LLVM 20.0.0git
blake3_sse41.c
Go to the documentation of this file.
1#include "blake3_impl.h"
2
3#include <immintrin.h>
4
5#define DEGREE 4
6
7#define _mm_shuffle_ps2(a, b, c) \
8 (_mm_castps_si128( \
9 _mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c))))
10
11INLINE __m128i loadu(const uint8_t src[16]) {
12 return _mm_loadu_si128((const __m128i *)src);
13}
14
15INLINE void storeu(__m128i src, uint8_t dest[16]) {
16 _mm_storeu_si128((__m128i *)dest, src);
17}
18
19INLINE __m128i addv(__m128i a, __m128i b) { return _mm_add_epi32(a, b); }
20
21// Note that clang-format doesn't like the name "xor" for some reason.
22INLINE __m128i xorv(__m128i a, __m128i b) { return _mm_xor_si128(a, b); }
23
24INLINE __m128i set1(uint32_t x) { return _mm_set1_epi32((int32_t)x); }
25
27 return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d);
28}
29
30INLINE __m128i rot16(__m128i x) {
31 return _mm_shuffle_epi8(
32 x, _mm_set_epi8(13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2));
33}
34
35INLINE __m128i rot12(__m128i x) {
36 return xorv(_mm_srli_epi32(x, 12), _mm_slli_epi32(x, 32 - 12));
37}
38
39INLINE __m128i rot8(__m128i x) {
40 return _mm_shuffle_epi8(
41 x, _mm_set_epi8(12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1));
42}
43
44INLINE __m128i rot7(__m128i x) {
45 return xorv(_mm_srli_epi32(x, 7), _mm_slli_epi32(x, 32 - 7));
46}
47
48INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
49 __m128i m) {
50 *row0 = addv(addv(*row0, m), *row1);
51 *row3 = xorv(*row3, *row0);
52 *row3 = rot16(*row3);
53 *row2 = addv(*row2, *row3);
54 *row1 = xorv(*row1, *row2);
55 *row1 = rot12(*row1);
56}
57
58INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
59 __m128i m) {
60 *row0 = addv(addv(*row0, m), *row1);
61 *row3 = xorv(*row3, *row0);
62 *row3 = rot8(*row3);
63 *row2 = addv(*row2, *row3);
64 *row1 = xorv(*row1, *row2);
65 *row1 = rot7(*row1);
66}
67
68// Note the optimization here of leaving row1 as the unrotated row, rather than
69// row0. All the message loads below are adjusted to compensate for this. See
70// discussion at https://github.com/sneves/blake2-avx2/pull/4
71INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
72 *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3));
73 *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
74 *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1));
75}
76
77INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
78 *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1));
79 *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
80 *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3));
81}
82
83INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8],
84 const uint8_t block[BLAKE3_BLOCK_LEN],
85 uint8_t block_len, uint64_t counter, uint8_t flags) {
86 rows[0] = loadu((uint8_t *)&cv[0]);
87 rows[1] = loadu((uint8_t *)&cv[4]);
88 rows[2] = set4(IV[0], IV[1], IV[2], IV[3]);
89 rows[3] = set4(counter_low(counter), counter_high(counter),
90 (uint32_t)block_len, (uint32_t)flags);
91
92 __m128i m0 = loadu(&block[sizeof(__m128i) * 0]);
93 __m128i m1 = loadu(&block[sizeof(__m128i) * 1]);
94 __m128i m2 = loadu(&block[sizeof(__m128i) * 2]);
95 __m128i m3 = loadu(&block[sizeof(__m128i) * 3]);
96
97 __m128i t0, t1, t2, t3, tt;
98
99 // Round 1. The first round permutes the message words from the original
100 // input order, into the groups that get mixed in parallel.
101 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); // 6 4 2 0
102 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
103 t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); // 7 5 3 1
104 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
105 diagonalize(&rows[0], &rows[2], &rows[3]);
106 t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10 8
107 t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3)); // 12 10 8 14
108 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
109 t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11 9
110 t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3)); // 13 11 9 15
111 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
112 undiagonalize(&rows[0], &rows[2], &rows[3]);
113 m0 = t0;
114 m1 = t1;
115 m2 = t2;
116 m3 = t3;
117
118 // Round 2. This round and all following rounds apply a fixed permutation
119 // to the message words from the round before.
120 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
121 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
122 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
123 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
124 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
125 t1 = _mm_blend_epi16(tt, t1, 0xCC);
126 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
127 diagonalize(&rows[0], &rows[2], &rows[3]);
128 t2 = _mm_unpacklo_epi64(m3, m1);
129 tt = _mm_blend_epi16(t2, m2, 0xC0);
130 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
131 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
132 t3 = _mm_unpackhi_epi32(m1, m3);
133 tt = _mm_unpacklo_epi32(m2, t3);
134 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
135 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
136 undiagonalize(&rows[0], &rows[2], &rows[3]);
137 m0 = t0;
138 m1 = t1;
139 m2 = t2;
140 m3 = t3;
141
142 // Round 3
143 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
144 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
145 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
146 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
147 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
148 t1 = _mm_blend_epi16(tt, t1, 0xCC);
149 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
150 diagonalize(&rows[0], &rows[2], &rows[3]);
151 t2 = _mm_unpacklo_epi64(m3, m1);
152 tt = _mm_blend_epi16(t2, m2, 0xC0);
153 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
154 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
155 t3 = _mm_unpackhi_epi32(m1, m3);
156 tt = _mm_unpacklo_epi32(m2, t3);
157 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
158 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
159 undiagonalize(&rows[0], &rows[2], &rows[3]);
160 m0 = t0;
161 m1 = t1;
162 m2 = t2;
163 m3 = t3;
164
165 // Round 4
166 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
167 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
168 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
169 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
170 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
171 t1 = _mm_blend_epi16(tt, t1, 0xCC);
172 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
173 diagonalize(&rows[0], &rows[2], &rows[3]);
174 t2 = _mm_unpacklo_epi64(m3, m1);
175 tt = _mm_blend_epi16(t2, m2, 0xC0);
176 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
177 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
178 t3 = _mm_unpackhi_epi32(m1, m3);
179 tt = _mm_unpacklo_epi32(m2, t3);
180 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
181 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
182 undiagonalize(&rows[0], &rows[2], &rows[3]);
183 m0 = t0;
184 m1 = t1;
185 m2 = t2;
186 m3 = t3;
187
188 // Round 5
189 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
190 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
191 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
192 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
193 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
194 t1 = _mm_blend_epi16(tt, t1, 0xCC);
195 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
196 diagonalize(&rows[0], &rows[2], &rows[3]);
197 t2 = _mm_unpacklo_epi64(m3, m1);
198 tt = _mm_blend_epi16(t2, m2, 0xC0);
199 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
200 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
201 t3 = _mm_unpackhi_epi32(m1, m3);
202 tt = _mm_unpacklo_epi32(m2, t3);
203 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
204 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
205 undiagonalize(&rows[0], &rows[2], &rows[3]);
206 m0 = t0;
207 m1 = t1;
208 m2 = t2;
209 m3 = t3;
210
211 // Round 6
212 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
213 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
214 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
215 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
216 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
217 t1 = _mm_blend_epi16(tt, t1, 0xCC);
218 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
219 diagonalize(&rows[0], &rows[2], &rows[3]);
220 t2 = _mm_unpacklo_epi64(m3, m1);
221 tt = _mm_blend_epi16(t2, m2, 0xC0);
222 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
223 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
224 t3 = _mm_unpackhi_epi32(m1, m3);
225 tt = _mm_unpacklo_epi32(m2, t3);
226 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
227 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
228 undiagonalize(&rows[0], &rows[2], &rows[3]);
229 m0 = t0;
230 m1 = t1;
231 m2 = t2;
232 m3 = t3;
233
234 // Round 7
235 t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
236 t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
237 g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
238 t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
239 tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
240 t1 = _mm_blend_epi16(tt, t1, 0xCC);
241 g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
242 diagonalize(&rows[0], &rows[2], &rows[3]);
243 t2 = _mm_unpacklo_epi64(m3, m1);
244 tt = _mm_blend_epi16(t2, m2, 0xC0);
245 t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
246 g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
247 t3 = _mm_unpackhi_epi32(m1, m3);
248 tt = _mm_unpacklo_epi32(m2, t3);
249 t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
250 g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
251 undiagonalize(&rows[0], &rows[2], &rows[3]);
252}
253
255 const uint8_t block[BLAKE3_BLOCK_LEN],
256 uint8_t block_len, uint64_t counter,
257 uint8_t flags) {
258 __m128i rows[4];
259 compress_pre(rows, cv, block, block_len, counter, flags);
260 storeu(xorv(rows[0], rows[2]), (uint8_t *)&cv[0]);
261 storeu(xorv(rows[1], rows[3]), (uint8_t *)&cv[4]);
262}
263
265 const uint8_t block[BLAKE3_BLOCK_LEN],
266 uint8_t block_len, uint64_t counter,
267 uint8_t flags, uint8_t out[64]) {
268 __m128i rows[4];
269 compress_pre(rows, cv, block, block_len, counter, flags);
270 storeu(xorv(rows[0], rows[2]), &out[0]);
271 storeu(xorv(rows[1], rows[3]), &out[16]);
272 storeu(xorv(rows[2], loadu((uint8_t *)&cv[0])), &out[32]);
273 storeu(xorv(rows[3], loadu((uint8_t *)&cv[4])), &out[48]);
274}
275
276INLINE void round_fn(__m128i v[16], __m128i m[16], size_t r) {
277 v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
278 v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
279 v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
280 v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
281 v[0] = addv(v[0], v[4]);
282 v[1] = addv(v[1], v[5]);
283 v[2] = addv(v[2], v[6]);
284 v[3] = addv(v[3], v[7]);
285 v[12] = xorv(v[12], v[0]);
286 v[13] = xorv(v[13], v[1]);
287 v[14] = xorv(v[14], v[2]);
288 v[15] = xorv(v[15], v[3]);
289 v[12] = rot16(v[12]);
290 v[13] = rot16(v[13]);
291 v[14] = rot16(v[14]);
292 v[15] = rot16(v[15]);
293 v[8] = addv(v[8], v[12]);
294 v[9] = addv(v[9], v[13]);
295 v[10] = addv(v[10], v[14]);
296 v[11] = addv(v[11], v[15]);
297 v[4] = xorv(v[4], v[8]);
298 v[5] = xorv(v[5], v[9]);
299 v[6] = xorv(v[6], v[10]);
300 v[7] = xorv(v[7], v[11]);
301 v[4] = rot12(v[4]);
302 v[5] = rot12(v[5]);
303 v[6] = rot12(v[6]);
304 v[7] = rot12(v[7]);
305 v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
306 v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
307 v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
308 v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
309 v[0] = addv(v[0], v[4]);
310 v[1] = addv(v[1], v[5]);
311 v[2] = addv(v[2], v[6]);
312 v[3] = addv(v[3], v[7]);
313 v[12] = xorv(v[12], v[0]);
314 v[13] = xorv(v[13], v[1]);
315 v[14] = xorv(v[14], v[2]);
316 v[15] = xorv(v[15], v[3]);
317 v[12] = rot8(v[12]);
318 v[13] = rot8(v[13]);
319 v[14] = rot8(v[14]);
320 v[15] = rot8(v[15]);
321 v[8] = addv(v[8], v[12]);
322 v[9] = addv(v[9], v[13]);
323 v[10] = addv(v[10], v[14]);
324 v[11] = addv(v[11], v[15]);
325 v[4] = xorv(v[4], v[8]);
326 v[5] = xorv(v[5], v[9]);
327 v[6] = xorv(v[6], v[10]);
328 v[7] = xorv(v[7], v[11]);
329 v[4] = rot7(v[4]);
330 v[5] = rot7(v[5]);
331 v[6] = rot7(v[6]);
332 v[7] = rot7(v[7]);
333
334 v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
335 v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
336 v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
337 v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
338 v[0] = addv(v[0], v[5]);
339 v[1] = addv(v[1], v[6]);
340 v[2] = addv(v[2], v[7]);
341 v[3] = addv(v[3], v[4]);
342 v[15] = xorv(v[15], v[0]);
343 v[12] = xorv(v[12], v[1]);
344 v[13] = xorv(v[13], v[2]);
345 v[14] = xorv(v[14], v[3]);
346 v[15] = rot16(v[15]);
347 v[12] = rot16(v[12]);
348 v[13] = rot16(v[13]);
349 v[14] = rot16(v[14]);
350 v[10] = addv(v[10], v[15]);
351 v[11] = addv(v[11], v[12]);
352 v[8] = addv(v[8], v[13]);
353 v[9] = addv(v[9], v[14]);
354 v[5] = xorv(v[5], v[10]);
355 v[6] = xorv(v[6], v[11]);
356 v[7] = xorv(v[7], v[8]);
357 v[4] = xorv(v[4], v[9]);
358 v[5] = rot12(v[5]);
359 v[6] = rot12(v[6]);
360 v[7] = rot12(v[7]);
361 v[4] = rot12(v[4]);
362 v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
363 v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
364 v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
365 v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
366 v[0] = addv(v[0], v[5]);
367 v[1] = addv(v[1], v[6]);
368 v[2] = addv(v[2], v[7]);
369 v[3] = addv(v[3], v[4]);
370 v[15] = xorv(v[15], v[0]);
371 v[12] = xorv(v[12], v[1]);
372 v[13] = xorv(v[13], v[2]);
373 v[14] = xorv(v[14], v[3]);
374 v[15] = rot8(v[15]);
375 v[12] = rot8(v[12]);
376 v[13] = rot8(v[13]);
377 v[14] = rot8(v[14]);
378 v[10] = addv(v[10], v[15]);
379 v[11] = addv(v[11], v[12]);
380 v[8] = addv(v[8], v[13]);
381 v[9] = addv(v[9], v[14]);
382 v[5] = xorv(v[5], v[10]);
383 v[6] = xorv(v[6], v[11]);
384 v[7] = xorv(v[7], v[8]);
385 v[4] = xorv(v[4], v[9]);
386 v[5] = rot7(v[5]);
387 v[6] = rot7(v[6]);
388 v[7] = rot7(v[7]);
389 v[4] = rot7(v[4]);
390}
391
392INLINE void transpose_vecs(__m128i vecs[DEGREE]) {
393 // Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is
394 // 22/33. Note that this doesn't split the vector into two lanes, as the
395 // AVX2 counterparts do.
396 __m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
397 __m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
398 __m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
399 __m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
400
401 // Interleave 64-bit lanes.
402 __m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01);
403 __m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01);
404 __m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23);
405 __m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23);
406
407 vecs[0] = abcd_0;
408 vecs[1] = abcd_1;
409 vecs[2] = abcd_2;
410 vecs[3] = abcd_3;
411}
412
413INLINE void transpose_msg_vecs(const uint8_t *const *inputs,
414 size_t block_offset, __m128i out[16]) {
415 out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m128i)]);
416 out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m128i)]);
417 out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m128i)]);
418 out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m128i)]);
419 out[4] = loadu(&inputs[0][block_offset + 1 * sizeof(__m128i)]);
420 out[5] = loadu(&inputs[1][block_offset + 1 * sizeof(__m128i)]);
421 out[6] = loadu(&inputs[2][block_offset + 1 * sizeof(__m128i)]);
422 out[7] = loadu(&inputs[3][block_offset + 1 * sizeof(__m128i)]);
423 out[8] = loadu(&inputs[0][block_offset + 2 * sizeof(__m128i)]);
424 out[9] = loadu(&inputs[1][block_offset + 2 * sizeof(__m128i)]);
425 out[10] = loadu(&inputs[2][block_offset + 2 * sizeof(__m128i)]);
426 out[11] = loadu(&inputs[3][block_offset + 2 * sizeof(__m128i)]);
427 out[12] = loadu(&inputs[0][block_offset + 3 * sizeof(__m128i)]);
428 out[13] = loadu(&inputs[1][block_offset + 3 * sizeof(__m128i)]);
429 out[14] = loadu(&inputs[2][block_offset + 3 * sizeof(__m128i)]);
430 out[15] = loadu(&inputs[3][block_offset + 3 * sizeof(__m128i)]);
431 for (size_t i = 0; i < 4; ++i) {
432 _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0);
433 }
434 transpose_vecs(&out[0]);
435 transpose_vecs(&out[4]);
436 transpose_vecs(&out[8]);
437 transpose_vecs(&out[12]);
438}
439
440INLINE void load_counters(uint64_t counter, bool increment_counter,
441 __m128i *out_lo, __m128i *out_hi) {
442 const __m128i mask = _mm_set1_epi32(-(int32_t)increment_counter);
443 const __m128i add0 = _mm_set_epi32(3, 2, 1, 0);
444 const __m128i add1 = _mm_and_si128(mask, add0);
445 __m128i l = _mm_add_epi32(_mm_set1_epi32((int32_t)counter), add1);
446 __m128i carry = _mm_cmpgt_epi32(_mm_xor_si128(add1, _mm_set1_epi32(0x80000000)),
447 _mm_xor_si128( l, _mm_set1_epi32(0x80000000)));
448 __m128i h = _mm_sub_epi32(_mm_set1_epi32((int32_t)(counter >> 32)), carry);
449 *out_lo = l;
450 *out_hi = h;
451}
452
453static
454void blake3_hash4_sse41(const uint8_t *const *inputs, size_t blocks,
455 const uint32_t key[8], uint64_t counter,
456 bool increment_counter, uint8_t flags,
457 uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
458 __m128i h_vecs[8] = {
459 set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]),
460 set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]),
461 };
462 __m128i counter_low_vec, counter_high_vec;
463 load_counters(counter, increment_counter, &counter_low_vec,
464 &counter_high_vec);
465 uint8_t block_flags = flags | flags_start;
466
467 for (size_t block = 0; block < blocks; block++) {
468 if (block + 1 == blocks) {
469 block_flags |= flags_end;
470 }
471 __m128i block_len_vec = set1(BLAKE3_BLOCK_LEN);
472 __m128i block_flags_vec = set1(block_flags);
473 __m128i msg_vecs[16];
474 transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
475
476 __m128i v[16] = {
477 h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
478 h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
479 set1(IV[0]), set1(IV[1]), set1(IV[2]), set1(IV[3]),
480 counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
481 };
482 round_fn(v, msg_vecs, 0);
483 round_fn(v, msg_vecs, 1);
484 round_fn(v, msg_vecs, 2);
485 round_fn(v, msg_vecs, 3);
486 round_fn(v, msg_vecs, 4);
487 round_fn(v, msg_vecs, 5);
488 round_fn(v, msg_vecs, 6);
489 h_vecs[0] = xorv(v[0], v[8]);
490 h_vecs[1] = xorv(v[1], v[9]);
491 h_vecs[2] = xorv(v[2], v[10]);
492 h_vecs[3] = xorv(v[3], v[11]);
493 h_vecs[4] = xorv(v[4], v[12]);
494 h_vecs[5] = xorv(v[5], v[13]);
495 h_vecs[6] = xorv(v[6], v[14]);
496 h_vecs[7] = xorv(v[7], v[15]);
497
498 block_flags = flags;
499 }
500
501 transpose_vecs(&h_vecs[0]);
502 transpose_vecs(&h_vecs[4]);
503 // The first four vecs now contain the first half of each output, and the
504 // second four vecs contain the second half of each output.
505 storeu(h_vecs[0], &out[0 * sizeof(__m128i)]);
506 storeu(h_vecs[4], &out[1 * sizeof(__m128i)]);
507 storeu(h_vecs[1], &out[2 * sizeof(__m128i)]);
508 storeu(h_vecs[5], &out[3 * sizeof(__m128i)]);
509 storeu(h_vecs[2], &out[4 * sizeof(__m128i)]);
510 storeu(h_vecs[6], &out[5 * sizeof(__m128i)]);
511 storeu(h_vecs[3], &out[6 * sizeof(__m128i)]);
512 storeu(h_vecs[7], &out[7 * sizeof(__m128i)]);
513}
514
515INLINE void hash_one_sse41(const uint8_t *input, size_t blocks,
516 const uint32_t key[8], uint64_t counter,
517 uint8_t flags, uint8_t flags_start,
518 uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) {
519 uint32_t cv[8];
520 memcpy(cv, key, BLAKE3_KEY_LEN);
521 uint8_t block_flags = flags | flags_start;
522 while (blocks > 0) {
523 if (blocks == 1) {
524 block_flags |= flags_end;
525 }
527 block_flags);
528 input = &input[BLAKE3_BLOCK_LEN];
529 blocks -= 1;
530 block_flags = flags;
531 }
532 memcpy(out, cv, BLAKE3_OUT_LEN);
533}
534
535void blake3_hash_many_sse41(const uint8_t *const *inputs, size_t num_inputs,
536 size_t blocks, const uint32_t key[8],
537 uint64_t counter, bool increment_counter,
538 uint8_t flags, uint8_t flags_start,
539 uint8_t flags_end, uint8_t *out) {
540 while (num_inputs >= DEGREE) {
541 blake3_hash4_sse41(inputs, blocks, key, counter, increment_counter, flags,
542 flags_start, flags_end, out);
543 if (increment_counter) {
544 counter += DEGREE;
545 }
546 inputs += DEGREE;
547 num_inputs -= DEGREE;
548 out = &out[DEGREE * BLAKE3_OUT_LEN];
549 }
550 while (num_inputs > 0) {
551 hash_one_sse41(inputs[0], blocks, key, counter, flags, flags_start,
552 flags_end, out);
553 if (increment_counter) {
554 counter += 1;
555 }
556 inputs += 1;
557 num_inputs -= 1;
558 out = &out[BLAKE3_OUT_LEN];
559 }
560}
bbsections Prepares for basic block by splitting functions into clusters of basic blocks
unify loop Fixup each natural loop to have a single exit block
static const uint8_t MSG_SCHEDULE[7][16]
Definition: blake3_impl.h:82
#define INLINE
Definition: blake3_impl.h:32
static const uint32_t IV[8]
Definition: blake3_impl.h:78
INLINE uint32_t counter_high(uint64_t counter)
Definition: blake3_impl.h:145
INLINE uint32_t counter_low(uint64_t counter)
Definition: blake3_impl.h:143
INLINE __m128i rot12(__m128i x)
Definition: blake3_sse41.c:35
INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d)
Definition: blake3_sse41.c:26
#define _mm_shuffle_ps2(a, b, c)
Definition: blake3_sse41.c:7
INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, __m128i m)
Definition: blake3_sse41.c:48
INLINE __m128i rot7(__m128i x)
Definition: blake3_sse41.c:44
INLINE void storeu(__m128i src, uint8_t dest[16])
Definition: blake3_sse41.c:15
INLINE void transpose_msg_vecs(const uint8_t *const *inputs, size_t block_offset, __m128i out[16])
Definition: blake3_sse41.c:413
#define DEGREE
Definition: blake3_sse41.c:5
INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3)
Definition: blake3_sse41.c:71
INLINE void round_fn(__m128i v[16], __m128i m[16], size_t r)
Definition: blake3_sse41.c:276
INLINE __m128i xorv(__m128i a, __m128i b)
Definition: blake3_sse41.c:22
INLINE void transpose_vecs(__m128i vecs[DEGREE])
Definition: blake3_sse41.c:392
INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3)
Definition: blake3_sse41.c:77
INLINE void load_counters(uint64_t counter, bool increment_counter, __m128i *out_lo, __m128i *out_hi)
Definition: blake3_sse41.c:440
INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags)
Definition: blake3_sse41.c:83
INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, __m128i m)
Definition: blake3_sse41.c:58
static void blake3_hash4_sse41(const uint8_t *const *inputs, size_t blocks, const uint32_t key[8], uint64_t counter, bool increment_counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t *out)
Definition: blake3_sse41.c:454
INLINE __m128i rot16(__m128i x)
Definition: blake3_sse41.c:30
INLINE __m128i addv(__m128i a, __m128i b)
Definition: blake3_sse41.c:19
INLINE __m128i loadu(const uint8_t src[16])
Definition: blake3_sse41.c:11
INLINE void hash_one_sse41(const uint8_t *input, size_t blocks, const uint32_t key[8], uint64_t counter, uint8_t flags, uint8_t flags_start, uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN])
Definition: blake3_sse41.c:515
INLINE __m128i set1(uint32_t x)
Definition: blake3_sse41.c:24
INLINE __m128i rot8(__m128i x)
Definition: blake3_sse41.c:39
#define blake3_compress_in_place_sse41
#define BLAKE3_BLOCK_LEN
#define blake3_hash_many_sse41
#define BLAKE3_OUT_LEN
#define blake3_compress_xof_sse41
#define BLAKE3_KEY_LEN