
Lifetime Safety in Clang
LLVM Developers’ Meeting 2025
Utkarsh Saxena (Google)
29 Oct, 2025

Temporal
Memory Safety

It is undefined behaviour to access a
memory after it has been
deallocated or "freed".

2

Temporal Safety: Impact

3

Analysis based on 912 high or critical severity security bugs since 2015 (in Chromium project).
https://www.chromium.org/Home/chromium-security/memory-safety/

https://www.chromium.org/Home/chromium-security/memory-safety/

Temporal Safety: Examples

Use-after-free

4

int foo() {

 int* p;

 {

 std::unique_ptr<int> x = std::make_unique<int>(5);

 p = x.get();

 } // 'x' destructed here.

 std::cout << *p; // use-after-free.

}

Lifetime Safety
An alias-based analysis

An intuitive path towards
incremental compile-time temporal
safety.

5

Programmer’s intuition

6

int foo() {

 int* p;

 {

 std::unique_ptr<int> x = std::make_unique<int>(5);

 p = x.get();

 } // 'x' destructed here.

 std::cout << *p;

}

Object is destructed.

This pointer points-to something
that just got destroyed.

The pointer is later used.

How does a programmer reason about Temporal Safety ?

Programmer’s intuition

7

Object is destructed.

This pointer points-to something
that just got destroyed.

The pointer is later used.

Invalidating operations
(destructor, free, move, push_back)

Aliasing
What are the aliases of a storage ?

Liveness
Are there “live” aliases ?

Invalidating operations

Hidden behind abstractions: push_back, clear()

8

// Destructors.

{

 unique_ptr<int> x = make_unique<int>(5);

} // 'x' destructed here.

std::vector<int> v = {1, 2, 3, 4};

auto it = v.find(1);

v.push_back(5); // invalidates 'it'.

Aliasing

9

int foo() {

 int* p;

 {

 std::unique_ptr<int> x = std::make_unique<int>(5);

 p = x.get();

 }

 return *p;

}

Aliasing

10

int foo() {

 int* p;

 {

 std::unique_ptr<int> x = std::make_unique<int>(5);

 int *q = x.get();

 p = q;

 }

 return *p;

}

Aliasing

11

int foo() {

 int* p;

 {

 std::unique_ptr<int> x = std::make_unique<int>(5);

 int *q = x.get();

 int *r = q;

 int *s = r;

 int *t = s;

 p = s;

 }

 return *p;

}

Liveness

12

int foo() {

 int* p;

 {

 std::unique_ptr<int> x = std::make_unique<int>(5);

 p = x.get();

 }

 std::cout << *p;

}

Liveness

13

int foo() {

 int* p;

 {

 std::unique_ptr<int> x = std::make_unique<int>(5);

 p = x.get();

 }

 std::unique_ptr<int> y = std::make_unique<int>(42);

 p = y.get();

 std::cout << *p;

}

Kills the previous value

Not alive

Lifetime model

14

Loans

Represents the act of borrowing from a
specific memory location.

Defined by

● Where it is created (the borrow site)
● What memory is borrowed

15

int x;

int* p = &x;
 // Loan L1 to 'x' is created.

Loans Expirations

Represents memory invalidations.

When a storage is invalidated, all loans to it expires.

16

{
 int x;
 int* p = &x; // Loan L1 to 'x' is created.
 &x; // Loan L2 to 'x' is created.
}
// 'x' goes out of scope.
// L1 and L2 are expired.

Origins

Represents aliasing.

● Symbolic identifier associated with
pointer-like types.

● Set of all loans that an entity can
hold.

17

int* p; // int* ^O1

{
 int x;
 int* p; // int* ^O1
 p = &x; // Loan L1 to 'x'.
 // ^O1 = {L1}
}
// 'x' goes out of scope.
// L1 is expired.

Flow-sensitivity and subtyping rules

Represents the flow-sensitive nature of
aliasing.

● Flow-sensitive subtyping rules
● Implies a subset constraint

18

int* p; // int* ^O1
int* q; // int* ^O2
q = p; // O2 ← O1

int* p; // int* ^O1
int* q; // int* ^O2

int x = 42;
p = &x; // Loan L1 to 'x'
 // O1 = {L1}.

q = p; // O2 ← O1 = {L1}

Live Origins

● “Is this value later used ?”

19

int* p; // int* ^O1

int x;
p = &x; // Loan L1 to 'x' is created.
 // ^O1 = {L1}

int y;
p = &y; // Loan L2 to 'y' is created.
 // ^O1 = {L2}

std::cout << *p;

Not alive

Live

The Lifetime
Policy

A lifetime violation is identified at
program point P if:

● A Loan L expires at P
● An Origin O contains the loan L

at P
● The Origin O is live at P

20

Putting it all together

“A live origin should
not contain an
expired loan”

21

Lifetime policy: Example

22

int* p; // int* ^O1

{
 int x = 42;
 p = &x; // Loan L1 to 'x' is created.
 // O1 = {L1}.

}
// L1 expires. O1 contains L1. O1 is live.

std::cout << *p;

Loan L1 expires

Origin O1 contains Loan L1

Origin O1 is live

Demo

Try it out:

● -Xclang -fexperimental-lifetime-safety -Wexperimental-lifetime-safety
● https://godbolt.org/z/dEvjP8q86

23

void foo() {

 std::string_view view;

 {

 std::string small = "small scoped string";

 view = small;

 // ^^^^^ error: object does not live long enough.

 } // note: destroyed here.

 std::cout << view;

 // ^^^^ note: later used here.

}

3-points diagnostic:
● Borrow site
● Invalidation site
● Use site

https://godbolt.org/z/dEvjP8q86

Dealing with
Abstractions If there were no function calls, we

would be done here!

24

Function calls

What can a function call do ?

25

 Aliasing Invalidations

Lifetime Contracts

“Compositional analysis” instead of inter-procedural analysis.

Extend the language

… with annotations and API contracts.

26

Lifetime Contracts: Aliasing

std::string_view Identity(const std::string& in) {

 return in;

}

27

std::string_view StripSuffix(const std::string& in,

 const std::string& suffix);

Lifetime Contracts: Aliasing

std::string_view Identity(const std::string& in [[clang::lifetimebound]]) {

 return in;

}

28

std::string_view StripSuffix(const std::string& in [[clang::lifetimebound]],

 const std::string& suffix);

Limited solution

● [[clang::lifetimebound]] and family…

Lifetime Contracts: Invalidations

Invalidations →

push_back(), clear(), insert()

No solution atm

But can be introduced in the future:

● E.g.
[[clang::invalidates(...)]]
(or something similar)

29

std::vector<int> v = {1, 2, 3, 4};

auto it = v.find(1);

v.push_back(5); // invalidates 'it'.

Lookout for updates in
2026.

30

Under construction.

Lifetime Safety
What it is not ?

● Rigorous temporal memory
safety guarantees for C++

● Borrow checker

31

Non goals

Find us more at:

RFC#86291: https://discourse.llvm.org/t/rfc-intra-procedural-lifetime-analysis-in-clang/86291

Biweekly sync

● Lifetime Safety Breakout Group @Wednesdays, 2:30 PM CET
● Added to calendar@llvm.org

Github

● Label: clang:temporal-safety
● Umbrella Issue: https://github.com/llvm/llvm-project/issues/152520
● Project 39: https://github.com/orgs/llvm/projects/39/

Discord: https://discord.com/channels/636084430946959380/1431071362365128908

32

https://discourse.llvm.org/t/rfc-intra-procedural-lifetime-analysis-in-clang/86291
mailto:calendar@llvm.org
https://github.com/llvm/llvm-project/issues/152520
https://github.com/orgs/llvm/projects/39/
https://discord.com/channels/636084430946959380/1431071362365128908

Thank you!

Credits to all the contributors:

Yitzhak Mandelbaum

Gábor Horváth

Haojian Wu

Kinuko Yasuda

Dmytro Hrybenko

Martin Brænne

… and many more!

33

Questions ?

Backup slides

34

Regressions: Compile-times and Performance

35

No regressions on plenty of codebases 2-3% regression on LLVM/Clang

Compile-times and Performance

36

Worst-case 200% hit to compile-time (~generated code!)

(Possible) Future directions

● Rust-style annotation syntax in Clang
● Annotation suggestion, verification
● Large-scale adoption of Lifetime contract
● Iterator/Pointer Invalidations, e.g. [[clang::invalidates(...)]]
● [No]escape analysis
● Summary-based full-program analysis
● Incremental borrow checker rules

37

