@ SiFil\/e

Scheduling Model in LLVM e

Past, Present, and Future

By Min Hsu @ LLVM Dev Meeting 2025

By the end of this tutorial...

e Whatis LLVM’'s Scheduling Model
e How do other parts of LLVM use Scheduling Model
e What are Scheduling Model’s connections with hardware

e How can we improve this framework

Scheduling Model: The Inception

Instruction Scheduling

x9, 4(x10)

Scheduling !
Model x8, x9, x9 !
x5, x5, x6 |

x7, x8, x5 i

e Increase instruction level parallelism

Instruction Scheduling

Increase Instruction Level Parallelism

load

mul

’/ sub

add

mul

fmadd

~ 7

Avoid stalling the processor pipeline

Instruction Scheduling

Increase Instruction Level Parallelism

load

“filler” instructions
go here

add

Avoid stalling the processor pipeline

Make the pipeline busy

Instruction Scheduling

Increase Instruction Level Parallelism

mul

sub

Independently
scheduled

mul

Avoid stalling the processor pipeline

Make the pipeline busy
Avoid multiple instructions competing

for the same processor resource

Instruction Scheduling

Increase Instruction Level Parallelism

load

\

add

Past

Latency
A

load

— S

> Future

add]

Instruction Scheduling

Increase Instruction Level Parallelism

Past > Future
Do they use the same
resource? [mul] - — =9 ALUI
mul
[sub] - — =9 ALUO
[mul] - = =9 ALUI
—
Occupancy

8 *Assuming we have infinite issue width @ Si Five

Latency, Resource, and Occupancy

Past » Future
Latency
A
s N\
load
Instruction Latency Resource Occupancy L]
(cycles) (cycles)
load 10 LSU 2 mul] - — =9 ALUI
mul 4 ALUI 2
[sub] - —-—=9 ALUO
sub 3 ALUO 1
[mul] — — =9 ALUI
—
Occupancy

@ SiFive

Itinerary Scheding Model

Legacy scheduling model framework

 Split instruction execution into stages

- Duration (i.e. occupancy) and resources Latency
A

used in each stage f N\

« When will the result be available Instr_A—»[InstrStage I InstrStage I InstrStage }
1\ J
i.e. laten Y
(= 1o CY) Occupancy
e.g. ALUO, ALUI

10 @ SiFive

Instruction Stages: From a Hardware Perspective

e |F: Instruction Fetch
e |D: Instruction Decode
e RR:Register Read
e EXE: Execution
e MEM: Memory
e \WB: Write Back
Latency
A
r N\
Instr_2 IF ID RR EXE MEM WB
Instr_1 IF ID RR EXE MEM WB }
Instr_0 IF ID RR EXE MEMI WB }

1 @ SiFive

Instruction Stages: From a Hardware Perspective

e EXE: Execution

Latency
AL
4 N\
Instr_2 EXE
Instr_1 EXE
Instr_0 EXE

Occupancy

12 @ SiFive

13

Instruction Stages with Superscalar Processors

—_—

IEXO

1D Occupancy

[Instrl

InstrO

N

IEX]

INstr5s Occupancy

[Instr4

Instr3
~_

/Y\ Execution pipe

14

Instruction Stages with Superscalar Processors

—_—

Instr2

IEXO

Occupancy

[Instrl

~

)

InstrO
—
[EX]
INstr5s Occupancy
[Instr4
Instr3
~_

InstrO

Instrl

Instr2

Instr3

Instr4d

Instrb

Resource Occupancy
IEXO 2
IEXO 2

IEXO, IEX]]

IEXO, IEX] 1
IEXT 3

IEXO, IEX] 1

Instruction Scheduling Model

Contemporary scheduling model framework

add (x10}| x8,||x9
Write Read
Scheduling Model
WriteRes
55 1
| e Resources !
\/ | o Latency !
A Token o1 & Occupancy for each resource |
(SchedWrite) map to : o AcquireAtCycles I
; o ReleaseAtCycles :
- |
N\

15

16

Instruction Scheduling Model

An Example

// In RISCVInstrInfo.td
def ADD : ALU rr<0b0000000, O0b000, "add", Commutable=1>,
Sched<[WriteIALU, ReadIALU, ReadIALU]>;

// In RISCVSchedSiFive7.td* | Resource
def : WriteRes<WriteIALU, [PipeAB]> {

let Latency = 3;

[0];
[1];

let AcquireAtCycles

let ReleaseAtCycles

} Occupancy

* The code here has been slightly modified s.t. related fields are explicitly spelled out

17

Instruction Scheduling Model

Processor resources

// In RISCVSchedSiFive7.td*
def PipeA : ProcResource<l>;

def PipeB : ProcResource<l>;

def PipeAB : ProcResGroup<[PipeA, PipeB]>; <— — PipeA or PipeB

def : WriteRes<WriteIALU, [PipeAB]> {

* The code here has been slightly modified

PipeA

PipeB

18

Instruction Scheduling Model

Processor resources

// In RISCVSchedSiFive7.td*

def PipeA : ProcResource<l>; PipeB

def PipeB : ProcResource<l>;

def PipeAB : ProcResGroup<[PipeA, PipeB]>;

def : WriteRes<WriteIMul, [PipeB]>; «—— Canonly run on PipeB

* The code here has been slightly modified

19

Instruction Scheduling Model

Processor resources

// In RISCVSchedSiFive7.td*
def PipeA : ProcResource<l>;
def PipeB : ProcResource<l>;

def PipeAB : ProcResGroup<[PipeA, PipeB]>;

def : WriteRes<WriteIDiv, [PipeB, IDiv]> <+—— Need PipeB and IDiv

* The code here has been slightly modified

PipeB

IDiv

Instruction Scheduling Model

Occupancy: Acquire/ReleaseAtCycles

def : WriteRes<WritelIDiv, [PipeB, IDiv]> { ?] 3?
| | —>

|

[PipeB] ;

let AcquireAtCycles = [0, 0]; i I

|

let ReleaseAtCycles = [1, 33]; [| v]I

! | |

} v : :

AcquireAtCycles | :

+ v

ReleaseAtCycles|[0] ReleaseAtCycles]1]

20 *The code here has been slightly modified @ SiFive

Instruction Scheduling Model

Unpipelined instructions

Latency
A

4 N\
0 1 33

| ! —
let Latency = 34; - .
[PipeB] :
1 1

|
1 = . ' IDiv]
et ReleaseAtCycles = [1, 33]; [I)
! I I
v : :
AcquireAtCycles | !
+ \/
ReleaseAtCycles[0] ReleaseAtCycles|[1]

21 *The code here has been slightly modified @ SiFive

Instruction Scheduling Model

Occupancy: Acquire/ReleaseAtCycles

0] 3

def : WriteRes<WriteVIALUV M1, | | I
-_— I | I >

[VCQ, VALOrva2]> {
[vVCQ

let AcquireAtCycles = [0, 1];

|
|
|
I |
|
let ReleaseAtCycles = [1, 3]; | L VAIOrvVA2]
1
' I I
} v : |
AcquireAtCycles[0] | :
! v
v
ReleaseAtCycles[0] ReleaseAtCycles|[1]
To Learn More: AcquireAtCycles|1]

https://www.youtube.com/watch?v=XWBVLcdzmFg

22 *The code here has been slightly modified @ SiFive

https://www.youtube.com/watch?v=XWBVLcdzmFg

23

Instruction thency Resource
load 10 LSU
mul 4 ALUO
sub 3 ALUI1

load
mul
sub
add

N

fmadd

Occupancy
) let Latency = 4;
let AcquireAtCycles
2 let ReleaseAtCycles
!)
mul

def : WriteRes<WriteIMul,

[0];
[2];

[ALUO]> {

24

Instruction

load

mul

sub

load

Latency

add

def : WriteRes<WriteIMul, [ALUO]> {
let Latency = 4;
let AcquireAtCycles = [0];
let ReleaseAtCycles = [2];

1d x8, 0(x8) - -

Latency

add x12, x9, x8 =-

Avoid Data Hazard

def : WriteRes<WriteIMul, [ALUO]> {

Instruction Resource
let Latency = 4;
load LSU
let AcquireAtCycles = [0];
mul ALUO
let ReleaseAtCycles = [2];
sub ALUI1 }
1d x8, 0(x8)
mul
mul x9, x9, x7
ProcResources |:
sub x10, x10, x7
sub

add x12, x9, x8

Instruction

load

mul

sub

mul

26

Occupancy

2

2

def : WriteRes<WriteIMul, [ALUO]> {
let Latency = 4;
let AcquireAtCycles = [0];

let ReleaseAtCycles = [2];

1d x8, 0(x8)

mul x9, x9, x7
ProcResources |:

sub x10, x10, x7 AcquireAtCycles
ReleaseAtCycles

mul

mul x11, x11, x7

add x12, x9, x8

Avoid Structural Hazard

27

Out-of-Order Execution

Hardware solution for avoiding hazards

Dispatch —»

— |Ssue

Buffer

IEXO

IEX]

|IEX2

FEXO

Each instructions waits in the buffer
until its hazards is cleared

Out-of-Order Execution

Case study with llvm-mca: data hazard

S llvm-mca -mtriple=riscv64 -mcpu=sifive-p470 -timeline

Index 0123456789 «—— Cycles

[0, 0] DeeeeER . fmul.s £tO, f£t0, ftil
[0, 1] D====eceeeER fmul.s f£t2, ft2, £tO
[0, 2] D=eeeeE---R fmul.s ft3, ft3, ft4

Simulation timeline

D: dispatch

=: stall

e: executing

E: end execution
R: retire

28

-)
—> Buffer
FEXO
L \o J
Instruction Resource
frul.s FEXO

Out-of-Order Execution

Case study with llvm-mca: data hazard

Index 0123456789

fmul.s f£tO, f£t0O, ftl
[0, 1] D====eeeeER fmul.s ft2, ft2, £tO
[0, 2] D=eceeeE---R fmul.s f£t3, ft3, ft4

D: dispatch

=: stall

e: executing

E: end execution
R: retire

29

-)
—> Buffer
FEXO
L \o J
Instruction Resource
frul.s FEXO

30

Out-of-Order Execution

Case study with llvm-mca: structural hazard

S llvm-mca -mtriple=riscv64 -mcpu=sifive-p470 -timeline

Index

o O O o O
~ ~ ~ ~ ~
o w N PO

0123450
DeeER. . mu l
D=eeER. mul

D==eeER mu l
.DeE--R add
.DeE--R add

D: dispatch

=: stall

e: executing

E: end execution
R: retire

sO,
ao,
az,
s9,
sll,

sO, sl
a0, al
a2, a3
s9, s10
sll, t3

—> Buffer

IEXO

IEX]

IEX2

S N

Instruction

add

mul

Resource
IEXO, IEXI, IEX2

I[EX2

Out-of-Order Execution

Case study with llvm-mca: structural hazard

Index 01234506

[0, 2] D==eceER mul a2, a2, a3

[0, 4] .DeE--R add s11, s11, t3

D: dispatch

=: stall

e: executing

E: end execution
R: retire

31

—> Buffer

IEXO

IEX]

IEX2

S N

Instruction
add

mul

Resource
IEXO, IEXI, IEX2

I[EX2

32

Scheduling Model: Buffer Sizes

Unified Reservation Station

// In RISCVSchedSiFiveP400.td*

def SiFiveP400Model : SchedMachineModel {
let MicroOpBufferSize = 96;

let BufferSize = -1 in {
def IEXQO : ProcResource<l>;
def IEXQ1l : ProcResource<l>;
def IEXQ2 : ProcResource<l>;
def FEXQO : ProcResource<l>;

* The code here has been slightly modified

Buffer

(96)

Scheduling Model: Buffer Sizes

Decoupled Reservation Station

// In RISCVSchedTTAscalonD8.td*

let BufferSize = 16 in {
def AscalonFXA : ProcResource<l>;
def AscalonFXB : ProcResource<l>;

33 * The code here has been slightly modified

Buffer
(16) FXA
Buffer
(16) FXB

Scheduling Model: Buffer Sizes

Decoupled Reservation Station

// In RISCVSchedTTAscalonD8.td*

let BufferSize = 16 in {

def AscalonFXC : ProcResource<2>;
def AscalonFXD : ProcResource<2>;
def AscalonFP : ProcResource<2>;

34 * The code here has been slightly modified

Buffer Fxclo]
(16) FXCI[1]

Buffer FXD[0]
(16) FXD[1]

Buffer FPlO]
(16) FP[1]

Scheduling Model: Buffer Sizes

Decoupled

Buffer

FXC[O0]

FXCI1]

Buffer

FXD[O0]

FXD[1]

Buffer

FP[O]

FP[1]

Generalize

>

Unified

Buffer

IEXO

IEX]

IEX2

FEXO

Scheduling Model: Buffer Sizes

In-order cores

// In RISCVSchedSiFive7.td¥*

let BufferSize = 0 in { No |33U9/d|3p0t0h

def PipeA : ProcResource<l>; InstB % InstA | PipeA

def PipeB : ProcResource<l>;

}
def PipeAB : ProcResGroup<[PipeA, PipeB]>;

36 * The code here has been slightly modified

37

Scheduling Model: Buffer Sizes

In-order cores

// In RISCVSchedSyntacoreSCR7.td*

Dispatch

InstB

>

def ALU MUL IS : ProcResource<l> { let BufferSize
def ALU DIV IS : ProcResource<l> { let BufferSize

def MUL : ProcResource<l> { let BufferSize
def DIV : ProcResource<l> { let BufferSize

* The code here has been slightly modified

1;

}
1; }

Buffer

(1)

InStA

MUL

I
o

Scheduling Model: Buffer Sizes

In-order cores

BufferSize = 0

0123456789 0123456789 0123456789
Index 0123456789 0123456789 0123456789 01
[0,0] DeeceeceeceecececececececececeeckER divw s0, sl, sl
[0, 1] DekeecececececececececececeececeecER divw a0, al, al
[0, 2] | . . . DeececececececececececeeceeceeceecER divw a2, a3, a3

— dispatch(D) after the first instruction releases the pipe

D: dispatch

=: stall

e: executing

E: end execution

28 R: retire @ Si Five

Scheduling Model: Buffer Sizes

In-order cores

BufferSize =1

$ llvm-mca -mtriple=riscv64 -mcpu=syntacore-scr/7 —-timeline

0123456789 0123456789 0123456789
Index 0123456789 0123456789 0123456789
[0,0] DegeeceecececececececececeeeeeckER divw sO, sl1, sl
[0, 1] DF=================ccececececececececececececeececeecER divw a0, al, al
[0, 2] D==================cccececececececececeececeececeecER divw a2, a3, a3

g Dispatch right after the first instruction was issued, wait
inside the buffer

D: dispatch

=: stall

e: executing

E: end execution

29 R: retire @ Si Five

40

Scheduling

Instruction Scheduling

' 1d x9, 4(x10)
radd x8, x9, x9
:mul x5, x5, x6

, DeeER. . mul sO0, s0, sl
:D=eeER. mul a0, a0, al
| D==eeER mul a2, a2, a3
.DeE--R add s9, s9, sl10
.DeE--R add sl1l1, sll, t3

Q: How do you leverage different OoO BufferSizes?

[Buffer IEXO
Buffer IEX1
-
Buffer IEX2
llvm-mca: Buffer FEXO

Machine Scheduler:

4] *000: Out-of-Order

Buffer

IEXO

IEX]

IEX2

FEXO

IEX[O]
Buffer

IEX[1]

FEX[O]
Buffer

FEX[1]

“That’s the neat part, WE DON'T”

42

Machine Scheduler: Out-of-Order Cores

Does the minimal amount of efforts to predict hazards

Rationale: Nearly impossible to predict during compile-time

43

Machine Scheduler: Out-of-Order Cores

The condition where a buffer might be full: N < W*K - 1

N: buffer size

W: number of instructions that go into this buffer per cycle

K: largest occupancy that can execute in this pipe

Buffer

Pipe

—
N

Machine Scheduler: In-Order Cores
MicroOpBufferSize & BufferSize = 0

« We can predict stallings more Past > Future
: . . Latency
accurately during compile-time p A \
load]
mul] - — =9 ALUI
[sub] - = =9 ALUO
[mul] - = =9 ALUI

H_J
Occupancy

44

@ SiFive

Machine Scheduler: In-Order Cores
MicroOpBufferSize & BufferSize = 0

Past > Future
Latency
A
r \
« Machine Scheduler doesn’'t even load]
consider an instruction if it might .
, , mul] - ——» ALUI
induce any kind of hazards
[sub] - — =9 ALUO
[mul] - = =9 ALUI
H_J
Occupancy

45 @ SiFive

Machine Scheduler: Hazards

Pending Queue] Available Queue Scheduling Algorithm
is legal J has no hazards*

46 * Excluding custom hazard detector @ Si Five

Machine Scheduler: Hazards

Pending Queue] Available Queue Scheduling Algorithm
is legal J has no hazards*

|

BufferSize Data hazard checks | Structural hazard checks
In-Order 0 Y Y
Out-of-Order | -1/ larger than1 N N

e More optimistics

e Scheduling algorithm generally has more choices

47 * Excluding custom hazard detector @ Si Five

Machine Scheduler: BufferSize =1

In-Order core..scheduled out-of-order-ly?

BufferSize Data hazard checks | Structural hazard checks
0 Y Y
In-Order
1 N N
Out-of-Order | -1/ larger than1 N N

48 * Excluding custom hazard detector

49

Machine Scheduler: The Duality of BufferSize =1

Too optimistic on a capability

(i.e. out-of-order-ness) that _[Buffer (1)]

doesn’t even exist

FWIW...

Machine Scheduler does
consider data hazards when it's
scheduling for BufferSize = 1. But
not structural hazards

50

Machine Scheduler: The Duality of BufferSize =1

Too optimistic on a capability
(i.e. out-of-order-ness) that
doesn't even exist

= o) |

An escape hatch when in-order
scheduling (i.e. BufferSize = 0) is
too strict or pessimistic

Example:

Sometimes we want to schedule
aggressively for register pressure
even though there is a hazard

51

Instruction Scheduling

|

' 1d x9, 4(x10)
'add x8, x9, x9
|
|
|

mul x5, x5, x6

Scheduling S

llvmm-mca
e
:DeeER.. mul sO0, s0, sl
:D=eeER. mul a0, a0, al

| D==eeER mul a2, a2, a3
.DeE--R add s9, s9, sl10

@ SiFive \
-
Can we use gthédpling Model in

‘More Places? QY
P -1 | Ny >‘

Status Quo

Produce inter-BB traces with their

_--1 MachineTraceMetrics latency & throughput information
-~ ol i \\\
MachineCombiner N
N
N\
AN Mostly use latency info
Reduce the critical path of S
an expression tree \\ Lﬁtencz and occupancy /
N throughput
\\\
MachinePipeliner .
RN

Software pipelinin
PP 9 (Early)IfConversion

Turn branches into predicated
instructions

53 @ SiFive

54

Potential User: TTI Cost Model

Scheduling
Model

LoopVectorizer

TargetTransforminfo (TTI)

SLPVectorizer

VectorCombine

> RISCVTargetTransforminfo

e Throughput

e Latency

e CodeSize

e Weighted Latency & CodeSize

LICM

SimpleLoopUnroll

SimplifyCFG

@ SiFive

55

Potential User: TTI Cost Model

Machinelnstr
MCIlnst

Scheduling
Model

Pros

Scheduling model can be the centralized

place to provide such kinds of information

Cons

Mapping LLVM IR instructions to low-level
ones can be (really) challenging
Necessity: how many non-trivial instructions

will actually benefit from this?

LLVM IR

TargetTransforminfo (TTI)

RISCVTargetTransforminfo

Throughput
Latency

Other Potential Uses

 Software pipelining “lite”: scheduling-model-guided loop unrolling

« Validate instruction scheduling with LLVM MCA

commit 3622f15491d40e3b27f3399031933bd888e20cf0
« Sort ISel patterns by latency Author: Chris Lattner <sabre@nondot.org>

Date: Wed Sep 28 17:57:56 2005 +0000

Prefer cheaper patterns to more expensive ones.
Print the costs to the generated
file

[lvm-svn: 23492

/// Compute the number of instructions for this pattern.

/// This is a temporary hack. We should really include the instruction
/// latencies in this calculation.

static unsigned getResultPatternCost (const TreePatternNode &P,

const CodeGenDAGPatterns &CGP)

56 @ SiFive

What does LLVM’s Scheduling Model provide

- >

at -
7 Scheduling Model is all about how it's used and
. \ 9
perceived

_at

Sumpaary

”

Potential areas we can apply Scheduling Model to

@ SiFive

225 SiFive, Inc. All rights reserved. .

ive, HiFive and the SiFive logo oﬁodemcrks or registered

trademarks of SiFive, Inc. Certain ucts or brand names that are
not SiFive's could be tr arks or registered trademarks of their
respective owners. .

Scheduling Model: Buffer Sizes

Buffer per pipe v.s. Pipes sharing the same buffer

let BufferSize = 3 in {

1 | :occupancyl1cy

7 | :occupancy 7 cy

def PipeA : ProcResource<l>;

def PipeB : ProcResource<l>;

PipeA

}

def PipeAB : ProcResGroup<[PipeA, PipeB]>;

PipeB

def : WriteRes<WriteIALU, [PipeAB]>;

60 * The code here has been slightly modified

1 | :occupancyl1cy

Scheduling Model: Buffer Sizes

Buffer per pipe v.s. Pipes sharing the same buffer

7 | :occupancy 7 cy

let BufferSize = 3 in { Cycle =5
def PipeA : ProcResource<l>; .
P (|- === - - 1 1 PipeA
def PipeB : ProcResource<l>; I
} X
def PipeAB : ProcResGroup<[PipeA, PipeB]>; R > \d\e

def : WriteRes<WriteIALU, [PipeAB]>;

61 * The code here has been slightly modified

62

Scheduling Model: Buffer Sizes

Buffer per pipe v.s. Pipes sharing the same buffer

let BufferSize = 6 in {

1 | :occupancyl1cy

7 | :occupancy 7 cy

def PipeAB : ProcResource<2>;

PipeAB|[0]

}
def : WriteRes<WriteIALU, [PipeAB]>;

PipeAB|[1]

* The code here has been slightly modified

@ SiFive

63

1 | :occupancyl1cy

Scheduling Model: Buffer Sizes

Buffer per pipe v.s. Pipes sharing the same buffer

7 | :occupancy 7 cy

Cycle =5
let BufferSize = 6 in {
def PipeAB : ProcResource<2>; PipeAB[O]
}
def : WriteRes<WriteIALU, [PipeAB]>; PipeAB[]]

* The code here has been slightly modified @ SiFive

