LLVM 20.0.0git
blake3_sse2.c
Go to the documentation of this file.
1#include "blake3_impl.h"
2
3#include <immintrin.h>
4
5#define DEGREE 4
6
7#define _mm_shuffle_ps2(a, b, c) \
8 (_mm_castps_si128( \
9 _mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c))))
10
11INLINE __m128i loadu(const uint8_t src[16]) {
12 return _mm_loadu_si128((const __m128i *)src);
13}
14
15INLINE void storeu(__m128i src, uint8_t dest[16]) {
16 _mm_storeu_si128((__m128i *)dest, src);
17}
18
19INLINE __m128i addv(__m128i a, __m128i b) { return _mm_add_epi32(a, b); }
20
21// Note that clang-format doesn't like the name "xor" for some reason.
22INLINE __m128i xorv(__m128i a, __m128i b) { return _mm_xor_si128(a, b); }
23
24INLINE __m128i set1(uint32_t x) { return _mm_set1_epi32((int32_t)x); }
25
27 return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d);
28}
29
30INLINE __m128i rot16(__m128i x) {
31 return _mm_shufflehi_epi16(_mm_shufflelo_epi16(x, 0xB1), 0xB1);
32}
33
34INLINE __m128i rot12(__m128i x) {
35 return xorv(_mm_srli_epi32(x, 12), _mm_slli_epi32(x, 32 - 12));
36}
37
38INLINE __m128i rot8(__m128i x) {
39 return xorv(_mm_srli_epi32(x, 8), _mm_slli_epi32(x, 32 - 8));
40}
41
42INLINE __m128i rot7(__m128i x) {
43 return xorv(_mm_srli_epi32(x, 7), _mm_slli_epi32(x, 32 - 7));
44}
45
46INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
47 __m128i m) {
48 *row0 = addv(addv(*row0, m), *row1);
49 *row3 = xorv(*row3, *row0);
50 *row3 = rot16(*row3);
51 *row2 = addv(*row2, *row3);
52 *row1 = xorv(*row1, *row2);
53 *row1 = rot12(*row1);
54}
55
56INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
57 __m128i m) {
58 *row0 = addv(addv(*row0, m), *row1);
59 *row3 = xorv(*row3, *row0);
60 *row3 = rot8(*row3);
61 *row2 = addv(*row2, *row3);
62 *row1 = xorv(*row1, *row2);
63 *row1 = rot7(*row1);
64}
65
66// Note the optimization here of leaving row1 as the unrotated row, rather than
67// row0. All the message loads below are adjusted to compensate for this. See
68// discussion at https://github.com/sneves/blake2-avx2/pull/4
69INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
70 *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3));
71 *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
72 *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1));
73}
74
75INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
76 *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1));
77 *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
78 *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3));
79}
80
81INLINE __m128i blend_epi16(__m128i a, __m128i b, const int16_t imm8) {
82 const __m128i bits = _mm_set_epi16(0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01);
83 __m128i mask = _mm_set1_epi16(imm8);
84 mask = _mm_and_si128(mask, bits);
85 mask = _mm_cmpeq_epi16(mask, bits);
86 return _mm_or_si128(_mm_and_si128(mask, b), _mm_andnot_si128(mask, a));
87}
88
89INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8],
90 const uint8_t block[BLAKE3_BLOCK_LEN],
91 uint8_t block_len, uint64_t counter, uint8_t flags) {
92 rows[0] = loadu((uint8_t *)&cv[0]);
93 rows[1] = loadu((uint8_t *)&cv[4]);
94 rows[2] = set4(IV[0], IV[1], IV[2], IV[3]);
95 rows[3] = set4(counter_low(counter), counter_high(counter),
96 (uint32_t)block_len, (uint32_t)flags);
97
98 __m128i m0 = loadu(&block[sizeof(__m128i) * 0]);
99 __m128i m1 = loadu(&block[sizeof(__m128i) * 1]);
100 __m128i m2 = loadu(&block[sizeof(__m128i) * 2]);
101 __m128i m3 = loadu(&block[sizeof(__m128i) * 3]);
102
103 __m128i t0, t1, t2, t3, tt;
104
105 // Round 1. The first round permutes the message words from the original
106 // input order, into the groups that get mixed in parallel.
107 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); // 6 4 2 0
108 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
109 t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); // 7 5 3 1
110 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
111 diagonalize(&rows[0], &rows[2], &rows[3]);
112 t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10 8
113 t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3)); // 12 10 8 14
114 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
115 t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11 9
116 t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3)); // 13 11 9 15
117 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
118 undiagonalize(&rows[0], &rows[2], &rows[3]);
119 m0 = t0;
120 m1 = t1;
121 m2 = t2;
122 m3 = t3;
123
124 // Round 2. This round and all following rounds apply a fixed permutation
125 // to the message words from the round before.
126 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
127 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
128 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
129 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
130 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
131 t1 = blend_epi16(tt, t1, 0xCC);
132 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
133 diagonalize(&rows[0], &rows[2], &rows[3]);
134 t2 = _mm_unpacklo_epi64(m3, m1);
135 tt = blend_epi16(t2, m2, 0xC0);
136 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
137 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
138 t3 = _mm_unpackhi_epi32(m1, m3);
139 tt = _mm_unpacklo_epi32(m2, t3);
140 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
141 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
142 undiagonalize(&rows[0], &rows[2], &rows[3]);
143 m0 = t0;
144 m1 = t1;
145 m2 = t2;
146 m3 = t3;
147
148 // Round 3
149 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
150 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
151 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
152 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
153 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
154 t1 = blend_epi16(tt, t1, 0xCC);
155 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
156 diagonalize(&rows[0], &rows[2], &rows[3]);
157 t2 = _mm_unpacklo_epi64(m3, m1);
158 tt = blend_epi16(t2, m2, 0xC0);
159 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
160 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
161 t3 = _mm_unpackhi_epi32(m1, m3);
162 tt = _mm_unpacklo_epi32(m2, t3);
163 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
164 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
165 undiagonalize(&rows[0], &rows[2], &rows[3]);
166 m0 = t0;
167 m1 = t1;
168 m2 = t2;
169 m3 = t3;
170
171 // Round 4
172 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
173 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
174 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
175 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
176 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
177 t1 = blend_epi16(tt, t1, 0xCC);
178 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
179 diagonalize(&rows[0], &rows[2], &rows[3]);
180 t2 = _mm_unpacklo_epi64(m3, m1);
181 tt = blend_epi16(t2, m2, 0xC0);
182 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
183 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
184 t3 = _mm_unpackhi_epi32(m1, m3);
185 tt = _mm_unpacklo_epi32(m2, t3);
186 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
187 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
188 undiagonalize(&rows[0], &rows[2], &rows[3]);
189 m0 = t0;
190 m1 = t1;
191 m2 = t2;
192 m3 = t3;
193
194 // Round 5
195 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
196 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
197 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
198 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
199 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
200 t1 = blend_epi16(tt, t1, 0xCC);
201 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
202 diagonalize(&rows[0], &rows[2], &rows[3]);
203 t2 = _mm_unpacklo_epi64(m3, m1);
204 tt = blend_epi16(t2, m2, 0xC0);
205 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
206 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
207 t3 = _mm_unpackhi_epi32(m1, m3);
208 tt = _mm_unpacklo_epi32(m2, t3);
209 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
210 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
211 undiagonalize(&rows[0], &rows[2], &rows[3]);
212 m0 = t0;
213 m1 = t1;
214 m2 = t2;
215 m3 = t3;
216
217 // Round 6
218 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
219 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
220 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
221 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
222 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
223 t1 = blend_epi16(tt, t1, 0xCC);
224 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
225 diagonalize(&rows[0], &rows[2], &rows[3]);
226 t2 = _mm_unpacklo_epi64(m3, m1);
227 tt = blend_epi16(t2, m2, 0xC0);
228 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
229 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
230 t3 = _mm_unpackhi_epi32(m1, m3);
231 tt = _mm_unpacklo_epi32(m2, t3);
232 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
233 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
234 undiagonalize(&rows[0], &rows[2], &rows[3]);
235 m0 = t0;
236 m1 = t1;
237 m2 = t2;
238 m3 = t3;
239
240 // Round 7
241 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
242 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
243 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
244 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
245 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
246 t1 = blend_epi16(tt, t1, 0xCC);
247 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
248 diagonalize(&rows[0], &rows[2], &rows[3]);
249 t2 = _mm_unpacklo_epi64(m3, m1);
250 tt = blend_epi16(t2, m2, 0xC0);
251 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
252 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
253 t3 = _mm_unpackhi_epi32(m1, m3);
254 tt = _mm_unpacklo_epi32(m2, t3);
255 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
256 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
257 undiagonalize(&rows[0], &rows[2], &rows[3]);
258}
259
261 const uint8_t block[BLAKE3_BLOCK_LEN],
262 uint8_t block_len, uint64_t counter,
263 uint8_t flags) {
264 __m128i rows[4];
265 compress_pre(rows, cv, block, block_len, counter, flags);
266 storeu(xorv(rows[0], rows[2]), (uint8_t *)&cv[0]);
267 storeu(xorv(rows[1], rows[3]), (uint8_t *)&cv[4]);
268}
269
271 const uint8_t block[BLAKE3_BLOCK_LEN],
272 uint8_t block_len, uint64_t counter,
273 uint8_t flags, uint8_t out[64]) {
274 __m128i rows[4];
275 compress_pre(rows, cv, block, block_len, counter, flags);
276 storeu(xorv(rows[0], rows[2]), &out[0]);
277 storeu(xorv(rows[1], rows[3]), &out[16]);
278 storeu(xorv(rows[2], loadu((uint8_t *)&cv[0])), &out[32]);
279 storeu(xorv(rows[3], loadu((uint8_t *)&cv[4])), &out[48]);
280}
281
282INLINE void round_fn(__m128i v[16], __m128i m[16], size_t r) {
283 v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
284 v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
285 v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
286 v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
287 v[0] = addv(v[0], v[4]);
288 v[1] = addv(v[1], v[5]);
289 v[2] = addv(v[2], v[6]);
290 v[3] = addv(v[3], v[7]);
291 v[12] = xorv(v[12], v[0]);
292 v[13] = xorv(v[13], v[1]);
293 v[14] = xorv(v[14], v[2]);
294 v[15] = xorv(v[15], v[3]);
295 v[12] = rot16(v[12]);
296 v[13] = rot16(v[13]);
297 v[14] = rot16(v[14]);
298 v[15] = rot16(v[15]);
299 v[8] = addv(v[8], v[12]);
300 v[9] = addv(v[9], v[13]);
301 v[10] = addv(v[10], v[14]);
302 v[11] = addv(v[11], v[15]);
303 v[4] = xorv(v[4], v[8]);
304 v[5] = xorv(v[5], v[9]);
305 v[6] = xorv(v[6], v[10]);
306 v[7] = xorv(v[7], v[11]);
307 v[4] = rot12(v[4]);
308 v[5] = rot12(v[5]);
309 v[6] = rot12(v[6]);
310 v[7] = rot12(v[7]);
311 v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
312 v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
313 v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
314 v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
315 v[0] = addv(v[0], v[4]);
316 v[1] = addv(v[1], v[5]);
317 v[2] = addv(v[2], v[6]);
318 v[3] = addv(v[3], v[7]);
319 v[12] = xorv(v[12], v[0]);
320 v[13] = xorv(v[13], v[1]);
321 v[14] = xorv(v[14], v[2]);
322 v[15] = xorv(v[15], v[3]);
323 v[12] = rot8(v[12]);
324 v[13] = rot8(v[13]);
325 v[14] = rot8(v[14]);
326 v[15] = rot8(v[15]);
327 v[8] = addv(v[8], v[12]);
328 v[9] = addv(v[9], v[13]);
329 v[10] = addv(v[10], v[14]);
330 v[11] = addv(v[11], v[15]);
331 v[4] = xorv(v[4], v[8]);
332 v[5] = xorv(v[5], v[9]);
333 v[6] = xorv(v[6], v[10]);
334 v[7] = xorv(v[7], v[11]);
335 v[4] = rot7(v[4]);
336 v[5] = rot7(v[5]);
337 v[6] = rot7(v[6]);
338 v[7] = rot7(v[7]);
339
340 v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
341 v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
342 v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
343 v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
344 v[0] = addv(v[0], v[5]);
345 v[1] = addv(v[1], v[6]);
346 v[2] = addv(v[2], v[7]);
347 v[3] = addv(v[3], v[4]);
348 v[15] = xorv(v[15], v[0]);
349 v[12] = xorv(v[12], v[1]);
350 v[13] = xorv(v[13], v[2]);
351 v[14] = xorv(v[14], v[3]);
352 v[15] = rot16(v[15]);
353 v[12] = rot16(v[12]);
354 v[13] = rot16(v[13]);
355 v[14] = rot16(v[14]);
356 v[10] = addv(v[10], v[15]);
357 v[11] = addv(v[11], v[12]);
358 v[8] = addv(v[8], v[13]);
359 v[9] = addv(v[9], v[14]);
360 v[5] = xorv(v[5], v[10]);
361 v[6] = xorv(v[6], v[11]);
362 v[7] = xorv(v[7], v[8]);
363 v[4] = xorv(v[4], v[9]);
364 v[5] = rot12(v[5]);
365 v[6] = rot12(v[6]);
366 v[7] = rot12(v[7]);
367 v[4] = rot12(v[4]);
368 v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
369 v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
370 v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
371 v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
372 v[0] = addv(v[0], v[5]);
373 v[1] = addv(v[1], v[6]);
374 v[2] = addv(v[2], v[7]);
375 v[3] = addv(v[3], v[4]);
376 v[15] = xorv(v[15], v[0]);
377 v[12] = xorv(v[12], v[1]);
378 v[13] = xorv(v[13], v[2]);
379 v[14] = xorv(v[14], v[3]);
380 v[15] = rot8(v[15]);
381 v[12] = rot8(v[12]);
382 v[13] = rot8(v[13]);
383 v[14] = rot8(v[14]);
384 v[10] = addv(v[10], v[15]);
385 v[11] = addv(v[11], v[12]);
386 v[8] = addv(v[8], v[13]);
387 v[9] = addv(v[9], v[14]);
388 v[5] = xorv(v[5], v[10]);
389 v[6] = xorv(v[6], v[11]);
390 v[7] = xorv(v[7], v[8]);
391 v[4] = xorv(v[4], v[9]);
392 v[5] = rot7(v[5]);
393 v[6] = rot7(v[6]);
394 v[7] = rot7(v[7]);
395 v[4] = rot7(v[4]);
396}
397
398INLINE void transpose_vecs(__m128i vecs[DEGREE]) {
399 // Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is
400 // 22/33. Note that this doesn't split the vector into two lanes, as the
401 // AVX2 counterparts do.
402 __m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
403 __m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
404 __m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
405 __m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
406
407 // Interleave 64-bit lanes.
408 __m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01);
409 __m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01);
410 __m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23);
411 __m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23);
412
413 vecs[0] = abcd_0;
414 vecs[1] = abcd_1;
415 vecs[2] = abcd_2;
416 vecs[3] = abcd_3;
417}
418
419INLINE void transpose_msg_vecs(const uint8_t *const *inputs,
420 size_t block_offset, __m128i out[16]) {
421 out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m128i)]);
422 out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m128i)]);
423 out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m128i)]);
424 out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m128i)]);
425 out[4] = loadu(&inputs[0][block_offset + 1 * sizeof(__m128i)]);
426 out[5] = loadu(&inputs[1][block_offset + 1 * sizeof(__m128i)]);
427 out[6] = loadu(&inputs[2][block_offset + 1 * sizeof(__m128i)]);
428 out[7] = loadu(&inputs[3][block_offset + 1 * sizeof(__m128i)]);
429 out[8] = loadu(&inputs[0][block_offset + 2 * sizeof(__m128i)]);
430 out[9] = loadu(&inputs[1][block_offset + 2 * sizeof(__m128i)]);
431 out[10] = loadu(&inputs[2][block_offset + 2 * sizeof(__m128i)]);
432 out[11] = loadu(&inputs[3][block_offset + 2 * sizeof(__m128i)]);
433 out[12] = loadu(&inputs[0][block_offset + 3 * sizeof(__m128i)]);
434 out[13] = loadu(&inputs[1][block_offset + 3 * sizeof(__m128i)]);
435 out[14] = loadu(&inputs[2][block_offset + 3 * sizeof(__m128i)]);
436 out[15] = loadu(&inputs[3][block_offset + 3 * sizeof(__m128i)]);
437 for (size_t i = 0; i < 4; ++i) {
438 _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0);
439 }
440 transpose_vecs(&out[0]);
441 transpose_vecs(&out[4]);
442 transpose_vecs(&out[8]);
443 transpose_vecs(&out[12]);
444}
445
446INLINE void load_counters(uint64_t counter, bool increment_counter,
447 __m128i *out_lo, __m128i *out_hi) {
448 const __m128i mask = _mm_set1_epi32(-(int32_t)increment_counter);
449 const __m128i add0 = _mm_set_epi32(3, 2, 1, 0);
450 const __m128i add1 = _mm_and_si128(mask, add0);
451 __m128i l = _mm_add_epi32(_mm_set1_epi32((int32_t)counter), add1);
452 __m128i carry = _mm_cmpgt_epi32(_mm_xor_si128(add1, _mm_set1_epi32(0x80000000)),
453 _mm_xor_si128( l, _mm_set1_epi32(0x80000000)));
454 __m128i h = _mm_sub_epi32(_mm_set1_epi32((int32_t)(counter >> 32)), carry);
455 *out_lo = l;
456 *out_hi = h;
457}
458
459static
460void blake3_hash4_sse2(const uint8_t *const *inputs, size_t blocks,
461 const uint32_t key[8], uint64_t counter,
462 bool increment_counter, uint8_t flags,
463 uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
464 __m128i h_vecs[8] = {
465 set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]),
466 set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]),
467 };
468 __m128i counter_low_vec, counter_high_vec;
469 load_counters(counter, increment_counter, &counter_low_vec,
470 &counter_high_vec);
471 uint8_t block_flags = flags | flags_start;
472
473 for (size_t block = 0; block < blocks; block++) {
474 if (block + 1 == blocks) {
475 block_flags |= flags_end;
476 }
477 __m128i block_len_vec = set1(BLAKE3_BLOCK_LEN);
478 __m128i block_flags_vec = set1(block_flags);
479 __m128i msg_vecs[16];
480 transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
481
482 __m128i v[16] = {
483 h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
484 h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
485 set1(IV[0]), set1(IV[1]), set1(IV[2]), set1(IV[3]),
486 counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
487 };
488 round_fn(v, msg_vecs, 0);
489 round_fn(v, msg_vecs, 1);
490 round_fn(v, msg_vecs, 2);
491 round_fn(v, msg_vecs, 3);
492 round_fn(v, msg_vecs, 4);
493 round_fn(v, msg_vecs, 5);
494 round_fn(v, msg_vecs, 6);
495 h_vecs[0] = xorv(v[0], v[8]);
496 h_vecs[1] = xorv(v[1], v[9]);
497 h_vecs[2] = xorv(v[2], v[10]);
498 h_vecs[3] = xorv(v[3], v[11]);
499 h_vecs[4] = xorv(v[4], v[12]);
500 h_vecs[5] = xorv(v[5], v[13]);
501 h_vecs[6] = xorv(v[6], v[14]);
502 h_vecs[7] = xorv(v[7], v[15]);
503
504 block_flags = flags;
505 }
506
507 transpose_vecs(&h_vecs[0]);
508 transpose_vecs(&h_vecs[4]);
509 // The first four vecs now contain the first half of each output, and the
510 // second four vecs contain the second half of each output.
511 storeu(h_vecs[0], &out[0 * sizeof(__m128i)]);
512 storeu(h_vecs[4], &out[1 * sizeof(__m128i)]);
513 storeu(h_vecs[1], &out[2 * sizeof(__m128i)]);
514 storeu(h_vecs[5], &out[3 * sizeof(__m128i)]);
515 storeu(h_vecs[2], &out[4 * sizeof(__m128i)]);
516 storeu(h_vecs[6], &out[5 * sizeof(__m128i)]);
517 storeu(h_vecs[3], &out[6 * sizeof(__m128i)]);
518 storeu(h_vecs[7], &out[7 * sizeof(__m128i)]);
519}
520
521INLINE void hash_one_sse2(const uint8_t *input, size_t blocks,
522 const uint32_t key[8], uint64_t counter,
523 uint8_t flags, uint8_t flags_start,
524 uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) {
525 uint32_t cv[8];
526 memcpy(cv, key, BLAKE3_KEY_LEN);
527 uint8_t block_flags = flags | flags_start;
528 while (blocks > 0) {
529 if (blocks == 1) {
530 block_flags |= flags_end;
531 }
533 block_flags);
534 input = &input[BLAKE3_BLOCK_LEN];
535 blocks -= 1;
536 block_flags = flags;
537 }
538 memcpy(out, cv, BLAKE3_OUT_LEN);
539}
540
541void blake3_hash_many_sse2(const uint8_t *const *inputs, size_t num_inputs,
542 size_t blocks, const uint32_t key[8],
543 uint64_t counter, bool increment_counter,
544 uint8_t flags, uint8_t flags_start,
545 uint8_t flags_end, uint8_t *out) {
546 while (num_inputs >= DEGREE) {
547 blake3_hash4_sse2(inputs, blocks, key, counter, increment_counter, flags,
548 flags_start, flags_end, out);
549 if (increment_counter) {
550 counter += DEGREE;
551 }
552 inputs += DEGREE;
553 num_inputs -= DEGREE;
554 out = &out[DEGREE * BLAKE3_OUT_LEN];
555 }
556 while (num_inputs > 0) {
557 hash_one_sse2(inputs[0], blocks, key, counter, flags, flags_start,
558 flags_end, out);
559 if (increment_counter) {
560 counter += 1;
561 }
562 inputs += 1;
563 num_inputs -= 1;
564 out = &out[BLAKE3_OUT_LEN];
565 }
566}
bbsections Prepares for basic block by splitting functions into clusters of basic blocks
unify loop Fixup each natural loop to have a single exit block
static const uint8_t MSG_SCHEDULE[7][16]
Definition: blake3_impl.h:82
#define INLINE
Definition: blake3_impl.h:32
static const uint32_t IV[8]
Definition: blake3_impl.h:78
INLINE uint32_t counter_high(uint64_t counter)
Definition: blake3_impl.h:145
INLINE uint32_t counter_low(uint64_t counter)
Definition: blake3_impl.h:143
INLINE __m128i rot12(__m128i x)
Definition: blake3_sse2.c:34
INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d)
Definition: blake3_sse2.c:26
#define _mm_shuffle_ps2(a, b, c)
Definition: blake3_sse2.c:7
INLINE void hash_one_sse2(const uint8_t *input, size_t blocks, const uint32_t key[8], uint64_t counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN])
Definition: blake3_sse2.c:521
INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, __m128i m)
Definition: blake3_sse2.c:46
INLINE __m128i rot7(__m128i x)
Definition: blake3_sse2.c:42
INLINE void storeu(__m128i src, uint8_t dest[16])
Definition: blake3_sse2.c:15
INLINE void transpose_msg_vecs(const uint8_t *const *inputs, size_t block_offset, __m128i out[16])
Definition: blake3_sse2.c:419
INLINE __m128i blend_epi16(__m128i a, __m128i b, const int16_t imm8)
Definition: blake3_sse2.c:81
#define DEGREE
Definition: blake3_sse2.c:5
INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3)
Definition: blake3_sse2.c:69
INLINE void round_fn(__m128i v[16], __m128i m[16], size_t r)
Definition: blake3_sse2.c:282
INLINE __m128i xorv(__m128i a, __m128i b)
Definition: blake3_sse2.c:22
INLINE void transpose_vecs(__m128i vecs[DEGREE])
Definition: blake3_sse2.c:398
INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3)
Definition: blake3_sse2.c:75
INLINE void load_counters(uint64_t counter, bool increment_counter, __m128i *out_lo, __m128i *out_hi)
Definition: blake3_sse2.c:446
INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags)
Definition: blake3_sse2.c:89
INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, __m128i m)
Definition: blake3_sse2.c:56
INLINE __m128i rot16(__m128i x)
Definition: blake3_sse2.c:30
INLINE __m128i addv(__m128i a, __m128i b)
Definition: blake3_sse2.c:19
static void blake3_hash4_sse2(const uint8_t *const *inputs, size_t blocks, const uint32_t key[8], uint64_t counter, bool increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out)
Definition: blake3_sse2.c:460
INLINE __m128i loadu(const uint8_t src[16])
Definition: blake3_sse2.c:11
INLINE __m128i set1(uint32_t x)
Definition: blake3_sse2.c:24
INLINE __m128i rot8(__m128i x)
Definition: blake3_sse2.c:38
#define blake3_compress_xof_sse2
#define BLAKE3_BLOCK_LEN
#define BLAKE3_OUT_LEN
#define blake3_compress_in_place_sse2
#define BLAKE3_KEY_LEN
#define blake3_hash_many_sse2