Hardening the Core: Challenges in Mitigating
Hardware Vulnerabilities with LLVM
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Safety-Critical Code Needs to be Hardened

Safety-critical code works with data that we do not want a malicious
actor to infer.

Examples of Safety Critical Code:

* Password hash comparisons
 Cryptographic key equality checks
* Blockcipherimplementations

* Public key signhature verification

* Message authentication code
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Side Channel Attack are a Real Threat

Side-channel attacks work by leaking data through unintended side
effects of program execution.

These side effects such as timing, power usage, or cache behavior can
vary depending on secret-dependent parts of the code.

Example: if a password check returns faster when the password
matches, that timing difference can reveal information to an attacker.
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Constant Time Programming

Constant-time (CT) programming is a paradigm designed to ensure that
the observable effects of code execution such as timing, memory
access, or control flow remain independent of secret or sensitive inputs.

Properties of constant-time code:

* Avoid conditional branching on secret data

* Avoid secret-dependent memory access patterns
* Use constant-time arithmetic and operations

* Process all data uniformly
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|s Constant Time Programming Enough?

Unfortunately, No!

Even if a program is written to avoid timing or control flow variations, the
microarchitectural implementation such as caches, speculative
execution, or prefetchers can still introduce observable differences that
attackers exploit as side channels.
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microarchitectural implementation such as caches, speculative
execution, or prefetchers can still introduce observable differences that
attackers exploit as side channels.
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Microarchitectural Side Channel

Microarchitectural implementation details can cause constant-time
programs to exhibit exploitable side effects.
Example:

 Speculative Execution
* Silent Store

* Computation Simplification
* Value Prediction

... and many more
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Microarchitectural Side Channel

Microarchitectural implementation details can cause constant-time
programs to exhibit exploitable side effects.

Example:

Speculative Execution

cmp rdi, rsi
cmovge rdi, rsi
mov al, byte [rcx + rdi]

Speculative execution can transiently execute mov al, byte [rcx + rdi]
with out-of-bounds rdi before clamp takes effect.
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Microarchitectural Side Channel

Microarchitectural implementation details can cause constant-time
programs to exhibit exploitable side effects.

Example:
Silent Store

mov [esp], eax
mov [esp], ebx

One store gets silenced or optimized when EAX and EBX hold the same
value.
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Microarchitectural Side Channel

Microarchitectural implementation details can cause constant-time
programs to exhibit exploitable side effects.
Example:

Computation Simplification

add eax, ebx

Computation gets optimized when EBX is known to be zero.
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Microarchitectural Optimizations

Microarchitectural Optimizations (speculative execution, silent stores,
computation simplification and many more) may result in creating side
effects that can be observed by an attacker to leak secrets.

Take Away: The microarchitectural optimizations can be exploited and
break the constant-time code.
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Defending Against Hardware Vulnerabilities

Code Pattern => Triggers Microarchitectural Optimizations

(Potentially Vulnerable)
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Defending Against Hardware Vulnerabilities

Code Pattern => Triggers Microarchitectural Optimizations

(Potentially Vulnerable)

Can we not turn off the hardware optimization
completely in future hardware?
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Defending Against Hardware Vulnerabilities

Code Pattern => Triggers Microarchitectural Optimizations

(Potentially Vulnerable)

Can we not turn off the hardware optimization
completely at OS level?
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Defending Against Hardware Vulnerabilities

Code Pattern => Triggers Microarchitectural Optimizations

(Potentially Vulnerable)

Can we not programatically turn off the
hardware optimization selectively for code
working with secrets?
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Mitigation as Code Transformation

Code Pattern => Triggers Microarchitectural Optimizations

Can we get rid of
all the code
patterns dealing
with secrets that
triggers the
potentially
vulnerable
optimization?

(Potentially Vulnerable)
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Mitigation as Code Transformation

Code Pattern => Triggers Microarchitectural Optimizations

(Potentially Vulnerable)

Zero Day Solution

Works with older
hardware

Selectively works
on code dealing
with secrets
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Mitigation as Code Transformation

Code Pattern => Triggers Microarchitectural Optimizations

(Potentially Vulnerable)

We can get rid of all the code patterns dealing with secrets that
triggers the potentially vulnerable optimization.

Can we transform all the code patterns to ensure that they do not
trigger that specific hardware optimization?
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Mitigation as Code Transformation

Speculative Execution

cmp rdi, rsi

cmovge rdi, rsi

lfence

) mov al, byte [rcx + rdi]

cmp rdi, rsi
cmovge rdi, rsi
mov al, byte [rcx + rdi]

Speculative execution can transiently execute mov al, byte [rcx + rdi]
with out-of-bounds rdi before clamp takes effect but not with the fence.
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Mitigation as Code Transformation

Silent Store

mov [esp], eax
mov [esp], ebx

mov [esp], eax
mov [esp], rll
mov [esp], ebx

With value of r11 such that it is never eax or ebx, we can ensure that
silent store optimization never triggers for the ebx and r11 mov
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Challenges in Mitigating inside a Compiler

What abstraction shall we implement them on?

* InLLVMIR

* Inthe backend before regalloc
* Inthe backend after regalloc

Example: In the backend, after regalloc each mitigation needs to
proactively reserve registers to be able to use them for temporaries.
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Challenges in Mitigating inside a Compiler

Where shall we schedule them in the pass pipeline?

At the very end so that no other optimization or pass can interfere with
their working.
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Challenges in Mitigating inside a Compiler

Where shall we schedule them in the pass pipeline?

At the very end so that no other optimization or pass can interfere with
their working.

Who is at the end when everyone is at the end?
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Optimizations vs Mitigations

Mitigations needs to be applied for anything that can potentially trigger
the hardware optimization making the optimization criteria more
conservative than a mitigation.
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Optimizations vs Mitigations

Phase ordering is a known issue in optimizing compilers. A suboptimal
phase order may result in less performant code but is not unsafe.

In contrast, mitigations must be handled carefully, as one
mitigation undoing another can be unsafe or, worse, provide a false
sense of security
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Open Research Challenges

* How can the developer reason about the passes ahead of their
pass?

* How can we automatically figure out conflicting transformations??
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Handling Inline Assembly using Bolt

Inline assembly cannot be transformed by the compiler.

Bolt can be used to handle inline assembly, but not all transformation
or analysis can be done at that abstraction.
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Bolt as post transformation checker

Bolt can also be used as a post transformation checker to check if all
the potential code triggers have been transformed.
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Conclusion

Compiler-based defenses provide a flexible and timely response to
emerging threats. They also enhance the overall security posture by
layering defenses, protecting systems even when hardware-based
solutions fall short or are not feasible.

The compiler infrastructure is well-suited for implementing mitigations
as program transformations, but since it was never designed for this
purpose, there are limitations we should address.
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