Enhancing MLGO Inlining with IR2Vec Embeddings

S. VenkataKeerthy
IIT Hyderabad, Google

N G

an6Bop Mo3BS Dend %0 pisorent
W?ﬁ‘ﬂ?ﬁ!ﬁﬁﬂﬁw%w

US LLVM Developers’ Meeting
28" October 2025

Program Representations

How to Represent

the code (better)
for ML?

Feature Engineering
. Embeddings

Features Vs. Embeddings

Features capture what we think is important; embeddings discover what is important.

“ Features @ Embeddings
Handcrafted Learned automatically
Task-specific General-purpose, reusable
Shallow statistics Deep semantics
(counts, depths, CFG metrics)

Embeddings: Brief Background

man

woman

Object 1

king \._\‘.
Object 2 Embedding Model 8loslos|----- | queen

Object 3

Set of Objects Objects as Vectors

Male-Female

https://medium.com/data-science/a-quide-to-word-embeddings-8a23817ab60f

https://medium.com/data-science/a-guide-to-word-embeddings-8a23817ab60f

Program Representations

How about
feature
engineering?

IR2Vec

(LLVM IR Based
Language & Machine Independent
Program Analysis based approach

(.
f
Distributed Encodings
semantic meaning is ‘distributed’ across
components of the vector y
e)
Agglomerative / Bottom-Up Approach
Doesn’t need complex ML models

Independent of Applications
N J

IR2Vec (Symbolic Encodings)

[hl [rl [t]
(0000|0000 |x(0000|

N,
i
o r‘,

! 4N

(store, "TypeOf", IntegerTy)

(store, "NextInst", store)

(store, "Arg,", VAR)

(store, "Arg,", PTR)

(ret, "TypeOf", IntegerTy)

(ret, "Arg;", VAR) <

Seed Embedding Vocabulary
(esee]

IntegerTy

On Training

%a.addr = alloca i32, align 4
Symbolic Encodings
$b.addr = alloca i32, align 4

store i32 %a, i32* %a.addr, align 4 > W, ((e9ee)) + W ((ee9e9)) +

store i32 $b, i32* $b.addr, align 4 W, (() + (eee0))

%0 = load i32, i32* %a.addr, align 4
%1 = load i32, i32* $b.addr, align 4

%$add = add nsw i32 %0, %1

ret i32 %add —= Wo(@) + Wt(@) + Wa(E)

Flow-Aware Encodings: Symbolic + Flow Information

Improving Symbolic Encodings with Flow Information

I1: %i = alloca i32
I2: %j= alloca i32

\

I3: store 132 5, i32* %j

i / [L2] = W, ([alloca]]) + W; ([[IntegerTy])

14: %t0 = load 132, i32* %)j
I5: %t1 = load 132, i32* %i

16: %x = add nsw 132 %t1, 2
I7: store 132 %%x, i32* %t1
I8: %y = add nsw 132, %tO0, 3
19: store i32 %y, 132* %t0

Flow-Aware Encodings: Symbolic + Flow Information

Improving Symbolic Encodings with Flow Information

12: %j= alloca i32

\

I3: Sgore i32 5, 132* %j

! / [L2] = W, ([alloca])) + W; (][IntegerTy]))

“$14: %t0 = load i32, i32* %j - [L] = Wo ([load]) + W, ([PointerTy])+

15: %t1 = load i32, i32* %i
Wa ([L2] +[1s] + [To])

}‘II: %1 = alloca i32

16: %x = add nsw 132 %tl1, 2
17: store i32 %x, i32* %t1
I8: %y = add nsw 132, %t0, 3
19: store i32 %y, i32* %t0 o--{"

Flow-Aware Encodings: Symbolic + Flow Information

Improving Symbolic Encodings with Flow Information

_..--I1: %i = alloca i32
©,.--1#I2: %j= alloca i32

\

I3: s;ore i32 5, 132* %j

/ [12] = W, ([alloca])) + W, ([IntegerTy]))

" 14: %t0 = load i32, i32* %j 4 [L]] = Wo ([load])) + W; ([PointerTy |)+
4 15: %t1 = load 132, i32* %i4-.
3 Wa ([L2] + [1s] + [I])
(L] = W, ([load])) + W, (|| PointerTy)+
Wo ([] + 1])

16: %x = add nsw 132 %t1, 2
I7: store i32 %X, i32* %tl -~
I8: %y = add nsw i32, %t0, 3 | ~
19: store i32 %y, i32* %t0 o-.-{"

Code Vectors: Beyond Instruction Representation

Aggregators to effectively compose Instruction vectors

(~1) '“).2 ht
o
./’b/ ? H mt-1 /® ® [@ ' A » mt

’W A EN w7
1] J i g o ot/ >
‘ > ft it r® .]gt t J ?
A @« tagh @ A > I
M2 ht1 ! l l) <_J
|] \lz J
Xt
Sequential models Non-Sequential models

Linear Combination
10

Extensions to IR2V

IR2Vec

€C

MIR2Vec

VexlIR2Vec

Machine Independent

From Source Code

IR2VEc: LLVM IR Based Scalable Program Embeddings

S. VENKATAKEERTHY, ROHIT AGGARWAL, SHALINI JAIN,
MAUNENDRA SANKAR DESARKAR, and RAMAKRISHNA UPADRASTA,
Indian Institute of Technology Hyderabad

Y. N. SRIKANT, Indian Institute of Science

We propose IR2VEc, a Concise and Scalable encoding infrastructure (0 represent programs as a distributed
embedding in conti is obtained by
methods with flow information to capture the syntax as well as the semantics of the input programs. As our
infrastructure is based on the Intermediate Representation (IR) of the source code, obtained embeddings
are both language and machine independent. The entities of the IR are modeled as relationships, and their
representations are learned to form a seed embedding vocabulary. Using this infrastructure, we propose two

encodings: Flow-Aware. obtained from the seed embedding
vocabulary, and Flow-Aware encodings are obtained by augmenting the Symbolic encodings with the flow
information.

We show th i f our on imization task device mapping
and Thread coarsening). Our way of representing the programs enables us to use non-sequential models
resulting in orders of magnitude of faster training time. Both the encodings generated by IR2VEC outperform
the existing methods in both the tasks, even while using simple machine learning models. In particular, our
results i |mpmve or match the state-of-the-art speedup in 11/14 benchmark-suites in the device m..ppmk task

d 5348 har o 4if

learning

A

Machine Specific

From Source Code

RL4REAL: Reinforcement Lea_rningfor Register

Allocation
S. VenkataKeerthy Siddharth Jain Anilava Kundu
1T Hyderabad IIT Hyderabad T Hyderabad
India India. India
Rohit Aggarwal Albert Coben Ramakrishna Upadrasta
IIT Hyderabad. Google 1T Hyderabad
India France India

Abstract

‘We aim to automate decades of research and experience in
register allocation, leveraging machine learning. We tackle
this problem by embedding a multi-agent reinforcement

problem is reducible to graph coloring, which is ane of the
classical NP-Complete problems [, 22]. Register allocation
as an optimization involves additional sub-tasks, more than
graph coloring itself [5]. Several formulations have been
proposed that return exact, or heuristic-based solutions.
dly, e

leamning algorithm within LLVM, training it with the state
of the art techniques. We formalize

s B N O SR R

tecture, while ensuring that the generated code preserves

Semantic correctness. We also develop a gRPC based frame-

P
for training and inference. Our approach is architecture in-

optimizations [34, 3], ILP [3, 5, 12, 42], PBQP [31], game-
theoretic approaches [45], and are fed to a variety of solvers.
In general, these approaches are known to have scalability
issues. On the other hand, heuristic-based approaches have
been widely used owing to their scalability: reasonable solu-

e Machine Specific

e From Binary

VExIR2VEC: An Architecture-Neutral Embedding Framework for Binary
Similarity

S. VENKATAKEERTHY, SOUMYA BANERJEE, SAYAN DEY, YASHAS ANDALURI, RAGHUL
PS, and SUBRAHMANYAM KALYANASUNDARAM, IIT Hyderabad, India

FERNANDO MAGNO QUINTAO PEREIRA, UFMG, Brazil

RAMAKRISHNA UPADRASTA, IIT Hyderabad, India

Binary similarity involves determining whether two binary programs exhibit similar functionality with applications in
Vulnerabilty detection, malware analysis, and copyright detection. However, variations in compiler settings, target archi-
tectures, and deliberate code the similarity by effectively altering the
syntax, semantics, and structure of the underlying binary. To address these challenges, we propose VEXIR2VEC, a robust,
architecture-neutral approach based on VEX-IR to solve binary similarity tasks. VEXIR2VEC consists of three key components:
a peephole extractor, a normalization engine (VEXINE), and an embedding model (VEXNET). The process to build program
embeddings starts with the extraction of sequences of basic blocks, or peepholes, from control-flow graphs via random walks,
capturing structural information. These generated pepholes are then normalized using VEXINE, which applies compiler-
inspired to reduce archi and d variations. of peepholes are generated

11

https://arxiv.org/abs/1909.06228
https://arxiv.org/abs/1909.06228
https://arxiv.org/abs/1909.06228

IR2Vec in LLVM

llvm::ir2vec Namespace Reference

. . Classes
® RFC and Discussions*

class Embedder

Embedder provides the interface to generate embedd

struct Embedding
. LLVM U pStrea m i ng Embedding is a datatype that wraps std::vector<double>. More.
o IR2Vec integrated under 11vm/Analysis
SymbolicEmbedder

o M I szec in 1 1vm / CO d eG en Class for computing the Symbolic embeddings of IR2Vec. More.

Vocabulary

Class for storing an ng the IR2Vec vocabulary. More
o 1llvm-ir2vec standalone tool in 1lvm/tools

(vector representq

class FlowAwareEmbedder

Class for computing the Flow-aware embe of IR2Vec. More..

m Supports embedding and vocab generation y;'//_;LLVM

llvm-ir2vec - IR2Vec and MIR2Vec Embedding Generation Tool
SYNOPSIS

o Python library, installable via pip

DESCRIPTION

e Upcoming

lvm-ir2vec is a standalone command-line tool for IR2Vec and MIR2Vec. It generates embeddings for both LLVM IR and Machine IR
ports triplet generation for vocabulary training.

e Source code (Research) - https:/github.com/IITH-Compilers/IR2Vec s s i e e

2. entities: Generates entity mapping files (entity2id.txt) for vocabulary training.

3. embeddings: Generates IR2Vec or MIR2Vec embeddings using a trained vocabulary at different granularity levels (instruction
function).

“The tool supports two operation modes

* https://discourse.llvm.org/t/rfc-enhancing-mlgo-inlining-with-ir2vec-embeddings 1
e ——

https://github.com/IITH-Compilers/IR2Vec
https://discourse.llvm.org/t/rfc-enhancing-mlgo-inlining-with-ir2vec-embeddings

IR2Vec in LLVM

® \ocabulary Analyses
o IR2VecVocabAnalysis, MIR2VecVocabLegacyAnalysis

® Embedder classes

O qr2vec: :Embedder, mir2vec: :MIREmbedder

® Embeddings class

O Wrapper around std: :vector<double>

13

Using IR2Vec

® Programmatically in LLVM Passes

o

o

Query vocabulary via IR2VecVocabAnalysis /MIR2VecVocablLegacyAnalysis

Create an Embedder and extract embeddings at function or block or instruction level.

auto &VocabRes = MAM.getResult<IR2VecVocabAnalysis>(M);

if (!VocabRes.isValid()) { .. }

const ir2vec::Vocab &Vocabulary = VocabRes.getVocabulary();

auto Emb = -dr2vec::Embedder::create(IR2VecKind::Symbolic, F, Vocabulary);

Embedding FVec = Emb->getFunctionVector();

14

Using IR2Vec

® Via standalone 11lvm-ir2vec Tool

Generates embeddings from .bc or .l files.

1lvm-ir2vec embeddings —--ir2vec-vocab-path=vocab.json input.bc -o embeddings.txt

® Vocabulary Training

o 1llvm-ir2vec also helps in generating data for training vocabulary

1lvm-ir2vec triplets input.bc -o train2id.txt

o Planning to automate the vocab generation

m see llvm/utils/mlgo-utils/IR2Vec/generateTriplets.py

15

ML-Driven Compiler Optimizations

IR2Vec

[VenkataKeerthy, et al, TACO’20]

ML-Compiler-Bridge

[VenkataKeerthy, Jain, et al, CC’24]

ML-Driven Optimizations

7

T Phase Ordering Register Allocation
RL-Loop Distribution
P (POSET-RL) (RL4ReAl)
[Jain, VenkataKeerthy, et al, LLVM HPC’22]))
[Jain, VenkataKeerthy, et al, ISPASS’22] [VenkataKeerthy, Jain, et al, CC'23]

RegallocGreedy

K *Planned - MIR2Vec application /

16

In LLVM [Function Inlining } [Register Eviction in }

MLInlineAdvisor

Feature-based, Uses 32 hand-picked features

Optimization for size

PPO, ES, Imitation Learning based approaches

C++ related code available in LLVM

(@)

Python based training infra — https://github.com/google/ml-compiler-opt

17

https://github.com/google/ml-compiler-opt

IR2Vec with MLInlineAdvisor

Concatenating embeddings with features

Trained models from scratch on internal datacenter binaries, ~50K modules, PPO policy, ~20M steps

Code Size Reduction over -Os and -Os + Features

I Over-Os [l Over -OS with MLGO (Feature-based)
6%

5.36%

4%

2%

%Reduction in Code Size (Baseline -Os)

0%

Internal_1 Internal_2 clang opt

18
S

Open Challenges & the road ahead

Flow-Aware Embeddings: Cyclic dependencies!

I1: %i = alloca i32

12: %0 = load 132, i32* %i
I3: store 132 vall, i32* %0

14: %1 = load 32, i32* %i > 16: %2 = load i32, i32* %i
15: store 132 val2, i32* %i 17: store 132 val3, i32* %i

[1s]] =W, ([store])) + W;([IntegerTy]) + W,([VAR]) + W,([15] +[[I;])

(L] =W, ([store]]) + W; ([IntegerTy])) + W,([VAR]) + W, ([13] +[[15])

[5] = ki + W, = [1]
|II7]] = kz + Wa * [[15]]

Linear Solver for Flow-Aware Embeddings / Cyclic Dependencies

Design trade-offs

e Simple linear solver - Handwritten (where - Llvm/utils?)or eigen like libraries?

e |terative solution

20

Encoding More Information

e Memory dependences

o Memdep analysis or MemorySSA can make Flow-Aware embeddings more elegant
o But they are highly conservative!

m Embeddings can tolerate False-negatives unlike optimizations
m Specialize them?

m Biasing based on memtrace profiling?

e Profile Information

21

MIR Vocabulary

e Vocabulary uses regex to group MIR opcodes (target specific)
o Eg:"ADD32rr" -> "ADD"
o This is mainly a learning quality enhancer

e x86 — 6.8K opcodes after grouping
o In comparison, IR2Vec vocab has only ~100 entities in total

e Need for better “canonicalization”, beyond regex

o x86 has a systematic approach (uses TableGen)
OpPrefix - PD, PS, XS, XD, etc.

Width - 32, 64, etc.

OpForm - rm, rr, ri, etc.

m These prefixes and suffixes are attached with the “generic” opcodes

o But such an approach is not generalizable across architectures
22
S

Automating Vocab Generation

e Buildbots to generate dataset (triplets) using the latest compiler
o On LLVM codebase
o Lightweight (<10 mins with 64 vCPUs)

o Can also serve as an integration test

e Training Job on the generated data

o Uses the last generated dataset to train the vocabulary

o Can be less-frequent

23

In Summary...

e |R2Vec: learned, scalable, architecture-independent program embeddings

o Upstreamed, addressed performance related issues, ready to use

o Aims to reduce and remove efforts towards feature engineering

e Demonstrates potential in both research and real-world production environments

Next Steps

e Replace features, instead of concatenation
e Using MIR2Vec for eviction decisions in Regalloc Greedy
e Automating vocabulary training pipelines

e Improving Flow-Aware infrastructure

24

Thank You!

S. VenkataKeerthy
https://svkeerthy.github.io

Acknowledgements

Mircea Trofin, Albert Cohen, Ramakrishna Upadrasta, Other contributors and co-authors

Interested? Let’s talk!
(discourse @svkeerthy)

https://svkeerthy.github.io

