdf

24

Recap : Iago’s Synthesis Loops

All results formally verified

25

What about completeness?

Can we guarantee finding a refinement if one exists ?

No. https://github.com/llvm/llvm-test-suite

Results from running
on llvm-test-suite

26

Towards Completeness

First level of search tree, incomplete candidates.

Pruning, remove infeasible candidates

Fits in an LLM context window now!

27

Iago is sound but not complete.

28

Monkey’s Paw

We have wished for :
Correct syntax

Must be a valid refinement

(x & ~y) == 0

x == y

x == y ⊨
%0:i64 = var
%1:i64 = var
%2:i64 = xor -1:i64, %1
%3:i64 = and %0, %2
%4:i1 = eq 0:i64, %3
infer %4
%5:i1 = eq %0, %1
pc %5 1:i1
result %5

%0:i64 = var
%1:i64 = var
%2:i64 = xor -1:i64, %1
%3:i64 = and %0, %2
%4:i1 = eq 0:i64, %3
infer %4
%5:i1 = eq %0, %1
pc %5 1:i1
result %5

29

Talk Organization

Motivation

Design

Results

Why solve this problem?

What worked and what doesn’t?

How well does it work?

30

Iago results summary

35.7% results are new!

7.4% fewer total results

More complex optimizations, complements Souper.

31

Results on llvm-test-suite
https://github.com/llvm/llvm-test-suite

32

Iago results summary

Finds optimizations in gzip
a 30 year old codebase.

Matches Souper’s code
size reduction for gzip

33

Does sketching help?

More results

More profitable results

34

Is it faster than Souper?

35

GPT-4 Temperature Parameter

36

Do different backends agree on Iago’s optimizations?

sub nuw i64 31, %x

xor i64 %x, 31

mov rax, rdi
xor rax, 31

xori a0, a0, 31

x86-64 riscv

37

Breakdown - x86-64 vs RISC-V and x86-64 vs AArch64

Profitable in this context - produces fewer asm instructions

38

Takeaways implementing these optimizations

Often multiple
transforms in

disguise

39

Takeaways

40

Takeaways implementing these optimizations

Conflicts with canonicalization

Picking the right subset is tricky

Termination issues! zext(xor 1:i1, b:i1)
 => 1 - zext(b)

Symbiosis between AI and Formal Methods

41

Great at generating text

No correctness guarantees

Exhaustive synthesis

Always correct

42

Some final - REDO

Check out our open career opportunities here:
https://www.nvidia.com/en-us/about-nvidia/careers/

Scan the QR code to connect with us.
NVIDIA is the engine of the world's AI infrastructure.
We are the world leader in accelerated computing.

Takeaways
AI for compiler work - Trust, but verify.

Formal methods to verify and fix results.

http://www.nvidia.com/en-us/about-nvidia/careers/

