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Talk Organization

Motivation

Design

Results

Why solve this problem?

What worked and what doesn’t?

How well does it work?
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What is Superoptimization?

Can a piece of code be improved? 

Specifically, by searching for a refinement.



Searching for a refinement
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Enumerate a bunch 
of candidates

Attempt to verify each

Superoptimizing sqlite3 (53.94k lines of code)
takes ~24 hours with 128 cores with Souper



What’s on the table?
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10 instructions?

100 instructions? ?
1-5 instruction(s)

0-2
instruction(s)

What we usually put into 
InstCombine today:

One off pattern in 
your important code 
that is not generally 

useful



Do we really need 
to optimize long 
sequences?
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?



Superoptimization examples
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ctpop %x



Why replace the enumeration with AI?
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Just a few plausible 
candidates

Attempt to verify each

Reach far deeper
into the search space
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Example - guess what this is!
(root) (root) 
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Superoptimization → Compilers

Can a piece of code be improved? 

Can we improve the compiler such that - 
it improves this piece of code?

... and does not regress anything else?
... it improves other, similar, pieces of code?Hyd

ra
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Baseline: just asking the LLM!

GPT-5, 
solve this!

?

The expression you've given seems to be 
an incomplete logical expression. The "=>"
symbol typically indicates implication,
suggesting that ...
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Two significant issues

GPT-5, 
solve this!

?

The expression you've given seems to be 
an incomplete logical expression. The "=>"
symbol typically indicates implication,
suggesting that ...

Wrong syntax!

Wrong semantics!
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Iago’s System Prompt

● Explain the idea of peephole 
optimizations

● Describe available operations
● Negative statements about what to 

avoid
● Examples

No correctness guarantee from an LLM
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Getting the right syntax

Prompt

Result

Parser error 
message!

LLM Parser
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Fixing seemingly consistent issues

LLM results kept redefining values

%x = add i32 %a, %b
%x = add i32 %x, 1

%x = add i32 %a, %b
%x’ = add i32 %x, 1

Wrong types  

%x = or i32 %a, %b
%c = select i32 %x, ...

Insert appropriate icmp 
or trunc
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What about correctness?

Prompt

Result

Counter-example

LLM Alive2
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Does not work, at all.

Prompt

Result

Counter-example

LLM Alive2

LLMs do not seem 
to understand 

counterexamples
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Works, sort of...

BLAH

Just try again!

LLM Alive2
BLAAAAH

Just try again!
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Can we do better?
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Formal Methods to the rescue again!

Verify Results Fix Results

No correctness guarantee from an LLM

Alive2 + Z3 CEGIS

?

with with
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Fixing Incorrect Results

Extract a sketch

Fill in the blanks with an 
SMT solver

+

42

1

+

?

?

+

2

1



23

How do we fill in the blanks with an SMT solver?

Counterexample Guided Inductive Synthesis

This is the logical formula in question

Solving Exists/Forall Problems With Yices [Dutertre]

https://yices.csl.sri.com/papers/smt2015.pdf
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Recap : Iago’s Synthesis Loops

All results formally verified
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What about completeness?

Can we guarantee finding a refinement if one exists ?

No. https://github.com/llvm/llvm-test-suite

Results from running
on llvm-test-suite 
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Towards Completeness

First level of search tree, incomplete candidates.

Pruning, remove infeasible candidates

Fits in an LLM context window now!
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Iago is sound but not complete.



28

Monkey’s Paw

We have wished for : 
Correct syntax

Must be a valid refinement

(x & ~y) == 0

x == y

x == y ⊨
%0:i64 = var
%1:i64 = var
%2:i64 = xor -1:i64, %1
%3:i64 = and %0, %2
%4:i1 = eq 0:i64, %3
infer %4
%5:i1 = eq %0, %1
pc %5 1:i1
result %5

%0:i64 = var
%1:i64 = var
%2:i64 = xor -1:i64, %1
%3:i64 = and %0, %2
%4:i1 = eq 0:i64, %3
infer %4
%5:i1 = eq %0, %1
pc %5 1:i1
result %5
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Iago results summary 

35.7% results are new!

7.4% fewer total results

More complex optimizations, complements Souper.
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Results on llvm-test-suite 
https://github.com/llvm/llvm-test-suite
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Iago results summary 

Finds optimizations in gzip
a 30 year old codebase.

Matches Souper’s code
size reduction for gzip
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Does sketching help?

More results

More profitable results
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Is it faster than Souper?
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GPT-4 Temperature Parameter
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Do different backends agree on Iago’s optimizations?

sub nuw i64 31, %x

xor i64 %x, 31

mov rax, rdi
xor rax, 31

xori a0, a0, 31

x86-64 riscv
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Breakdown - x86-64 vs RISC-V and x86-64 vs AArch64

Profitable in this context - produces fewer asm instructions
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Takeaways implementing these optimizations

Often multiple 
transforms in 

disguise
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Takeaways
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Takeaways implementing these optimizations

Conflicts with canonicalization

Picking the right subset is tricky

Termination issues! zext(xor 1:i1, b:i1)
  => 1 - zext(b)



Symbiosis between AI        and         Formal Methods 
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Great at generating text

No correctness guarantees

Exhaustive synthesis

Always correct
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Some final  - REDO



Check out our open career opportunities here: 
https://www.nvidia.com/en-us/about-nvidia/careers/

Scan the QR code to connect with us.
NVIDIA is the engine of the world's AI infrastructure. 
We are the world leader in accelerated computing.

Takeaways
AI for compiler work - Trust, but verify.

Formal methods to verify and fix results.

http://www.nvidia.com/en-us/about-nvidia/careers/

