
S. VenkataKeerthy

IIT Hyderabad, Google

Enhancing MLGO Inlining with IR2Vec Embeddings

US LLVM Developers’ Meeting

28th October 2025

Program Representations

2

How to Represent
the code (better)

for ML?

Feature Engineering

Embeddings

🛠

��

3

Features Vs. Embeddings

🛠 Features 🔮 Embeddings

Handcrafted Learned automatically

Task-specific General-purpose, reusable

Shallow statistics
(counts, depths, CFG metrics)

Deep semantics

Features capture what we think is important; embeddings discover what is important.

Embeddings: Brief Background

https://medium.com/data-science/a-guide-to-word-embeddings-8a23817ab60f 4

https://medium.com/data-science/a-guide-to-word-embeddings-8a23817ab60f

Program Representations

IR2Vec

Distributed Encodings
semantic meaning is ‘distributed’ across
components of the vector

LLVM IR Based
Language & Machine Independent
Program Analysis based approach

Agglomerative / Bottom-Up Approach
Doesn’t need complex ML models
Independent of Applications

5

How about
eliminating feature

engineering?

6

IR2Vec (Symbolic Encodings)

Symbolic Encodings

Flow-Aware Encodings: Symbolic + Flow Information

7

Improving Symbolic Encodings with Flow Information

8

Flow-Aware Encodings: Symbolic + Flow Information
Improving Symbolic Encodings with Flow Information

9

Flow-Aware Encodings: Symbolic + Flow Information
Improving Symbolic Encodings with Flow Information

Code Vectors: Beyond Instruction Representation

10

Linear Combination

Sequential models Non-Sequential models

Aggregators to effectively compose Instruction vectors

Extensions to IR2Vec

VexIR2Vec

● Machine Specific

● From Binary

IR2Vec

● Machine Independent

● From Source Code

MIR2Vec

● Machine Specific

● From Source Code

11

https://arxiv.org/abs/1909.06228
https://arxiv.org/abs/1909.06228
https://arxiv.org/abs/1909.06228

IR2Vec in LLVM

● RFC and Discussions*

● LLVM Upstreaming
○ IR2Vec integrated under llvm/Analysis

○ MIR2Vec in llvm/CodeGen

○ llvm-ir2vec standalone tool in llvm/tools

■ Supports embedding and vocab generation

● Upcoming

○ Python library, installable via pip

● Source code (Research) - https://github.com/IITH-Compilers/IR2Vec

12* https://discourse.llvm.org/t/rfc-enhancing-mlgo-inlining-with-ir2vec-embeddings

https://github.com/IITH-Compilers/IR2Vec
https://discourse.llvm.org/t/rfc-enhancing-mlgo-inlining-with-ir2vec-embeddings

13

IR2Vec in LLVM

● Vocabulary Analyses
○ IR2VecVocabAnalysis, MIR2VecVocabLegacyAnalysis

● Embedder classes

○ ir2vec::Embedder, mir2vec::MIREmbedder

● Embeddings class

○ Wrapper around std::vector<double>

● Programmatically in LLVM Passes

○ Query vocabulary via IR2VecVocabAnalysis / MIR2VecVocabLegacyAnalysis

○ Create an Embedder and extract embeddings at function or block or instruction level.

auto &VocabRes = MAM.getResult<IR2VecVocabAnalysis>(M);

if (!VocabRes.isValid()) { … }

const ir2vec::Vocab &Vocabulary = VocabRes.getVocabulary();

auto Emb = ir2vec::Embedder::create(IR2VecKind::Symbolic, F, Vocabulary);

Embedding FVec = Emb->getFunctionVector();

Using IR2Vec

14

● Via standalone llvm-ir2vec Tool

 Generates embeddings from .bc or .ll files.

llvm-ir2vec embeddings --ir2vec-vocab-path=vocab.json input.bc -o embeddings.txt

● Vocabulary Training

○ llvm-ir2vec also helps in generating data for training vocabulary

llvm-ir2vec triplets input.bc -o train2id.txt

○ Planning to automate the vocab generation

■ see llvm/utils/mlgo-utils/IR2Vec/generateTriplets.py

Using IR2Vec

15

ML-Driven Compiler Optimizations

ML-Compiler-Bridge

[VenkataKeerthy, Jain, et al, CC’24]

Phase Ordering
(POSET-RL)

[Jain, VenkataKeerthy, et al, ISPASS’22]

RL-Loop Distribution

[Jain, VenkataKeerthy, et al, LLVM HPC’22]

ML-Driven Optimizations

Register Allocation
(RL4ReAl)

[VenkataKeerthy, Jain, et al, CC’23]

IR2Vec

[VenkataKeerthy, et al, TACO’20]

Function InliningIn LLVM

16

Register Eviction in
RegallocGreedy

*Planned - MIR2Vec application

MLInlineAdvisor

● Feature-based, Uses 32 hand-picked features

● Optimization for size

● PPO, ES, Imitation Learning based approaches

● C++ related code available in LLVM
○ Python based training infra – https://github.com/google/ml-compiler-opt

17

https://github.com/google/ml-compiler-opt

IR2Vec with MLInlineAdvisor

Concatenating embeddings with features

Trained models from scratch on internal datacenter binaries, ~50K modules, PPO policy, ~20M steps

18

Open Challenges & the road ahead

19

20

Flow-Aware Embeddings: Cyclic dependencies!

Linear Solver for Flow-Aware Embeddings / Cyclic Dependencies

Design trade-offs
● Simple linear solver - Handwritten (where - llvm/utils?) or eigen like libraries?
● Iterative solution

21

Encoding More Information

● Memory dependences

○ Memdep analysis or MemorySSA can make Flow-Aware embeddings more elegant

○ But they are highly conservative!

■ Embeddings can tolerate False-negatives unlike optimizations

■ Specialize them?

■ Biasing based on memtrace profiling?

● Profile Information

22

MIR Vocabulary

● Vocabulary uses regex to group MIR opcodes (target specific)
○ Eg: "ADD32rr" -> "ADD"
○ This is mainly a learning quality enhancer

● x86 → 6.8K opcodes after grouping
○ In comparison, IR2Vec vocab has only ~100 entities in total

● Need for better “canonicalization”, beyond regex

○ x86 has a systematic approach (uses TableGen)
● OpPrefix - PD, PS, XS, XD, etc.
● Width - 32, 64, etc.
● OpForm - rm, rr, ri, etc.
● …

■ These prefixes and suffixes are attached with the “generic” opcodes

○ But such an approach is not generalizable across architectures

● Buildbots to generate dataset (triplets) using the latest compiler

○ On LLVM codebase

○ Lightweight (<10 mins with 64 vCPUs)

○ Can also serve as an integration test

● Training Job on the generated data

○ Uses the last generated dataset to train the vocabulary

○ Can be less-frequent

Automating Vocab Generation

23

In Summary…

24

● IR2Vec: learned, scalable, architecture-independent program embeddings

○ Upstreamed, addressed performance related issues, ready to use

○ Aims to reduce and remove efforts towards feature engineering

● Demonstrates potential in both research and real-world production environments

Next Steps

● Replace features, instead of concatenation

● Using MIR2Vec for eviction decisions in Regalloc Greedy

● Automating vocabulary training pipelines

● Improving Flow-Aware infrastructure

● …

Thank You!
S. VenkataKeerthy

 https://svkeerthy.github.io

Interested? Let’s talk!
(discourse @svkeerthy)

Acknowledgements

Mircea Trofin, Albert Cohen, Ramakrishna Upadrasta, Other contributors and co-authors

https://svkeerthy.github.io

