
Hardening the Core: Challenges in Mitigating
Hardware Vulnerabilities with LLVM

This work was informed and inspired by collaborations with Michael Flanders (then at UW),
Alexandra Michael (UW), Dan Grossman (UW), David Kohlbrenner (UW)

Reshabh K Sharma

1

Safety-Critical Code Needs to be Hardened

2

Safety-critical code works with data that we do not want a malicious
actor to infer.

Examples of Safety Critical Code:

• Password hash comparisons
• Cryptographic key equality checks
• Block cipher implementations
• Public key signature verification
• Message authentication code

Side Channel Attack are a Real Threat

3

Side-channel attacks work by leaking data through unintended side
effects of program execution.

These side effects such as timing, power usage, or cache behavior can
vary depending on secret-dependent parts of the code.

Example: if a password check returns faster when the password
matches, that timing difference can reveal information to an attacker.

Constant Time Programming

4

Constant-time (CT) programming is a paradigm designed to ensure that
the observable effects of code execution such as timing, memory
access, or control flow remain independent of secret or sensitive inputs.

Properties of constant-time code:

• Avoid conditional branching on secret data
• Avoid secret-dependent memory access patterns
• Use constant-time arithmetic and operations
• Process all data uniformly

Is Constant Time Programming Enough?

5

Unfortunately, No!

Even if a program is written to avoid timing or control flow variations, the
microarchitectural implementation such as caches, speculative
execution, or prefetchers can still introduce observable differences that
attackers exploit as side channels.

Is Constant Time Programming Enough?

6

Unfortunately, No!

Even if a program is written to avoid timing or control flow variations, the
microarchitectural implementation such as caches, speculative
execution, or prefetchers can still introduce observable differences that
attackers exploit as side channels.

Microarchitectural Side Channel

7

Microarchitectural implementation details can cause constant-time
programs to exhibit exploitable side effects.
Example:

• Speculative Execution
• Silent Store
• Computation Simplification
• Value Prediction

… and many more

Microarchitectural Side Channel

8

Microarchitectural implementation details can cause constant-time
programs to exhibit exploitable side effects.
Example:

Speculative Execution
…
cmp rdi, rsi
cmovge rdi, rsi
mov al, byte [rcx + rdi]
…

Speculative execution can transiently execute mov al, byte [rcx + rdi]
with out-of-bounds rdi before clamp takes effect.

Microarchitectural Side Channel

9

Microarchitectural implementation details can cause constant-time
programs to exhibit exploitable side effects.
Example:

Silent Store
…
mov [esp], eax
mov [esp], ebx
…
One store gets silenced or optimized when EAX and EBX hold the same
value.

Microarchitectural Side Channel

10

Microarchitectural implementation details can cause constant-time
programs to exhibit exploitable side effects.
Example:

Computation Simplification
…
add eax, ebx
…

Computation gets optimized when EBX is known to be zero.

Microarchitectural Optimizations

11

Microarchitectural Optimizations (speculative execution, silent stores,
computation simplification and many more) may result in creating side
effects that can be observed by an attacker to leak secrets.

Take Away: The microarchitectural optimizations can be exploited and
break the constant-time code.

Defending Against Hardware Vulnerabilities

12

Code Pattern => Triggers Microarchitectural Optimizations
(Potentially Vulnerable)

Defending Against Hardware Vulnerabilities

13

Code Pattern => Triggers Microarchitectural Optimizations
(Potentially Vulnerable)

Can we not turn off the hardware optimization
completely in future hardware?

Defending Against Hardware Vulnerabilities

14

Code Pattern => Triggers Microarchitectural Optimizations
(Potentially Vulnerable)

Can we not turn off the hardware optimization
completely at OS level?

Defending Against Hardware Vulnerabilities

15

Code Pattern => Triggers Microarchitectural Optimizations
(Potentially Vulnerable)

Can we not programatically turn off the
hardware optimization selectively for code
working with secrets?

Mitigation as Code Transformation

16

Code Pattern => Triggers Microarchitectural Optimizations
(Potentially Vulnerable)

Can we get rid of
all the code
patterns dealing
with secrets that
triggers the
potentially
vulnerable
optimization?

Mitigation as Code Transformation

17

Code Pattern => Triggers Microarchitectural Optimizations
(Potentially Vulnerable)

• Zero Day Solution

• Works with older
hardware

• Selectively works
on code dealing
with secrets

Mitigation as Code Transformation

18

Code Pattern => Triggers Microarchitectural Optimizations
(Potentially Vulnerable)

We can get rid of all the code patterns dealing with secrets that
triggers the potentially vulnerable optimization.

Can we transform all the code patterns to ensure that they do not
trigger that specific hardware optimization?

Mitigation as Code Transformation

19

…
cmp rdi, rsi
cmovge rdi, rsi
mov al, byte [rcx + rdi]
…

Speculative Execution

Speculative execution can transiently execute mov al, byte [rcx + rdi]
with out-of-bounds rdi before clamp takes effect but not with the fence.

…
cmp rdi, rsi
cmovge rdi, rsi
lfence
mov al, byte [rcx + rdi]
…

Mitigation as Code Transformation

20

…
mov [esp], eax
mov [esp], ebx
…

Silent Store

With value of r11 such that it is never eax or ebx, we can ensure that
silent store optimization never triggers for the ebx and r11 mov

…
mov [esp], eax
mov [esp], r11
mov [esp], ebx
…

Challenges in Mitigating inside a Compiler

21

What abstraction shall we implement them on?

• In LLVM IR
• In the backend before regalloc
• In the backend after regalloc

Example: In the backend, after regalloc each mitigation needs to
proactively reserve registers to be able to use them for temporaries.

Challenges in Mitigating inside a Compiler

22

Where shall we schedule them in the pass pipeline?

At the very end so that no other optimization or pass can interfere with
their working.

Challenges in Mitigating inside a Compiler

23

Where shall we schedule them in the pass pipeline?

At the very end so that no other optimization or pass can interfere with
their working.

Who is at the end when everyone is at the end?

Optimizations vs Mitigations

24

Mitigations needs to be applied for anything that can potentially trigger
the hardware optimization making the optimization criteria more
conservative than a mitigation.

Optimizations vs Mitigations

25

Phase ordering is a known issue in optimizing compilers. A suboptimal
phase order may result in less performant code but is not unsafe.

In contrast, mitigations must be handled carefully, as one
mitigation undoing another can be unsafe or, worse, provide a false
sense of security

26

• How can the developer reason about the passes ahead of their
pass?

• How can we automatically figure out conflicting transformations?

Open Research Challenges

27

Inline assembly cannot be transformed by the compiler.

Bolt can be used to handle inline assembly, but not all transformation
or analysis can be done at that abstraction.

Handling Inline Assembly using Bolt

28

Bolt can also be used as a post transformation checker to check if all
the potential code triggers have been transformed.

Bolt as post transformation checker

29

Compiler-based defenses provide a flexible and timely response to
emerging threats. They also enhance the overall security posture by
layering defenses, protecting systems even when hardware-based
solutions fall short or are not feasible.

The compiler infrastructure is well-suited for implementing mitigations
as program transformations, but since it was never designed for this
purpose, there are limitations we should address.

Conclusion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

