
Past, Present, and Future

Scheduling Model in LLVM

By Min Hsu @ LLVM Dev Meeting 2025

By the end of this tutorial…

2

● What is LLVM’s Scheduling Model

● How do other parts of LLVM use Scheduling Model

● What are Scheduling Model’s connections with hardware

● How can we improve this framework

3

Scheduling Model: The Inception

Scheduling
Model

ld x9, 4(x10)
add x8, x9, x9
mul x5, x5, x6
add x7, x8, x5

Instruction Scheduling

Information

● Increase instruction level parallelism

● Reduce the number of register spillings

4

Instruction Scheduling
Increase Instruction Level Parallelism

mul
load

add

fmadd

mul

Avoid stalling the processor pipeline

sub

5

Instruction Scheduling
Increase Instruction Level Parallelism

mul
load

add

fmadd

mul

Avoid stalling the processor pipeline

sub

“filler” instructions
go here

● Make the pipeline busy

6

Instruction Scheduling
Increase Instruction Level Parallelism

mul
load

add

fmadd

mul

Avoid stalling the processor pipeline

sub

Independently
scheduled ● Make the pipeline busy

● Avoid multiple instructions competing

for the same processor resource

7

Instruction Scheduling
Increase Instruction Level Parallelism

load

add

mul
load

add

fmadd

mul
sub

Past Future
Latency

8

Instruction Scheduling

*Assuming we have infinite issue width

Increase Instruction Level Parallelism

load

mul

Occupancy

mul
load

add

fmadd

mul
sub

mul

add

Do they use the same
resource?

sub

Past Future

ALU1

ALU0

ALU1

9

Latency, Resource, and Occupancy

load

Occupancy

mul

Latency

ALU1

ALU0

ALU1

Instruction Latency
(cycles) Resource Occupancy

(cycles)

load 10 LSU 2

mul 4 ALU1 2

sub 3 ALU0 1

mul

sub

Past Future

10

Itinerary Scheding Model

• Split instruction execution into stages

• Duration (i.e. occupancy) and resources

used in each stage

• When will the result be available

(i.e. latency)

Legacy scheduling model framework

InstrStage InstrStage InstrStageInstr_A

Occupancy

e.g. ALU0, ALU1

Latency

11

Instruction Stages: From a Hardware Perspective

IFInstr_2

Instr_1

Instr_0

ID RR EXE MEM WB

IF ID RR EXE MEM WB

IF ID RR EXE MEM WB

Latency

● IF: Instruction Fetch
● ID: Instruction Decode
● RR: Register Read
● EXE: Execution
● MEM: Memory
● WB: Write Back

12

Instruction Stages: From a Hardware Perspective

IFInstr_2

Instr_1

Instr_0

ID RR EXE MEM WB

IF ID RR EXE MEM WB

IF ID RR EXE MEM WB

Latency

● IF: Instruction Fetch
● ID: Instruction Decode
● RR: Register Read
● EXE: Execution
● MEM: Memory
● WB: Write Back

Occupancy

IEX0

IEX1

13

Instruction Stages with Superscalar Processors

Instr2

Instr1

Instr0

Occupancy

Instr5

Instr4

Instr3

Occupancy

Processor
Frontend

Execution pipe

IEX0

IEX1

14

Instruction Stages with Superscalar Processors

Instr2

Instr1

Instr0

Occupancy

Instr5

Instr4

Instr3

Occupancy

Processor
Frontend

Resource Occupancy

Instr0 IEX0 2

Instr1 IEX0 2

Instr2 IEX0, IEX1 1

Instr3 IEX0, IEX1 1

Instr4 IEX1 3

Instr5 IEX0, IEX1 1

Scheduling Model

15

Instruction Scheduling Model
Contemporary scheduling model framework

add x10, x8, x9 # x10 = x8 + x9

Write Read

A Token
(SchedWrite)

● Resources
● Latency
● Occupancy for each resource

○ AcquireAtCycles
○ ReleaseAtCycles

WriteRes

map to

16

Instruction Scheduling Model
An Example

* The code here has been slightly modified s.t. related fields are explicitly spelled out

// In RISCVInstrInfo.td

def ADD : ALU_rr<0b0000000, 0b000, "add", Commutable=1>,

 Sched<[WriteIALU, ReadIALU, ReadIALU]>;

// In RISCVSchedSiFive7.td*

def : WriteRes<WriteIALU, [PipeAB]> {

 let Latency = 3;

 let AcquireAtCycles = [0];

 let ReleaseAtCycles = [1];

}

Resource

Occupancy

17

Instruction Scheduling Model
Processor resources

* The code here has been slightly modified

// In RISCVSchedSiFive7.td*

def PipeA : ProcResource<1>;

def PipeB : ProcResource<1>;

def PipeAB : ProcResGroup<[PipeA, PipeB]>;

def : WriteRes<WriteIALU, [PipeAB]> {

 let Latency = 3;

 let AcquireAtCycles = [0];

 let ReleaseAtCycles = [1];

}

PipeA

PipeB

PipeA or PipeB

18

Instruction Scheduling Model
Processor resources

* The code here has been slightly modified

// In RISCVSchedSiFive7.td*

def PipeA : ProcResource<1>;

def PipeB : ProcResource<1>;

def PipeAB : ProcResGroup<[PipeA, PipeB]>;

def : WriteRes<WriteIALU, [PipeAB]>;

def : WriteRes<WriteIMul, [PipeB]>;

PipeA

PipeB

Can only run on PipeB

19

Instruction Scheduling Model
Processor resources

* The code here has been slightly modified

// In RISCVSchedSiFive7.td*

def PipeA : ProcResource<1>;

def PipeB : ProcResource<1>;

def PipeAB : ProcResGroup<[PipeA, PipeB]>;

def : WriteRes<WriteIALU, [PipeAB]>;

def : WriteRes<WriteIMul, [PipeB]>;

def : WriteRes<WriteIDiv, [PipeB, IDiv]>

PipeA

PipeB

Need PipeB and IDiv

IDiv

def : WriteRes<WriteIDiv, [PipeB, IDiv]> {

 let Latency = 34;

 let AcquireAtCycles = [0, 0];

 let ReleaseAtCycles = [1, 33];

}

20

Instruction Scheduling Model
Occupancy: Acquire/ReleaseAtCycles

* The code here has been slightly modified

PipeB

IDiv

0 1 33

AcquireAtCycles

ReleaseAtCycles[0] ReleaseAtCycles[1]

def : WriteRes<WriteIDiv, [PipeB, IDiv]> {

 let Latency = 34;

 let AcquireAtCycles = [0, 0];

 let ReleaseAtCycles = [1, 33];

}

21

Instruction Scheduling Model
Unpipelined instructions

* The code here has been slightly modified

PipeB

IDiv

0 1 33

AcquireAtCycles

ReleaseAtCycles[0] ReleaseAtCycles[1]

Latency

def : WriteRes<WriteVIALUV_M1,

 [VCQ, VA1OrVA2]> {

 let AcquireAtCycles = [0, 1];

 let ReleaseAtCycles = [1, 3];

}

22

Instruction Scheduling Model
Occupancy: Acquire/ReleaseAtCycles

* The code here has been slightly modified

VCQ

VA1OrVA2

0 1 3

AcquireAtCycles[0]

ReleaseAtCycles[0] ReleaseAtCycles[1]

AcquireAtCycles[1]To Learn More:
https://www.youtube.com/watch?v=XWBVLcdzmFg

https://www.youtube.com/watch?v=XWBVLcdzmFg

23

mul
load

add

fmadd

mul
sub

Instruction Latency Resource Occupancy

load 10 LSU 2

mul 4 ALU0 2

sub 3 ALU1 1

def : WriteRes<WriteIMul, [ALU0]> {

 let Latency = 4;

 let AcquireAtCycles = [0];

 let ReleaseAtCycles = [2];

}

24

mul
load

add

fmadd

mul
sub

ld x8, 0(x8)

mul x9, x9, x7

sub x10, x10, x7

mul x11, x11, x7

add x12, x9, x8

Latency

Instruction Latency Resource Occupancy

load 10 LSU 2

mul 4 ALU0 2

sub 3 ALU1 1

def : WriteRes<WriteIMul, [ALU0]> {

 let Latency = 4;

 let AcquireAtCycles = [0];

 let ReleaseAtCycles = [2];

}

Avoid Data Hazard

25

ld x8, 0(x8)

mul x9, x9, x7

sub x10, x10, x7

mul x11, x11, x7

add x12, x9, x8

ProcResources

mul
load

add

fmadd

mul
sub

Instruction Latency Resource Occupancy

load 10 LSU 2

mul 4 ALU0 2

sub 3 ALU1 1

def : WriteRes<WriteIMul, [ALU0]> {

 let Latency = 4;

 let AcquireAtCycles = [0];

 let ReleaseAtCycles = [2];

}

26

ld x8, 0(x8)

mul x9, x9, x7

sub x10, x10, x7

mul x11, x11, x7

add x12, x9, x8

AcquireAtCycles
ReleaseAtCycles

mul
load

add

fmadd

mul
sub

Instruction Latency Resource Occupancy

load 10 LSU 2

mul 4 ALU0 2

sub 3 ALU1 1

def : WriteRes<WriteIMul, [ALU0]> {

 let Latency = 4;

 let AcquireAtCycles = [0];

 let ReleaseAtCycles = [2];

}

Avoid Structural Hazard

ProcResources

27

Out-of-Order Execution
Hardware solution for avoiding hazards

IEX0

IEX1

IEX2

Dispatch Issue

Each instructions waits in the buffer
until its hazards is cleared

FEX0

Buffer

28

Out-of-Order Execution

Index 0123456789

[0,0] DeeeeER . fmul.s ft0, ft0, ft1
[0,1] D====eeeeER fmul.s ft2, ft2, ft0
[0,2] D=eeeeE---R fmul.s ft3, ft3, ft4

● D: dispatch
● =: stall
● e: executing
● E: end execution
● R: retire

Cycles

Case study with llvm-mca: data hazard

Instruction Resource

fmul.s FEX0

IEX0

IEX1

IEX2

FEX0

Buffer

$ llvm-mca -mtriple=riscv64 -mcpu=sifive-p470 -timeline

Simulation timeline

29

Out-of-Order Execution

Index 0123456789

[0,0] DeeeeER . fmul.s ft0, ft0, ft1
[0,1] D====eeeeER fmul.s ft2, ft2, ft0
[0,2] D=eeeeE---R fmul.s ft3, ft3, ft4

● D: dispatch
● =: stall
● e: executing
● E: end execution
● R: retire

Case study with llvm-mca: data hazard

$ llvm-mca -mtriple=riscv64 -mcpu=sifive-p470 -timeline

IEX0

IEX1

IEX2

FEX0

Buffer

Instruction Resource

fmul.s FEX0

30

Out-of-Order Execution

Index 0123456

[0,0] DeeER.. mul s0, s0, s1
[0,1] D=eeER. mul a0, a0, a1
[0,2] D==eeER mul a2, a2, a3
[0,3] .DeE--R add s9, s9, s10
[0,4] .DeE--R add s11, s11, t3

● D: dispatch
● =: stall
● e: executing
● E: end execution
● R: retire

Case study with llvm-mca: structural hazard

Instruction Resource

add IEX0, IEX1, IEX2

mul IEX2

IEX0

IEX1

IEX2

FEX0

Buffer

$ llvm-mca -mtriple=riscv64 -mcpu=sifive-p470 -timeline

31

Out-of-Order Execution

Index 0123456

[0,0] DeeER.. mul s0, s0, s1
[0,1] D=eeER. mul a0, a0, a1
[0,2] D==eeER mul a2, a2, a3
[0,3] .DeE--R add s9, s9, s10
[0,4] .DeE--R add s11, s11, t3

● D: dispatch
● =: stall
● e: executing
● E: end execution
● R: retire

Case study with llvm-mca: structural hazard

Instruction Resource

add IEX0, IEX1, IEX2

mul IEX2

IEX0

IEX1

IEX2

FEX0

Buffer

$ llvm-mca -mtriple=riscv64 -mcpu=sifive-p470 -timeline

32

Scheduling Model: Buffer Sizes

* The code here has been slightly modified

IEX0

IEX1

IEX2

FEX0

Buffer
(96)

// In RISCVSchedSiFiveP400.td*

def SiFiveP400Model : SchedMachineModel {
 let MicroOpBufferSize = 96;
}

let BufferSize = -1 in {
 def IEXQ0 : ProcResource<1>;
 def IEXQ1 : ProcResource<1>;
 def IEXQ2 : ProcResource<1>;
 def FEXQ0 : ProcResource<1>;
}

Unified Reservation Station

33

Scheduling Model: Buffer Sizes

* The code here has been slightly modified

FXA

FXB

Buffer
(16)

// In RISCVSchedTTAscalonD8.td*

let BufferSize = 16 in {
 def AscalonFXA : ProcResource<1>;
 def AscalonFXB : ProcResource<1>;
 def AscalonFXC : ProcResource<2>;
 def AscalonFXD : ProcResource<2>;
 def AscalonFP : ProcResource<2>;
}

Decoupled Reservation Station

Buffer
(16)

34

Scheduling Model: Buffer Sizes

* The code here has been slightly modified

FXC[0]Buffer
(16)

// In RISCVSchedTTAscalonD8.td*

let BufferSize = 16 in {
 def AscalonFXA : ProcResource<1>;
 def AscalonFXB : ProcResource<1>;
 def AscalonFXC : ProcResource<2>;
 def AscalonFXD : ProcResource<2>;
 def AscalonFP : ProcResource<2>;
}

Decoupled Reservation Station

FXC[1]

FXD[0]Buffer
(16) FXD[1]

FP[0]Buffer
(16) FP[1]

35

Scheduling Model: Buffer Sizes

FXC[0]
Buffer

FXC[1]

FXD[0]
Buffer

FXD[1]

FP[0]
Buffer

FP[1]

IEX0

IEX1

IEX2

FEX0

Buffer

Decoupled Unified

Generalize

36

Scheduling Model: Buffer Sizes

* The code here has been slightly modified

In-order cores

// In RISCVSchedSiFive7.td*

let BufferSize = 0 in {
 def PipeA : ProcResource<1>;
 def PipeB : ProcResource<1>;
}
def PipeAB : ProcResGroup<[PipeA, PipeB]>;

 PipeAInstAInstB

No issue/dispatch

37

Scheduling Model: Buffer Sizes

* The code here has been slightly modified

In-order cores

// In RISCVSchedSiFive7.td*

let BufferSize = 0 in {
 def PipeA : ProcResource<1>;
 def PipeB : ProcResource<1>;
}
def PipeAB : ProcResGroup<[PipeA, PipeB]>;

// In RISCVSchedSyntacoreSCR7.td*

def ALU_MUL_IS : ProcResource<1> { let BufferSize = 8; }
def ALU_DIV_IS : ProcResource<1> { let BufferSize = 8; }

def MUL : ProcResource<1> { let BufferSize = 1; }
def DIV : ProcResource<1> { let BufferSize = 1; }

 MULInstAInstB
Dispatch

Buffer
(1)

38

Scheduling Model: Buffer Sizes

 0123456789 0123456789 0123456789
Index 0123456789 0123456789 0123456789 01

[0,0] DeeeeeeeeeeeeeeeeeeeER divw s0, s1, s1
[0,1] DeeeeeeeeeeeeeeeeeeeER divw a0, a1, a1
[0,2] DeeeeeeeeeeeeeeeeeeeER divw a2, a3, a3

● D: dispatch
● =: stall
● e: executing
● E: end execution
● R: retire

In-order cores

dispatch(D) after the first instruction releases the pipe

BufferSize = 0

39

Scheduling Model: Buffer Sizes

 0123456789 0123456789 0123456789
Index 0123456789 0123456789 0123456789

[0,0] DeeeeeeeeeeeeeeeeeeeER divw s0, s1, s1
[0,1] .D==================eeeeeeeeeeeeeeeeeeeER divw a0, a1, a1
[0,2] D==================eeeeeeeeeeeeeeeeeeeER divw a2, a3, a3

● D: dispatch
● =: stall
● e: executing
● E: end execution
● R: retire

In-order cores

$ llvm-mca -mtriple=riscv64 -mcpu=syntacore-scr7 -timeline

Dispatch right after the first instruction was issued, wait
inside the buffer

BufferSize = 1

40

Scheduling
Model

ld x9, 4(x10)
add x8, x9, x9
mul x5, x5, x6
add x7, x8, x5

Instruction Scheduling

Information

Information
DeeER.. mul s0, s0, s1
D=eeER. mul a0, a0, a1
D==eeER mul a2, a2, a3
.DeE--R add s9, s9, s10
.DeE--R add s11, s11, t3

llvm-mca

Perceive

Perceive

41

Q: How do you leverage different OoO BufferSizes?

*OoO: Out-of-Order

llvm-mca:

IEX0

IEX1

IEX2

FEX0

Buffer

IEX0

IEX1

IEX2

FEX0

Buffer

Buffer

Buffer

Buffer

IEX[0]

IEX[1]

FEX[0]

FEX[1]

Buffer

Buffer

Machine Scheduler: “That’s the neat part, WE DON’T”

• Does the minimal amount of efforts to predict hazards

• Rationale: Nearly impossible to predict during compile-time

42

Machine Scheduler: Out-of-Order Cores

43

Machine Scheduler: Out-of-Order Cores

• Does the minimal amount of efforts to predict hazards

• Rationale: Nearly impossible to predict during compile-time

• The condition where a buffer might be full: N < W*K - 1

• N: buffer size

• W: number of instructions that go into this buffer per cycle

• K: largest occupancy that can execute in this pipe

 PipeBuffer K

N

W

44

Machine Scheduler: In-Order Cores

load

Occupancy

mul

Latency

ALU1

ALU0

ALU1

mul

sub

Past Future• We can predict stallings more

accurately during compile-time

MicroOpBufferSize & BufferSize = 0

45

Machine Scheduler: In-Order Cores

load

Occupancy

mul

Latency

ALU1

ALU0

ALU1

mul

sub

Past Future• We can predict stallings more

accurately during compile-time

• Machine Scheduler doesn’t even

consider an instruction if it might

induce any kind of hazards

MicroOpBufferSize & BufferSize = 0

46

Machine Scheduler: Hazards

* Excluding custom hazard detector

Pending Queue Available Queue
has no hazards*

Scheduling Algorithm
is legal

47

Machine Scheduler: Hazards

* Excluding custom hazard detector

Pending Queue Available Queue
has no hazards*

Scheduling Algorithm
is legal

BufferSize Data hazard checks Structural hazard checks Issue width checks

In-Order 0 Y Y Y

Out-of-Order -1 / larger than 1 N N Y

● More optimistics

● Scheduling algorithm generally has more choices

48

Machine Scheduler: BufferSize = 1

* Excluding custom hazard detector

BufferSize Data hazard checks Structural hazard checks Issue width checks

In-Order
0 Y Y Y

1 N N Y

Out-of-Order -1 / larger than 1 N N Y

In-Order core…scheduled out-of-order-ly?

Pending Queue Available Queue
has no hazards*

Scheduling Algorithm
is legal

49

Machine Scheduler: The Duality of BufferSize = 1

Buffer (1)

Too optimistic on a capability
(i.e. out-of-order-ness) that

doesn’t even exist

Machine Scheduler does
consider data hazards when it’s
scheduling for BufferSize = 1. But
not structural hazards

FWIW…

50

Machine Scheduler: The Duality of BufferSize = 1

Buffer (1)

Too optimistic on a capability
(i.e. out-of-order-ness) that

doesn’t even exist

An escape hatch when in-order
scheduling (i.e. BufferSize = 0) is
too strict or pessimistic

Machine Scheduler does
consider data hazards when it’s
scheduling for BufferSize = 1. But
not structural hazards

FWIW…

Sometimes we want to schedule
aggressively for register pressure
even though there is a hazard

Example:

51

Scheduling
Model

ld x9, 4(x10)
add x8, x9, x9
mul x5, x5, x6
add x7, x8, x5

Instruction Scheduling

Information

Information
DeeER.. mul s0, s0, s1
D=eeER. mul a0, a0, a1
D==eeER mul a2, a2, a3
.DeE--R add s9, s9, s10
.DeE--R add s11, s11, t3

llvm-mca

Perceive

Perceive

Can we use Scheduling Model in
More Places?

53

MachineCombiner

MachineTraceMetrics

MachinePipeliner

(Early)IfConversion

Produce inter-BB traces with their
latency & throughput information

Turn branches into predicated
instructions

Software pipelining

Reduce the critical path of
an expression tree

Mostly use latency info

Latency and occupancy /
throughput

Status Quo

54

Potential User: TTI Cost Model

TargetTransformInfo (TTI)

RISCVTargetTransformInfo

LoopVectorizer

SLPVectorizer

VectorCombine

LICM

SimpleLoopUnroll

SimplifyCFG

● Throughput
● Latency
● CodeSize
● Weighted Latency & CodeSize

Scheduling
Model

55

Potential User: TTI Cost Model

TargetTransformInfo (TTI)

RISCVTargetTransformInfo

● Throughput
● Latency
● CodeSize
● Weighted Latency & CodeSize

Scheduling
Model

LLVM IRMachineInstr
MCInst

● Mapping LLVM IR instructions to low-level

ones can be (really) challenging

● Necessity: how many non-trivial instructions

will actually benefit from this?

● Scheduling model can be the centralized

place to provide such kinds of information

Pros

Cons

• Software pipelining “lite”: scheduling-model-guided loop unrolling

• Validate instruction scheduling with LLVM MCA

• Sort ISel patterns by latency

56

Other Potential Uses

/// Compute the number of instructions for this pattern.
/// This is a temporary hack. We should really include the instruction
/// latencies in this calculation.
static unsigned getResultPatternCost(const TreePatternNode &P,
 const CodeGenDAGPatterns &CGP)

commit 3622f15491d4ae3b27f3399031933bd888e20cf0
Author: Chris Lattner <sabre@nondot.org>
Date: Wed Sep 28 17:57:56 2005 +0000

 Prefer cheaper patterns to more expensive ones.
 Print the costs to the generated
 file

 llvm-svn: 23492

57

Summary

Scheduling Model is all about how it’s used and
perceived

Potential areas we can apply Scheduling Model to

What does LLVM’s Scheduling Model provide

THANK YOU

©2025 SiFive, Inc. All rights reserved.
SiFive, HiFive and the SiFive logo are trademarks or registered
trademarks of SiFive, Inc. Certain products or brand names that are
not SiFive’s could be trademarks or registered trademarks of their
respective owners.

Appendix

60

Scheduling Model: Buffer Sizes

* The code here has been slightly modified

Buffer per pipe v.s. Pipes sharing the same buffer

let BufferSize = 3 in {
 def PipeA : ProcResource<1>;
 def PipeB : ProcResource<1>;
}
def PipeAB : ProcResGroup<[PipeA, PipeB]>;
def : WriteRes<WriteIALU, [PipeAB]>;

let BufferSize = 6 in {
 def PipeAB : ProcResource<2>;
}
def : WriteRes<WriteIALU, [PipeAB]>;

PipeA

PipeB

71

111

Cycle = 0

1

7 : occupancy 7 cy

: occupancy 1 cy

1

61

Scheduling Model: Buffer Sizes

* The code here has been slightly modified

Buffer per pipe v.s. Pipes sharing the same buffer

let BufferSize = 3 in {
 def PipeA : ProcResource<1>;
 def PipeB : ProcResource<1>;
}
def PipeAB : ProcResGroup<[PipeA, PipeB]>;
def : WriteRes<WriteIALU, [PipeAB]>;

let BufferSize = 6 in {
 def PipeAB : ProcResource<2>;
}
def : WriteRes<WriteIALU, [PipeAB]>;

PipeA

PipeB

1

Cycle = 5

Idle

1

1

7 : occupancy 7 cy

: occupancy 1 cy

62

Scheduling Model: Buffer Sizes

* The code here has been slightly modified

Buffer per pipe v.s. Pipes sharing the same buffer

let BufferSize = 3 in {
 def PipeA : ProcResource<1>;
 def PipeB : ProcResource<1>;
}
def PipeAB : ProcResGroup<[PipeA, PipeB]>;
def : WriteRes<WriteIALU, [PipeAB]>;

let BufferSize = 6 in {
 def PipeAB : ProcResource<2>;
}
def : WriteRes<WriteIALU, [PipeAB]>;

PipeA

PipeB

1

Cycle = 5

Idle

PipeAB[0]71

Cycle = 0

PipeAB[1]

1

1 1

1

1

1

7 : occupancy 7 cy

: occupancy 1 cy

63

Scheduling Model: Buffer Sizes

* The code here has been slightly modified

Buffer per pipe v.s. Pipes sharing the same buffer

let BufferSize = 3 in {
 def PipeA : ProcResource<1>;
 def PipeB : ProcResource<1>;
}
def PipeAB : ProcResGroup<[PipeA, PipeB]>;
def : WriteRes<WriteIALU, [PipeAB]>;

let BufferSize = 6 in {
 def PipeAB : ProcResource<2>;
}
def : WriteRes<WriteIALU, [PipeAB]>;

PipeAB[0]

Cycle = 5

PipeAB[1]

PipeA

PipeB

1

Cycle = 5

Idle

1

1

7 : occupancy 7 cy

: occupancy 1 cy

