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Safety-Critical Code Needs to be Hardened
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Safety-critical code works with data that we do not want a malicious 
actor to infer.

Examples of Safety Critical Code: 

• Password hash comparisons
• Cryptographic key equality checks
• Block cipher implementations
• Public key signature verification
• Message authentication code



Side Channel Attack are a Real Threat
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Side-channel attacks work by leaking data through unintended side 
effects of program execution.

These side effects such as timing, power usage, or cache behavior can 
vary depending on secret-dependent parts of the code. 

Example: if a password check returns faster when the password 
matches, that timing difference can reveal information to an attacker.



Constant Time Programming
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Constant-time (CT) programming is a paradigm designed to ensure that 
the observable effects of code execution such as timing, memory 
access, or control flow remain independent of secret or sensitive inputs.

Properties of constant-time code:

• Avoid conditional branching on secret data
• Avoid secret-dependent memory access patterns
• Use constant-time arithmetic and operations
• Process all data uniformly



Is Constant Time Programming Enough?
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Unfortunately, No!

Even if a program is written to avoid timing or control flow variations, the 
microarchitectural implementation such as caches, speculative 
execution, or prefetchers can still introduce observable differences that 
attackers exploit as side channels.
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attackers exploit as side channels.



Microarchitectural Side Channel

7

Microarchitectural implementation details can cause constant-time 
programs to exhibit exploitable side effects.
Example: 

• Speculative Execution
• Silent Store 
• Computation Simplification
• Value Prediction

… and many more 



Microarchitectural Side Channel
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Microarchitectural implementation details can cause constant-time 
programs to exhibit exploitable side effects.
Example: 

Speculative Execution 
…
cmp rdi, rsi
cmovge rdi, rsi
mov al, byte [rcx + rdi]
…

Speculative execution can transiently execute mov al, byte [rcx + rdi] 
with out-of-bounds rdi before clamp takes effect.



Microarchitectural Side Channel
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Microarchitectural implementation details can cause constant-time 
programs to exhibit exploitable side effects.
Example: 

Silent Store 
…
mov [esp], eax
mov [esp], ebx
…
One store gets silenced or optimized when EAX and EBX hold the same 
value.



Microarchitectural Side Channel
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Microarchitectural implementation details can cause constant-time 
programs to exhibit exploitable side effects.
Example: 

Computation Simplification
…
add eax, ebx
…

Computation gets optimized when EBX is known to be zero. 



Microarchitectural Optimizations
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Microarchitectural Optimizations (speculative execution, silent stores, 
computation simplification and many more) may result in creating side 
effects that can be observed by an attacker to leak secrets. 

Take Away: The microarchitectural optimizations can be exploited and 
break the constant-time code.



Defending Against Hardware Vulnerabilities
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Code Pattern => Triggers Microarchitectural Optimizations
(Potentially Vulnerable)



Defending Against Hardware Vulnerabilities
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Code Pattern => Triggers Microarchitectural Optimizations
(Potentially Vulnerable)

Can we not turn off the hardware optimization 
completely in future hardware? 



Defending Against Hardware Vulnerabilities
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Code Pattern => Triggers Microarchitectural Optimizations
(Potentially Vulnerable)

Can we not turn off the hardware optimization 
completely at OS level? 



Defending Against Hardware Vulnerabilities
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Code Pattern => Triggers Microarchitectural Optimizations
(Potentially Vulnerable)

Can we not programatically turn off the 
hardware optimization selectively for code 
working with secrets? 



Mitigation as Code Transformation
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Code Pattern => Triggers Microarchitectural Optimizations
(Potentially Vulnerable)

Can we get rid of 
all the code 
patterns dealing 
with secrets that 
triggers the 
potentially 
vulnerable 
optimization? 



Mitigation as Code Transformation
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Code Pattern => Triggers Microarchitectural Optimizations
(Potentially Vulnerable)

• Zero Day Solution

• Works with older 
hardware

• Selectively works 
on code dealing 
with secrets 



Mitigation as Code Transformation
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Code Pattern => Triggers Microarchitectural Optimizations
(Potentially Vulnerable)

We can get rid of all the code patterns dealing with secrets that 
triggers the potentially vulnerable optimization.

Can we transform all the code patterns to ensure that they do not 
trigger that specific hardware optimization?



Mitigation as Code Transformation

19

…
cmp rdi, rsi
cmovge rdi, rsi
mov al, byte [rcx + rdi]
…

Speculative Execution

Speculative execution can transiently execute mov al, byte [rcx + rdi] 
with out-of-bounds rdi before clamp takes effect but not with the fence.

…
cmp rdi, rsi
cmovge rdi, rsi
lfence
mov al, byte [rcx + rdi]
…



Mitigation as Code Transformation
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…
mov [esp], eax
mov [esp], ebx
…

Silent Store

With value of r11 such that it is never eax or ebx, we can ensure that 
silent store optimization never triggers for the ebx and r11 mov

…
mov [esp], eax
mov [esp], r11
mov [esp], ebx
…



Challenges in Mitigating inside a Compiler 
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What abstraction shall we implement them on?

• In LLVM IR
• In the backend before regalloc
• In the backend after regalloc 

Example: In the backend, after regalloc each mitigation needs to 
proactively reserve registers to be able to use them for temporaries. 



Challenges in Mitigating inside a Compiler 

22

Where shall we schedule them in the pass pipeline?

At the very end so that no other optimization or pass can interfere with 
their working. 



Challenges in Mitigating inside a Compiler 
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Where shall we schedule them in the pass pipeline?

At the very end so that no other optimization or pass can interfere with 
their working. 

Who is at the end when everyone is at the end?



Optimizations vs Mitigations 
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Mitigations needs to be applied for anything that can potentially trigger 
the hardware optimization making the optimization criteria more 
conservative than a mitigation. 



Optimizations vs Mitigations 
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Phase ordering is a known issue in optimizing compilers. A suboptimal 
phase order may result in less performant code but is not unsafe.

In contrast, mitigations must be handled carefully, as one
mitigation undoing another can be unsafe or, worse, provide a false 
sense of security
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• How can the developer reason about the passes ahead of their 
pass?

• How can we automatically figure out conflicting transformations?

Open Research Challenges



27

Inline assembly cannot be transformed by the compiler. 

Bolt can be used to handle inline assembly, but not all transformation 
or analysis can be done at that abstraction.

Handling Inline Assembly using Bolt 
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Bolt can also be used as a post transformation checker to check if all 
the potential code triggers have been transformed.  

Bolt as post transformation checker 



29

Compiler-based defenses provide a flexible and timely response to 
emerging threats. They also enhance the overall security posture by 
layering defenses, protecting systems even when hardware-based 
solutions fall short or are not feasible.

The compiler infrastructure is well-suited for implementing mitigations 
as program transformations, but since it was never designed for this 
purpose, there are limitations we should address.

Conclusion
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