
CRASH REPRODUCERS IN MLIR
Artemiy Bulavin
artemiyb@graphcore.ai

Graphcore 2025

WHAT THIS TALK IS ABOUT

Compilation pipelines can be complex and nuanced.

Crashes that result from buggy transformations become hard to track
down.

Reproducing these bugs becomes hard.

What does MLIR have to help with this?

2

Graphcore 2025

REPRODUCING BUGS 101

1. An output that you get
from the (buggy) program

3. A way to reliably show
that:

what you’re getting != what
you’re expecting

2. The output you expect to
see

Value of: isEven(16)
 Actual: false
Expected: true

[FAILED] MyIsEvenFunc.TestItWorks
[----------] 1 test from MyIsEvenFunc

[FAILED] 1 test, listed below:
[FAILED] MyIsEvenFunc.TestItWorks

 1 FAILED TEST

C++ unit test

$ ctest –R TestIsEven

3

Graphcore 2025

REPRODUCING BUGS 101

1. An output that you get
from the (buggy) program

3. A way to reliably show
that:

what you’re getting != what
you’re expecting

2. The output you expect to
see

Lit test

4

Graphcore 2025

REPRODUCING BUGS 101

1. An output that you get
from the (buggy) program

3. A way to reliably show
that:

what you’re getting != what
you’re expecting

2. The output you expect to
see

Full compilation pipeline

5

Graphcore 2025 6

EXAMPLE

mlir-opt --convert-vector-to-llvm
 vector-contract-to-dot-transforms.mlir

error: 'llvm.insertvalue' op Type mismatch: cannot insert 'f32' into '!llvm.array<2 x vector<2xf32>>'
 %res = vector.contract #matmat_trait %lhs, %rhs, %init
 ^
within split at vector-contract-to-dot-transforms.mlir:1 offset :201:10: note: see current operation:
%39 = "llvm.insertvalue"(%3, %38) <{position = array<i64: 0>}> : (!llvm.array<2 x vector<2xf32>>,
f32) -> !llvm.array<2 x vector<2xf32>>

Suppose we have a bug in the ConvertVectorToLLVM pass that
won’t lower vector.contract correctly:

Graphcore 2025 7

EXAMPLE

mlir-opt --convert-vector-to-llvm
 --mlir-pass-pipeline-crash-reproducer=repro.mlir
 vector-contract-to-dot-transforms.mlir

error: 'llvm.insertvalue' op Type mismatch: cannot insert 'f32' into '!llvm.array<2 x vector<2xf32>>'
 %res = vector.contract #matmat_trait %lhs, %rhs, %init
 ^
within split at vector-contract-to-dot-transforms.mlir:1 offset :201:10: note: see current operation:
%39 = "llvm.insertvalue"(%3, %38) <{position = array<i64: 0>}> : (!llvm.array<2 x vector<2xf32>>,
f32) -> !llvm.array<2 x vector<2xf32>>
within split at vector-contract-to-dot-transforms.mlir:1 offset :0:0: error: Failures have been
detected while processing an MLIR pass pipeline
within split at vector-contract-to-dot-transforms.mlir:1 offset :0:0: note: Pipeline failed while
executing [`ConvertVectorToLLVMPass` on 'builtin.module' operation]: reproducer generated at
`repro.mlir`

Suppose we have a bug in the ConvertVectorToLLVM pass that
won’t lower vector.contract correctly:

We can tell mlir-opt to create a crash reproducer

Graphcore 2025 8

Graphcore 2025 9

The IR to reproduce

Graphcore 2025 10

The passes to reproduce

Graphcore 2025 11

PassManager and MLIRContext options

Graphcore 2025

{-#
dialect_resources: {

builtin: {
blob1: "0x0800000001000000000000000200000000000",

}
},
external_resources: {

external: {
blob: "0x0800000001000000000000000200000000000",

},
other_stuff: {

bool: true
}

}
#-}

• Reproducers can be created using mlir-
opt and the PassManager

• Reproducers are external resources.

• Handled by AsmParser

12

Graphcore 2025

Once you have the reproducer, you ran run it:

13

EXAMPLE

mlir-opt --run-reproducer repro.mlir

error: 'llvm.insertvalue' op Type mismatch: cannot insert 'f32' into '!llvm.array<2 x vector<2xf32>>'
 %res = vector.contract #matmat_trait %lhs, %rhs, %init
 ^
within split at vector-contract-to-dot-transforms.mlir:1 offset :201:10: note: see current operation:
%39 = "llvm.insertvalue"(%3, %38) <{position = array<i64: 0>}> : (!llvm.array<2 x vector<2xf32>>,
f32) -> !llvm.array<2 x vector<2xf32>>

Graphcore 2025

LOCAL VS FULL REPRODUCERS

Reproducers contain the initial IR when you
run the passes.

repro.mlir

repro_local.mlir

Local reproducers contain the IR and passes
just before failure.

14

Graphcore 2025 15

%res = vector.contract #matmat_trait %lhs, %rhs, %init

: vector<2x2xf32>, vector<2x2xf32> into vector<2x2xf32>

return %res : vector<2x2xf32>

}

Our ConvertVectorToLLVM lowering
contains a bug that affects
vector.contract

What will full and local the reproducers
for this IR look like?

(Demo)

Graphcore 2025

CREATING REPRODUCERS FROM YOUR COMPILER

Use the PassManager:

- PassManager::enableCrashReproducerGeneration(outputFile, generateLocal);

- Analogous to --mlir-pass-pipeline-crash-reproducer and
--mlir-pass-pipeline-local-reproducer

- mlir::makeReproducer(anchorName, passes, op, outputFile);

- Analogous to --mlir-generate-reproducer

Let’s look at an example out in the wild: Triton

16

Graphcore 2025 17

EXAMPLES OUT IN THE WILD

auto reproducerPath =
triton::tools::getStrEnv("TRITON_REPRODUCER_PATH");

if (!reproducerPath.empty()) {

auto anchorName = self.getOpAnchorName();

auto passes = self.getPasses();

Operation *op = mod.getOperation();

// Save a reproducer for the current pass manager invocation
// immediately.

makeReproducer(anchorName, passes, op, reproducerPath);

// But if the pass manager crashes, attempt to generate a local
// reproducer instead.

context->disableMultithreading();

self.enableCrashReproducerGeneration(reproducerPath,

/*genLocalReproducer=*/true);

} else {

self.enableCrashReproducerGeneration(makeConsoleReproducer());

}

// ... Later on, PassManager::run

https://github.com/triton-lang/triton/blob/main/python/src/ir.cc

Graphcore 2025 1818

BEST PRACTICES

Reduce the problem size:

✅ Remove passes that have no effect

✅ Remove ‘safe’ passes like canonicalisation, CSE

✅ Remove ops and values while still seeing the bug

If still unclear:

✅ Use a full reproducer, not local

Graphcore 2025 19

• mlir-reduce is a tool for reducing the size of input
IR that contains a bug.

• Iteratively applies transformations to the input to
‘reduce’ it, while checking the bug remains.

• You write an ‘interestingness script’, telling mlir-
reduce whether the reduced IR contains the bug or
not.

• mlir-reduce trims the input till it’s not ‘interesting’
anymore.

USING REPRODUCERS WITH MLIR-REDUCE

Graphcore 2025 20

mlir-opt "$1" --pass-pipeline="..." 2>&1 | \
grep -q "cannot insert 'f32' into '!llvm.array"

Exit code 1 if grep finds the error, 0 otherwise.
if [$? -eq 0]; then

exit 1
else

exit 0
fi

INTERESTINGNESS SCRIPT

Put the pipeline from the reproducer here

$ mlir-reduce --reduction-tree='traversal-mode=0 test=interesting.sh'
reproducer.mlir

Graphcore 2025 21

mlir-opt "$1" –my-broken-pass-1 –my-broken-pass-2 ...

if [$? -neq 0]; then
exit 1

else
exit 0

fi

INTERESTINGNESS SCRIPT

$ mlir-reduce --reduction-tree='traversal-mode=0 test=interesting.sh'
reproducer.mlir

Graphcore 2025 22

mlir-runner "$1" ... 2>&1 | grep ”error"

if [$? -eq 0]; then
exit 1

else
exit 0

fi

INTERESTINGNESS SCRIPT

$ mlir-reduce --reduction-tree='traversal-mode=0 test=interesting.sh'
reproducer.mlir

Graphcore 2025 23

HOW DOES IT WORK?

Normal Run

Crash reproduction enabled

PassManager::run(op)

PassManager::run(op)

Do passes

success() failure()

Launch thread

Do passes

success() failure()

If failed,
dump reproducer

Join thread

Return pass result

Graphcore 2025 24

AVOIDING PAIN

1. Pass options need to be printable

def ConvertVectorToLLVMPass : Pass<"convert-vector-to-llvm"> {

// ...

Option<"vectorTransformsOptions", "vector-transform-options",

"vector::VectorTransformsOptions",

"vector::VectorTransformsOptions()",

”...">,

}

Graphcore 2025 25

AVOIDING PAIN

1. Pass options need to be printable

Graphcore 2025 26

AVOIDING PAIN

2. Be careful with thread-local state

26

PassManager::run(op)

Launch thread

Do passes

success() failure()

If failed,
dump reproducer

Join thread

Return pass result

thread_local SomeStorage x = ...;

auto stored = x.get();

Thread
lifetime

Graphcore 2025 27

AVOIDING PAIN

2. Avoid thread-local state

27

Graphcore Confidential

SUMMARY

Integration

Using it in a real compiler

Using reproducers

Best practices for streamlining debugging

Internals

Everything you need to know to use
reproducers seamlessly

Creating reproducers

Using mlir-opt and the PassManager

28

Graphcore 2025

WHAT YOU CAN DO NEXT

1. Try the reproducers!

• Integrate them in your compilers

• Encourage your users to include them in bug reports

2. Add lit tests that exercise reproducers

• Both upstream and in your projects

29

Graphcore 2025

MORE RESOURCES

For more tools and tips on debugging MLIR:

2025 EuroLLVM - Solving Compiler Puzzles: Debug
Methods in MLIR

Christopher McGirr

30

THANK YOU

Graphcore 2025

Artemiy Bulavin

artemiyb@graphcore.ai

Github/Discourse: @abulavin

31

mailto:artemiyb@graphcore.ai

Graphcore Confidential 32

BONUS SLIDES

Graphcore 2025

LOCAL VS FULL REPRODUCER

Local reproducers capture the state of the IR just before failure…

… but something bad may have happened much earlier

Unchanged
Transformed,
same dialect

Converted,
new dialect

Pass
Failed

Local reproducer

Verification passes,
But future semantics

may be wrong

33

Graphcore 2025 34

LOCAL VS FULL REPRODUCER

Local reproducers capture the state of the IR just before failure…

… but something bad may have happened much earlier

Verification passes,
But future semantics

may be wrong
Unchanged

Transformed,
same dialect

Converted,
new dialect

Pass
Failed

Full reproducer

Graphcore 2025 3535

EXAMPLES OUT IN THE WILD

• Triton

• Tensorflow

• IREE

	Slide 1: Crash reproducers in mlir
	Slide 2: What this talk is about
	Slide 3: Reproducing bugs 101
	Slide 4: Reproducing bugs 101
	Slide 5: Reproducing bugs 101
	Slide 6: Example
	Slide 7: Example
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Example
	Slide 14: Local vs full reproducers
	Slide 15
	Slide 16: Creating reproducers from your compiler
	Slide 17: Examples out in the wild
	Slide 18: Best practices
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Avoiding pain
	Slide 25: Avoiding pain
	Slide 26: Avoiding pain
	Slide 27: Avoiding pain
	Slide 28: Summary
	Slide 29: What you can do next
	Slide 30: More Resources
	Slide 31
	Slide 32: BONUS SLIDES
	Slide 33: Local vs full reproducer
	Slide 34: Local vs full reproducer
	Slide 35: Examples out in the wild

