LLVM 23.0.0git
AArch64FrameLowering.cpp
Go to the documentation of this file.
1//===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the AArch64 implementation of TargetFrameLowering class.
10//
11// On AArch64, stack frames are structured as follows:
12//
13// The stack grows downward.
14//
15// All of the individual frame areas on the frame below are optional, i.e. it's
16// possible to create a function so that the particular area isn't present
17// in the frame.
18//
19// At function entry, the "frame" looks as follows:
20//
21// | | Higher address
22// |-----------------------------------|
23// | |
24// | arguments passed on the stack |
25// | |
26// |-----------------------------------| <- sp
27// | | Lower address
28//
29//
30// After the prologue has run, the frame has the following general structure.
31// Note that this doesn't depict the case where a red-zone is used. Also,
32// technically the last frame area (VLAs) doesn't get created until in the
33// main function body, after the prologue is run. However, it's depicted here
34// for completeness.
35//
36// | | Higher address
37// |-----------------------------------|
38// | |
39// | arguments passed on the stack |
40// | |
41// |-----------------------------------|
42// | |
43// | (Win64 only) varargs from reg |
44// | |
45// |-----------------------------------|
46// | |
47// | (Win64 only) callee-saved SVE reg |
48// | |
49// |-----------------------------------|
50// | |
51// | callee-saved gpr registers | <--.
52// | | | On Darwin platforms these
53// |- - - - - - - - - - - - - - - - - -| | callee saves are swapped,
54// | prev_lr | | (frame record first)
55// | prev_fp | <--'
56// | async context if needed |
57// | (a.k.a. "frame record") |
58// |-----------------------------------| <- fp(=x29)
59// Default SVE stack layout Split SVE objects
60// (aarch64-split-sve-objects=false) (aarch64-split-sve-objects=true)
61// |-----------------------------------| |-----------------------------------|
62// | <hazard padding> | | callee-saved PPR registers |
63// |-----------------------------------| |-----------------------------------|
64// | | | PPR stack objects |
65// | callee-saved fp/simd/SVE regs | |-----------------------------------|
66// | | | <hazard padding> |
67// |-----------------------------------| |-----------------------------------|
68// | | | callee-saved ZPR/FPR registers |
69// | SVE stack objects | |-----------------------------------|
70// | | | ZPR stack objects |
71// |-----------------------------------| |-----------------------------------|
72// ^ NB: FPR CSRs are promoted to ZPRs
73// |-----------------------------------|
74// |.empty.space.to.make.part.below....|
75// |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
76// |.the.standard.16-byte.alignment....| compile time; if present)
77// |-----------------------------------|
78// | local variables of fixed size |
79// | including spill slots |
80// | <FPR> |
81// | <hazard padding> |
82// | <GPR> |
83// |-----------------------------------| <- bp(not defined by ABI,
84// |.variable-sized.local.variables....| LLVM chooses X19)
85// |.(VLAs)............................| (size of this area is unknown at
86// |...................................| compile time)
87// |-----------------------------------| <- sp
88// | | Lower address
89//
90//
91// To access the data in a frame, at-compile time, a constant offset must be
92// computable from one of the pointers (fp, bp, sp) to access it. The size
93// of the areas with a dotted background cannot be computed at compile-time
94// if they are present, making it required to have all three of fp, bp and
95// sp to be set up to be able to access all contents in the frame areas,
96// assuming all of the frame areas are non-empty.
97//
98// For most functions, some of the frame areas are empty. For those functions,
99// it may not be necessary to set up fp or bp:
100// * A base pointer is definitely needed when there are both VLAs and local
101// variables with more-than-default alignment requirements.
102// * A frame pointer is definitely needed when there are local variables with
103// more-than-default alignment requirements.
104//
105// For Darwin platforms the frame-record (fp, lr) is stored at the top of the
106// callee-saved area, since the unwind encoding does not allow for encoding
107// this dynamically and existing tools depend on this layout. For other
108// platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
109// area to allow SVE stack objects (allocated directly below the callee-saves,
110// if available) to be accessed directly from the framepointer.
111// The SVE spill/fill instructions have VL-scaled addressing modes such
112// as:
113// ldr z8, [fp, #-7 mul vl]
114// For SVE the size of the vector length (VL) is not known at compile-time, so
115// '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
116// layout, we don't need to add an unscaled offset to the framepointer before
117// accessing the SVE object in the frame.
118//
119// In some cases when a base pointer is not strictly needed, it is generated
120// anyway when offsets from the frame pointer to access local variables become
121// so large that the offset can't be encoded in the immediate fields of loads
122// or stores.
123//
124// Outgoing function arguments must be at the bottom of the stack frame when
125// calling another function. If we do not have variable-sized stack objects, we
126// can allocate a "reserved call frame" area at the bottom of the local
127// variable area, large enough for all outgoing calls. If we do have VLAs, then
128// the stack pointer must be decremented and incremented around each call to
129// make space for the arguments below the VLAs.
130//
131// FIXME: also explain the redzone concept.
132//
133// About stack hazards: Under some SME contexts, a coprocessor with its own
134// separate cache can used for FP operations. This can create hazards if the CPU
135// and the SME unit try to access the same area of memory, including if the
136// access is to an area of the stack. To try to alleviate this we attempt to
137// introduce extra padding into the stack frame between FP and GPR accesses,
138// controlled by the aarch64-stack-hazard-size option. Without changing the
139// layout of the stack frame in the diagram above, a stack object of size
140// aarch64-stack-hazard-size is added between GPR and FPR CSRs. Another is added
141// to the stack objects section, and stack objects are sorted so that FPR >
142// Hazard padding slot > GPRs (where possible). Unfortunately some things are
143// not handled well (VLA area, arguments on the stack, objects with both GPR and
144// FPR accesses), but if those are controlled by the user then the entire stack
145// frame becomes GPR at the start/end with FPR in the middle, surrounded by
146// Hazard padding.
147//
148// An example of the prologue:
149//
150// .globl __foo
151// .align 2
152// __foo:
153// Ltmp0:
154// .cfi_startproc
155// .cfi_personality 155, ___gxx_personality_v0
156// Leh_func_begin:
157// .cfi_lsda 16, Lexception33
158//
159// stp xa,bx, [sp, -#offset]!
160// ...
161// stp x28, x27, [sp, #offset-32]
162// stp fp, lr, [sp, #offset-16]
163// add fp, sp, #offset - 16
164// sub sp, sp, #1360
165//
166// The Stack:
167// +-------------------------------------------+
168// 10000 | ........ | ........ | ........ | ........ |
169// 10004 | ........ | ........ | ........ | ........ |
170// +-------------------------------------------+
171// 10008 | ........ | ........ | ........ | ........ |
172// 1000c | ........ | ........ | ........ | ........ |
173// +===========================================+
174// 10010 | X28 Register |
175// 10014 | X28 Register |
176// +-------------------------------------------+
177// 10018 | X27 Register |
178// 1001c | X27 Register |
179// +===========================================+
180// 10020 | Frame Pointer |
181// 10024 | Frame Pointer |
182// +-------------------------------------------+
183// 10028 | Link Register |
184// 1002c | Link Register |
185// +===========================================+
186// 10030 | ........ | ........ | ........ | ........ |
187// 10034 | ........ | ........ | ........ | ........ |
188// +-------------------------------------------+
189// 10038 | ........ | ........ | ........ | ........ |
190// 1003c | ........ | ........ | ........ | ........ |
191// +-------------------------------------------+
192//
193// [sp] = 10030 :: >>initial value<<
194// sp = 10020 :: stp fp, lr, [sp, #-16]!
195// fp = sp == 10020 :: mov fp, sp
196// [sp] == 10020 :: stp x28, x27, [sp, #-16]!
197// sp == 10010 :: >>final value<<
198//
199// The frame pointer (w29) points to address 10020. If we use an offset of
200// '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
201// for w27, and -32 for w28:
202//
203// Ltmp1:
204// .cfi_def_cfa w29, 16
205// Ltmp2:
206// .cfi_offset w30, -8
207// Ltmp3:
208// .cfi_offset w29, -16
209// Ltmp4:
210// .cfi_offset w27, -24
211// Ltmp5:
212// .cfi_offset w28, -32
213//
214//===----------------------------------------------------------------------===//
215
216#include "AArch64FrameLowering.h"
217#include "AArch64InstrInfo.h"
220#include "AArch64RegisterInfo.h"
221#include "AArch64SMEAttributes.h"
222#include "AArch64Subtarget.h"
225#include "llvm/ADT/ScopeExit.h"
226#include "llvm/ADT/SmallVector.h"
244#include "llvm/IR/Attributes.h"
245#include "llvm/IR/CallingConv.h"
246#include "llvm/IR/DataLayout.h"
247#include "llvm/IR/DebugLoc.h"
248#include "llvm/IR/Function.h"
249#include "llvm/MC/MCAsmInfo.h"
250#include "llvm/MC/MCDwarf.h"
252#include "llvm/Support/Debug.h"
259#include <cassert>
260#include <cstdint>
261#include <iterator>
262#include <optional>
263#include <vector>
264
265using namespace llvm;
266
267#define DEBUG_TYPE "frame-info"
268
269static cl::opt<bool> EnableRedZone("aarch64-redzone",
270 cl::desc("enable use of redzone on AArch64"),
271 cl::init(false), cl::Hidden);
272
274 "stack-tagging-merge-settag",
275 cl::desc("merge settag instruction in function epilog"), cl::init(true),
276 cl::Hidden);
277
278static cl::opt<bool> OrderFrameObjects("aarch64-order-frame-objects",
279 cl::desc("sort stack allocations"),
280 cl::init(true), cl::Hidden);
281
282static cl::opt<bool>
283 SplitSVEObjects("aarch64-split-sve-objects",
284 cl::desc("Split allocation of ZPR & PPR objects"),
285 cl::init(true), cl::Hidden);
286
288 "homogeneous-prolog-epilog", cl::Hidden,
289 cl::desc("Emit homogeneous prologue and epilogue for the size "
290 "optimization (default = off)"));
291
292// Stack hazard size for analysis remarks. StackHazardSize takes precedence.
294 StackHazardRemarkSize("aarch64-stack-hazard-remark-size", cl::init(0),
295 cl::Hidden);
296// Whether to insert padding into non-streaming functions (for testing).
297static cl::opt<bool>
298 StackHazardInNonStreaming("aarch64-stack-hazard-in-non-streaming",
299 cl::init(false), cl::Hidden);
300
302 "aarch64-disable-multivector-spill-fill",
303 cl::desc("Disable use of LD/ST pairs for SME2 or SVE2p1"), cl::init(false),
304 cl::Hidden);
305
306int64_t
307AArch64FrameLowering::getArgumentStackToRestore(MachineFunction &MF,
308 MachineBasicBlock &MBB) const {
309 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
311 bool IsTailCallReturn = (MBB.end() != MBBI)
313 : false;
314
315 int64_t ArgumentPopSize = 0;
316 if (IsTailCallReturn) {
317 MachineOperand &StackAdjust = MBBI->getOperand(1);
318
319 // For a tail-call in a callee-pops-arguments environment, some or all of
320 // the stack may actually be in use for the call's arguments, this is
321 // calculated during LowerCall and consumed here...
322 ArgumentPopSize = StackAdjust.getImm();
323 } else {
324 // ... otherwise the amount to pop is *all* of the argument space,
325 // conveniently stored in the MachineFunctionInfo by
326 // LowerFormalArguments. This will, of course, be zero for the C calling
327 // convention.
328 ArgumentPopSize = AFI->getArgumentStackToRestore();
329 }
330
331 return ArgumentPopSize;
332}
333
335 MachineFunction &MF);
336
337enum class AssignObjectOffsets { No, Yes };
338/// Process all the SVE stack objects and the SVE stack size and offsets for
339/// each object. If AssignOffsets is "Yes", the offsets get assigned (and SVE
340/// stack sizes set). Returns the size of the SVE stack.
342 AssignObjectOffsets AssignOffsets);
343
344static unsigned getStackHazardSize(const MachineFunction &MF) {
345 return MF.getSubtarget<AArch64Subtarget>().getStreamingHazardSize();
346}
347
353
356 // With split SVE objects, the hazard padding is added to the PPR region,
357 // which places it between the [GPR, PPR] area and the [ZPR, FPR] area. This
358 // avoids hazards between both GPRs and FPRs and ZPRs and PPRs.
361 : 0,
362 AFI->getStackSizePPR());
363}
364
365// Conservatively, returns true if the function is likely to have SVE vectors
366// on the stack. This function is safe to be called before callee-saves or
367// object offsets have been determined.
369 const MachineFunction &MF) {
370 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
371 if (AFI->isSVECC())
372 return true;
373
374 if (AFI->hasCalculatedStackSizeSVE())
375 return bool(AFL.getSVEStackSize(MF));
376
377 const MachineFrameInfo &MFI = MF.getFrameInfo();
378 for (int FI = MFI.getObjectIndexBegin(); FI < MFI.getObjectIndexEnd(); FI++) {
379 if (MFI.hasScalableStackID(FI))
380 return true;
381 }
382
383 return false;
384}
385
386static bool isTargetWindows(const MachineFunction &MF) {
387 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
388}
389
395
396/// Returns true if a homogeneous prolog or epilog code can be emitted
397/// for the size optimization. If possible, a frame helper call is injected.
398/// When Exit block is given, this check is for epilog.
399bool AArch64FrameLowering::homogeneousPrologEpilog(
400 MachineFunction &MF, MachineBasicBlock *Exit) const {
401 if (!MF.getFunction().hasMinSize())
402 return false;
404 return false;
405 if (EnableRedZone)
406 return false;
407
408 // TODO: Window is supported yet.
409 if (isTargetWindows(MF))
410 return false;
411
412 // TODO: SVE is not supported yet.
413 if (isLikelyToHaveSVEStack(*this, MF))
414 return false;
415
416 // Bail on stack adjustment needed on return for simplicity.
417 const MachineFrameInfo &MFI = MF.getFrameInfo();
418 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
419 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))
420 return false;
421 if (Exit && getArgumentStackToRestore(MF, *Exit))
422 return false;
423
424 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
426 return false;
427
428 // If there are an odd number of GPRs before LR and FP in the CSRs list,
429 // they will not be paired into one RegPairInfo, which is incompatible with
430 // the assumption made by the homogeneous prolog epilog pass.
431 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
432 unsigned NumGPRs = 0;
433 for (unsigned I = 0; CSRegs[I]; ++I) {
434 Register Reg = CSRegs[I];
435 if (Reg == AArch64::LR) {
436 assert(CSRegs[I + 1] == AArch64::FP);
437 if (NumGPRs % 2 != 0)
438 return false;
439 break;
440 }
441 if (AArch64::GPR64RegClass.contains(Reg))
442 ++NumGPRs;
443 }
444
445 return true;
446}
447
448/// Returns true if CSRs should be paired.
449bool AArch64FrameLowering::producePairRegisters(MachineFunction &MF) const {
450 return produceCompactUnwindFrame(*this, MF) || homogeneousPrologEpilog(MF);
451}
452
453/// This is the biggest offset to the stack pointer we can encode in aarch64
454/// instructions (without using a separate calculation and a temp register).
455/// Note that the exception here are vector stores/loads which cannot encode any
456/// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
457static const unsigned DefaultSafeSPDisplacement = 255;
458
459/// Look at each instruction that references stack frames and return the stack
460/// size limit beyond which some of these instructions will require a scratch
461/// register during their expansion later.
463 // FIXME: For now, just conservatively guesstimate based on unscaled indexing
464 // range. We'll end up allocating an unnecessary spill slot a lot, but
465 // realistically that's not a big deal at this stage of the game.
466 for (MachineBasicBlock &MBB : MF) {
467 for (MachineInstr &MI : MBB) {
468 if (MI.isDebugInstr() || MI.isPseudo() ||
469 MI.getOpcode() == AArch64::ADDXri ||
470 MI.getOpcode() == AArch64::ADDSXri)
471 continue;
472
473 for (const MachineOperand &MO : MI.operands()) {
474 if (!MO.isFI())
475 continue;
476
478 if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
480 return 0;
481 }
482 }
483 }
485}
486
491
492unsigned
493AArch64FrameLowering::getFixedObjectSize(const MachineFunction &MF,
494 const AArch64FunctionInfo *AFI,
495 bool IsWin64, bool IsFunclet) const {
496 assert(AFI->getTailCallReservedStack() % 16 == 0 &&
497 "Tail call reserved stack must be aligned to 16 bytes");
498 if (!IsWin64 || IsFunclet) {
499 return AFI->getTailCallReservedStack();
500 } else {
501 if (AFI->getTailCallReservedStack() != 0 &&
502 !MF.getFunction().getAttributes().hasAttrSomewhere(
503 Attribute::SwiftAsync))
504 report_fatal_error("cannot generate ABI-changing tail call for Win64");
505 unsigned FixedObjectSize = AFI->getTailCallReservedStack();
506
507 // Var args are stored here in the primary function.
508 FixedObjectSize += AFI->getVarArgsGPRSize();
509
510 if (MF.hasEHFunclets()) {
511 // Catch objects are stored here in the primary function.
512 const MachineFrameInfo &MFI = MF.getFrameInfo();
513 const WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
514 SmallSetVector<int, 8> CatchObjFrameIndices;
515 for (const WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
516 for (const WinEHHandlerType &H : TBME.HandlerArray) {
517 int FrameIndex = H.CatchObj.FrameIndex;
518 if ((FrameIndex != INT_MAX) &&
519 CatchObjFrameIndices.insert(FrameIndex)) {
520 FixedObjectSize = alignTo(FixedObjectSize,
521 MFI.getObjectAlign(FrameIndex).value()) +
522 MFI.getObjectSize(FrameIndex);
523 }
524 }
525 }
526 // To support EH funclets we allocate an UnwindHelp object
527 FixedObjectSize += 8;
528 }
529 return alignTo(FixedObjectSize, 16);
530 }
531}
532
534 if (!EnableRedZone)
535 return false;
536
537 // Don't use the red zone if the function explicitly asks us not to.
538 // This is typically used for kernel code.
539 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
540 const unsigned RedZoneSize =
542 if (!RedZoneSize)
543 return false;
544
545 const MachineFrameInfo &MFI = MF.getFrameInfo();
547 uint64_t NumBytes = AFI->getLocalStackSize();
548
549 // If neither NEON or SVE are available, a COPY from one Q-reg to
550 // another requires a spill -> reload sequence. We can do that
551 // using a pre-decrementing store/post-decrementing load, but
552 // if we do so, we can't use the Red Zone.
553 bool LowerQRegCopyThroughMem = Subtarget.hasFPARMv8() &&
554 !Subtarget.isNeonAvailable() &&
555 !Subtarget.hasSVE();
556
557 return !(MFI.hasCalls() || hasFP(MF) || NumBytes > RedZoneSize ||
558 AFI->hasSVEStackSize() || LowerQRegCopyThroughMem);
559}
560
561/// hasFPImpl - Return true if the specified function should have a dedicated
562/// frame pointer register.
564 const MachineFrameInfo &MFI = MF.getFrameInfo();
565 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
567
568 // Win64 EH requires a frame pointer if funclets are present, as the locals
569 // are accessed off the frame pointer in both the parent function and the
570 // funclets.
571 if (MF.hasEHFunclets())
572 return true;
573 // Retain behavior of always omitting the FP for leaf functions when possible.
575 return true;
576 if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
577 MFI.hasStackMap() || MFI.hasPatchPoint() ||
578 RegInfo->hasStackRealignment(MF))
579 return true;
580
581 // If we:
582 //
583 // 1. Have streaming mode changes
584 // OR:
585 // 2. Have a streaming body with SVE stack objects
586 //
587 // Then the value of VG restored when unwinding to this function may not match
588 // the value of VG used to set up the stack.
589 //
590 // This is a problem as the CFA can be described with an expression of the
591 // form: CFA = SP + NumBytes + VG * NumScalableBytes.
592 //
593 // If the value of VG used in that expression does not match the value used to
594 // set up the stack, an incorrect address for the CFA will be computed, and
595 // unwinding will fail.
596 //
597 // We work around this issue by ensuring the frame-pointer can describe the
598 // CFA in either of these cases.
599 if (AFI.needsDwarfUnwindInfo(MF) &&
602 return true;
603 // With large callframes around we may need to use FP to access the scavenging
604 // emergency spillslot.
605 //
606 // Unfortunately some calls to hasFP() like machine verifier ->
607 // getReservedReg() -> hasFP in the middle of global isel are too early
608 // to know the max call frame size. Hopefully conservatively returning "true"
609 // in those cases is fine.
610 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
611 if (!MFI.isMaxCallFrameSizeComputed() ||
613 return true;
614
615 return false;
616}
617
618/// Should the Frame Pointer be reserved for the current function?
620 const TargetMachine &TM = MF.getTarget();
621 const Triple &TT = TM.getTargetTriple();
622
623 // These OSes require the frame chain is valid, even if the current frame does
624 // not use a frame pointer.
625 if (TT.isOSDarwin() || TT.isOSWindows())
626 return true;
627
628 // If the function has a frame pointer, it is reserved.
629 if (hasFP(MF))
630 return true;
631
632 // Frontend has requested to preserve the frame pointer.
634 return true;
635
636 return false;
637}
638
639/// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
640/// not required, we reserve argument space for call sites in the function
641/// immediately on entry to the current function. This eliminates the need for
642/// add/sub sp brackets around call sites. Returns true if the call frame is
643/// included as part of the stack frame.
645 const MachineFunction &MF) const {
646 // The stack probing code for the dynamically allocated outgoing arguments
647 // area assumes that the stack is probed at the top - either by the prologue
648 // code, which issues a probe if `hasVarSizedObjects` return true, or by the
649 // most recent variable-sized object allocation. Changing the condition here
650 // may need to be followed up by changes to the probe issuing logic.
651 return !MF.getFrameInfo().hasVarSizedObjects();
652}
653
657
658 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
659 const AArch64InstrInfo *TII = Subtarget.getInstrInfo();
660 const AArch64TargetLowering *TLI = Subtarget.getTargetLowering();
661 [[maybe_unused]] MachineFrameInfo &MFI = MF.getFrameInfo();
662 DebugLoc DL = I->getDebugLoc();
663 unsigned Opc = I->getOpcode();
664 bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
665 uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
666
667 if (!hasReservedCallFrame(MF)) {
668 int64_t Amount = I->getOperand(0).getImm();
669 Amount = alignTo(Amount, getStackAlign());
670 if (!IsDestroy)
671 Amount = -Amount;
672
673 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
674 // doesn't have to pop anything), then the first operand will be zero too so
675 // this adjustment is a no-op.
676 if (CalleePopAmount == 0) {
677 // FIXME: in-function stack adjustment for calls is limited to 24-bits
678 // because there's no guaranteed temporary register available.
679 //
680 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
681 // 1) For offset <= 12-bit, we use LSL #0
682 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
683 // LSL #0, and the other uses LSL #12.
684 //
685 // Most call frames will be allocated at the start of a function so
686 // this is OK, but it is a limitation that needs dealing with.
687 assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
688
689 if (TLI->hasInlineStackProbe(MF) &&
691 // When stack probing is enabled, the decrement of SP may need to be
692 // probed. We only need to do this if the call site needs 1024 bytes of
693 // space or more, because a region smaller than that is allowed to be
694 // unprobed at an ABI boundary. We rely on the fact that SP has been
695 // probed exactly at this point, either by the prologue or most recent
696 // dynamic allocation.
698 "non-reserved call frame without var sized objects?");
699 Register ScratchReg =
700 MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
701 inlineStackProbeFixed(I, ScratchReg, -Amount, StackOffset::get(0, 0));
702 } else {
703 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
704 StackOffset::getFixed(Amount), TII);
705 }
706 }
707 } else if (CalleePopAmount != 0) {
708 // If the calling convention demands that the callee pops arguments from the
709 // stack, we want to add it back if we have a reserved call frame.
710 assert(CalleePopAmount < 0xffffff && "call frame too large");
711 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
712 StackOffset::getFixed(-(int64_t)CalleePopAmount), TII);
713 }
714 return MBB.erase(I);
715}
716
718 MachineBasicBlock &MBB) const {
719
720 MachineFunction &MF = *MBB.getParent();
721 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
722 const auto &TRI = *Subtarget.getRegisterInfo();
723 const auto &MFI = *MF.getInfo<AArch64FunctionInfo>();
724
725 CFIInstBuilder CFIBuilder(MBB, MBB.begin(), MachineInstr::NoFlags);
726
727 // Reset the CFA to `SP + 0`.
728 CFIBuilder.buildDefCFA(AArch64::SP, 0);
729
730 // Flip the RA sign state.
731 if (MFI.shouldSignReturnAddress(MF))
732 MFI.branchProtectionPAuthLR() ? CFIBuilder.buildNegateRAStateWithPC()
733 : CFIBuilder.buildNegateRAState();
734
735 // Shadow call stack uses X18, reset it.
736 if (MFI.needsShadowCallStackPrologueEpilogue(MF))
737 CFIBuilder.buildSameValue(AArch64::X18);
738
739 // Emit .cfi_same_value for callee-saved registers.
740 const std::vector<CalleeSavedInfo> &CSI =
742 for (const auto &Info : CSI) {
743 MCRegister Reg = Info.getReg();
744 if (!TRI.regNeedsCFI(Reg, Reg))
745 continue;
746 CFIBuilder.buildSameValue(Reg);
747 }
748}
749
751 switch (Reg.id()) {
752 default:
753 // The called routine is expected to preserve r19-r28
754 // r29 and r30 are used as frame pointer and link register resp.
755 return 0;
756
757 // GPRs
758#define CASE(n) \
759 case AArch64::W##n: \
760 case AArch64::X##n: \
761 return AArch64::X##n
762 CASE(0);
763 CASE(1);
764 CASE(2);
765 CASE(3);
766 CASE(4);
767 CASE(5);
768 CASE(6);
769 CASE(7);
770 CASE(8);
771 CASE(9);
772 CASE(10);
773 CASE(11);
774 CASE(12);
775 CASE(13);
776 CASE(14);
777 CASE(15);
778 CASE(16);
779 CASE(17);
780 CASE(18);
781#undef CASE
782
783 // FPRs
784#define CASE(n) \
785 case AArch64::B##n: \
786 case AArch64::H##n: \
787 case AArch64::S##n: \
788 case AArch64::D##n: \
789 case AArch64::Q##n: \
790 return HasSVE ? AArch64::Z##n : AArch64::Q##n
791 CASE(0);
792 CASE(1);
793 CASE(2);
794 CASE(3);
795 CASE(4);
796 CASE(5);
797 CASE(6);
798 CASE(7);
799 CASE(8);
800 CASE(9);
801 CASE(10);
802 CASE(11);
803 CASE(12);
804 CASE(13);
805 CASE(14);
806 CASE(15);
807 CASE(16);
808 CASE(17);
809 CASE(18);
810 CASE(19);
811 CASE(20);
812 CASE(21);
813 CASE(22);
814 CASE(23);
815 CASE(24);
816 CASE(25);
817 CASE(26);
818 CASE(27);
819 CASE(28);
820 CASE(29);
821 CASE(30);
822 CASE(31);
823#undef CASE
824 }
825}
826
827void AArch64FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero,
828 MachineBasicBlock &MBB) const {
829 // Insertion point.
831
832 // Fake a debug loc.
833 DebugLoc DL;
834 if (MBBI != MBB.end())
835 DL = MBBI->getDebugLoc();
836
837 const MachineFunction &MF = *MBB.getParent();
838 const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
839 const AArch64RegisterInfo &TRI = *STI.getRegisterInfo();
840
841 BitVector GPRsToZero(TRI.getNumRegs());
842 BitVector FPRsToZero(TRI.getNumRegs());
843 bool HasSVE = STI.isSVEorStreamingSVEAvailable();
844 for (MCRegister Reg : RegsToZero.set_bits()) {
845 if (TRI.isGeneralPurposeRegister(MF, Reg)) {
846 // For GPRs, we only care to clear out the 64-bit register.
847 if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
848 GPRsToZero.set(XReg);
849 } else if (AArch64InstrInfo::isFpOrNEON(Reg)) {
850 // For FPRs,
851 if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
852 FPRsToZero.set(XReg);
853 }
854 }
855
856 const AArch64InstrInfo &TII = *STI.getInstrInfo();
857
858 // Zero out GPRs.
859 for (MCRegister Reg : GPRsToZero.set_bits())
860 TII.buildClearRegister(Reg, MBB, MBBI, DL);
861
862 // Zero out FP/vector registers.
863 for (MCRegister Reg : FPRsToZero.set_bits())
864 TII.buildClearRegister(Reg, MBB, MBBI, DL);
865
866 if (HasSVE) {
867 for (MCRegister PReg :
868 {AArch64::P0, AArch64::P1, AArch64::P2, AArch64::P3, AArch64::P4,
869 AArch64::P5, AArch64::P6, AArch64::P7, AArch64::P8, AArch64::P9,
870 AArch64::P10, AArch64::P11, AArch64::P12, AArch64::P13, AArch64::P14,
871 AArch64::P15}) {
872 if (RegsToZero[PReg])
873 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PFALSE), PReg);
874 }
875 }
876}
877
878bool AArch64FrameLowering::windowsRequiresStackProbe(
879 const MachineFunction &MF, uint64_t StackSizeInBytes) const {
880 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
881 const AArch64FunctionInfo &MFI = *MF.getInfo<AArch64FunctionInfo>();
882 // TODO: When implementing stack protectors, take that into account
883 // for the probe threshold.
884 return Subtarget.isTargetWindows() && MFI.hasStackProbing() &&
885 StackSizeInBytes >= uint64_t(MFI.getStackProbeSize());
886}
887
889 const MachineBasicBlock &MBB) {
890 const MachineFunction *MF = MBB.getParent();
891 LiveRegs.addLiveIns(MBB);
892 // Mark callee saved registers as used so we will not choose them.
893 const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs();
894 for (unsigned i = 0; CSRegs[i]; ++i)
895 LiveRegs.addReg(CSRegs[i]);
896}
897
899AArch64FrameLowering::findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB,
900 bool HasCall) const {
901 MachineFunction *MF = MBB->getParent();
902
903 // If MBB is an entry block, use X9 as the scratch register
904 // preserve_none functions may be using X9 to pass arguments,
905 // so prefer to pick an available register below.
906 if (&MF->front() == MBB &&
908 return AArch64::X9;
909
910 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
911 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
912 LivePhysRegs LiveRegs(TRI);
913 getLiveRegsForEntryMBB(LiveRegs, *MBB);
914 if (HasCall) {
915 LiveRegs.addReg(AArch64::X16);
916 LiveRegs.addReg(AArch64::X17);
917 LiveRegs.addReg(AArch64::X18);
918 }
919
920 // Prefer X9 since it was historically used for the prologue scratch reg.
921 const MachineRegisterInfo &MRI = MF->getRegInfo();
922 if (LiveRegs.available(MRI, AArch64::X9))
923 return AArch64::X9;
924
925 for (unsigned Reg : AArch64::GPR64RegClass) {
926 if (LiveRegs.available(MRI, Reg))
927 return Reg;
928 }
929 return AArch64::NoRegister;
930}
931
933 const MachineBasicBlock &MBB) const {
934 const MachineFunction *MF = MBB.getParent();
935 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
936 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
937 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
938 const AArch64TargetLowering *TLI = Subtarget.getTargetLowering();
940
941 if (AFI->hasSwiftAsyncContext()) {
942 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
943 const MachineRegisterInfo &MRI = MF->getRegInfo();
946 // The StoreSwiftAsyncContext clobbers X16 and X17. Make sure they are
947 // available.
948 if (!LiveRegs.available(MRI, AArch64::X16) ||
949 !LiveRegs.available(MRI, AArch64::X17))
950 return false;
951 }
952
953 // Certain stack probing sequences might clobber flags, then we can't use
954 // the block as a prologue if the flags register is a live-in.
956 MBB.isLiveIn(AArch64::NZCV))
957 return false;
958
959 if (RegInfo->hasStackRealignment(*MF) || TLI->hasInlineStackProbe(*MF))
960 if (findScratchNonCalleeSaveRegister(TmpMBB) == AArch64::NoRegister)
961 return false;
962
963 // May need a scratch register (for return value) if require making a special
964 // call
965 if (requiresSaveVG(*MF) ||
966 windowsRequiresStackProbe(*MF, std::numeric_limits<uint64_t>::max()))
967 if (findScratchNonCalleeSaveRegister(TmpMBB, true) == AArch64::NoRegister)
968 return false;
969
970 return true;
971}
972
974 const Function &F = MF.getFunction();
975 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
976 F.needsUnwindTableEntry();
977}
978
979bool AArch64FrameLowering::shouldSignReturnAddressEverywhere(
980 const MachineFunction &MF) const {
981 // FIXME: With WinCFI, extra care should be taken to place SEH_PACSignLR
982 // and SEH_EpilogEnd instructions in the correct order.
984 return false;
987}
988
989// Given a load or a store instruction, generate an appropriate unwinding SEH
990// code on Windows.
992AArch64FrameLowering::insertSEH(MachineBasicBlock::iterator MBBI,
993 const AArch64InstrInfo &TII,
994 MachineInstr::MIFlag Flag) const {
995 unsigned Opc = MBBI->getOpcode();
996 MachineBasicBlock *MBB = MBBI->getParent();
997 MachineFunction &MF = *MBB->getParent();
998 DebugLoc DL = MBBI->getDebugLoc();
999 unsigned ImmIdx = MBBI->getNumOperands() - 1;
1000 int Imm = MBBI->getOperand(ImmIdx).getImm();
1002 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1003 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1004
1005 switch (Opc) {
1006 default:
1007 report_fatal_error("No SEH Opcode for this instruction");
1008 case AArch64::STR_ZXI:
1009 case AArch64::LDR_ZXI: {
1010 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1011 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveZReg))
1012 .addImm(Reg0)
1013 .addImm(Imm)
1014 .setMIFlag(Flag);
1015 break;
1016 }
1017 case AArch64::STR_PXI:
1018 case AArch64::LDR_PXI: {
1019 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1020 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SavePReg))
1021 .addImm(Reg0)
1022 .addImm(Imm)
1023 .setMIFlag(Flag);
1024 break;
1025 }
1026 case AArch64::LDPDpost:
1027 Imm = -Imm;
1028 [[fallthrough]];
1029 case AArch64::STPDpre: {
1030 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1031 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
1032 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X))
1033 .addImm(Reg0)
1034 .addImm(Reg1)
1035 .addImm(Imm * 8)
1036 .setMIFlag(Flag);
1037 break;
1038 }
1039 case AArch64::LDPXpost:
1040 Imm = -Imm;
1041 [[fallthrough]];
1042 case AArch64::STPXpre: {
1043 Register Reg0 = MBBI->getOperand(1).getReg();
1044 Register Reg1 = MBBI->getOperand(2).getReg();
1045 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1046 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X))
1047 .addImm(Imm * 8)
1048 .setMIFlag(Flag);
1049 else
1050 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X))
1051 .addImm(RegInfo->getSEHRegNum(Reg0))
1052 .addImm(RegInfo->getSEHRegNum(Reg1))
1053 .addImm(Imm * 8)
1054 .setMIFlag(Flag);
1055 break;
1056 }
1057 case AArch64::LDRDpost:
1058 Imm = -Imm;
1059 [[fallthrough]];
1060 case AArch64::STRDpre: {
1061 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1062 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X))
1063 .addImm(Reg)
1064 .addImm(Imm)
1065 .setMIFlag(Flag);
1066 break;
1067 }
1068 case AArch64::LDRXpost:
1069 Imm = -Imm;
1070 [[fallthrough]];
1071 case AArch64::STRXpre: {
1072 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1073 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X))
1074 .addImm(Reg)
1075 .addImm(Imm)
1076 .setMIFlag(Flag);
1077 break;
1078 }
1079 case AArch64::STPDi:
1080 case AArch64::LDPDi: {
1081 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1082 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1083 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP))
1084 .addImm(Reg0)
1085 .addImm(Reg1)
1086 .addImm(Imm * 8)
1087 .setMIFlag(Flag);
1088 break;
1089 }
1090 case AArch64::STPXi:
1091 case AArch64::LDPXi: {
1092 Register Reg0 = MBBI->getOperand(0).getReg();
1093 Register Reg1 = MBBI->getOperand(1).getReg();
1094
1095 int SEHReg0 = RegInfo->getSEHRegNum(Reg0);
1096 int SEHReg1 = RegInfo->getSEHRegNum(Reg1);
1097
1098 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1099 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR))
1100 .addImm(Imm * 8)
1101 .setMIFlag(Flag);
1102 else if (SEHReg0 >= 19 && SEHReg1 >= 19)
1103 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP))
1104 .addImm(SEHReg0)
1105 .addImm(SEHReg1)
1106 .addImm(Imm * 8)
1107 .setMIFlag(Flag);
1108 else
1109 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegIP))
1110 .addImm(SEHReg0)
1111 .addImm(SEHReg1)
1112 .addImm(Imm * 8)
1113 .setMIFlag(Flag);
1114 break;
1115 }
1116 case AArch64::STRXui:
1117 case AArch64::LDRXui: {
1118 int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1119 if (Reg >= 19)
1120 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg))
1121 .addImm(Reg)
1122 .addImm(Imm * 8)
1123 .setMIFlag(Flag);
1124 else
1125 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegI))
1126 .addImm(Reg)
1127 .addImm(Imm * 8)
1128 .setMIFlag(Flag);
1129 break;
1130 }
1131 case AArch64::STRDui:
1132 case AArch64::LDRDui: {
1133 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1134 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg))
1135 .addImm(Reg)
1136 .addImm(Imm * 8)
1137 .setMIFlag(Flag);
1138 break;
1139 }
1140 case AArch64::STPQi:
1141 case AArch64::LDPQi: {
1142 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1143 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1144 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegQP))
1145 .addImm(Reg0)
1146 .addImm(Reg1)
1147 .addImm(Imm * 16)
1148 .setMIFlag(Flag);
1149 break;
1150 }
1151 case AArch64::LDPQpost:
1152 Imm = -Imm;
1153 [[fallthrough]];
1154 case AArch64::STPQpre: {
1155 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1156 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
1157 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegQPX))
1158 .addImm(Reg0)
1159 .addImm(Reg1)
1160 .addImm(Imm * 16)
1161 .setMIFlag(Flag);
1162 break;
1163 }
1164 }
1165 auto I = MBB->insertAfter(MBBI, MIB);
1166 return I;
1167}
1168
1171 if (!AFI->needsDwarfUnwindInfo(MF) || !AFI->hasStreamingModeChanges())
1172 return false;
1173 // For Darwin platforms we don't save VG for non-SVE functions, even if SME
1174 // is enabled with streaming mode changes.
1175 auto &ST = MF.getSubtarget<AArch64Subtarget>();
1176 if (ST.isTargetDarwin())
1177 return ST.hasSVE();
1178 return true;
1179}
1180
1182 MachineFunction &MF) const {
1183 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1184 const AArch64InstrInfo *TII = Subtarget.getInstrInfo();
1185
1186 auto EmitSignRA = [&](MachineBasicBlock &MBB) {
1187 DebugLoc DL; // Set debug location to unknown.
1189
1190 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PAUTH_PROLOGUE))
1192 };
1193
1194 auto EmitAuthRA = [&](MachineBasicBlock &MBB) {
1195 DebugLoc DL;
1196 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1197 if (MBBI != MBB.end())
1198 DL = MBBI->getDebugLoc();
1199
1200 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PAUTH_EPILOGUE))
1202 };
1203
1204 // This should be in sync with PEIImpl::calculateSaveRestoreBlocks.
1205 EmitSignRA(MF.front());
1206 for (MachineBasicBlock &MBB : MF) {
1207 if (MBB.isEHFuncletEntry())
1208 EmitSignRA(MBB);
1209 if (MBB.isReturnBlock())
1210 EmitAuthRA(MBB);
1211 }
1212}
1213
1215 MachineBasicBlock &MBB) const {
1216 AArch64PrologueEmitter PrologueEmitter(MF, MBB, *this);
1217 PrologueEmitter.emitPrologue();
1218}
1219
1221 MachineBasicBlock &MBB) const {
1222 AArch64EpilogueEmitter EpilogueEmitter(MF, MBB, *this);
1223 EpilogueEmitter.emitEpilogue();
1224}
1225
1228 MF.getInfo<AArch64FunctionInfo>()->needsDwarfUnwindInfo(MF);
1229}
1230
1232 return enableCFIFixup(MF) &&
1233 MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF);
1234}
1235
1236/// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1237/// debug info. It's the same as what we use for resolving the code-gen
1238/// references for now. FIXME: This can go wrong when references are
1239/// SP-relative and simple call frames aren't used.
1242 Register &FrameReg) const {
1244 MF, FI, FrameReg,
1245 /*PreferFP=*/
1246 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress) ||
1247 MF.getFunction().hasFnAttribute(Attribute::SanitizeMemTag),
1248 /*ForSimm=*/false);
1249}
1250
1253 int FI) const {
1254 // This function serves to provide a comparable offset from a single reference
1255 // point (the value of SP at function entry) that can be used for analysis,
1256 // e.g. the stack-frame-layout analysis pass. It is not guaranteed to be
1257 // correct for all objects in the presence of VLA-area objects or dynamic
1258 // stack re-alignment.
1259
1260 const auto &MFI = MF.getFrameInfo();
1261
1262 int64_t ObjectOffset = MFI.getObjectOffset(FI);
1263 StackOffset ZPRStackSize = getZPRStackSize(MF);
1264 StackOffset PPRStackSize = getPPRStackSize(MF);
1265 StackOffset SVEStackSize = ZPRStackSize + PPRStackSize;
1266
1267 // For VLA-area objects, just emit an offset at the end of the stack frame.
1268 // Whilst not quite correct, these objects do live at the end of the frame and
1269 // so it is more useful for analysis for the offset to reflect this.
1270 if (MFI.isVariableSizedObjectIndex(FI)) {
1271 return StackOffset::getFixed(-((int64_t)MFI.getStackSize())) - SVEStackSize;
1272 }
1273
1274 // This is correct in the absence of any SVE stack objects.
1275 if (!SVEStackSize)
1276 return StackOffset::getFixed(ObjectOffset - getOffsetOfLocalArea());
1277
1278 const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
1279 bool FPAfterSVECalleeSaves = hasSVECalleeSavesAboveFrameRecord(MF);
1280 if (MFI.hasScalableStackID(FI)) {
1281 if (FPAfterSVECalleeSaves &&
1282 -ObjectOffset <= (int64_t)AFI->getSVECalleeSavedStackSize()) {
1283 assert(!AFI->hasSplitSVEObjects() &&
1284 "split-sve-objects not supported with FPAfterSVECalleeSaves");
1285 return StackOffset::getScalable(ObjectOffset);
1286 }
1287 StackOffset AccessOffset{};
1288 // The scalable vectors are below (lower address) the scalable predicates
1289 // with split SVE objects, so we must subtract the size of the predicates.
1290 if (AFI->hasSplitSVEObjects() &&
1291 MFI.getStackID(FI) == TargetStackID::ScalableVector)
1292 AccessOffset = -PPRStackSize;
1293 return AccessOffset +
1294 StackOffset::get(-((int64_t)AFI->getCalleeSavedStackSize()),
1295 ObjectOffset);
1296 }
1297
1298 bool IsFixed = MFI.isFixedObjectIndex(FI);
1299 bool IsCSR =
1300 !IsFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
1301
1302 StackOffset ScalableOffset = {};
1303 if (!IsFixed && !IsCSR) {
1304 ScalableOffset = -SVEStackSize;
1305 } else if (FPAfterSVECalleeSaves && IsCSR) {
1306 ScalableOffset =
1308 }
1309
1310 return StackOffset::getFixed(ObjectOffset) + ScalableOffset;
1311}
1312
1318
1319StackOffset AArch64FrameLowering::getFPOffset(const MachineFunction &MF,
1320 int64_t ObjectOffset) const {
1321 const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
1322 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1323 const Function &F = MF.getFunction();
1324 bool IsWin64 = Subtarget.isCallingConvWin64(F.getCallingConv(), F.isVarArg());
1325 unsigned FixedObject =
1326 getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false);
1327 int64_t CalleeSaveSize = AFI->getCalleeSavedStackSize(MF.getFrameInfo());
1328 int64_t FPAdjust =
1329 CalleeSaveSize - AFI->getCalleeSaveBaseToFrameRecordOffset();
1330 return StackOffset::getFixed(ObjectOffset + FixedObject + FPAdjust);
1331}
1332
1333StackOffset AArch64FrameLowering::getStackOffset(const MachineFunction &MF,
1334 int64_t ObjectOffset) const {
1335 const auto &MFI = MF.getFrameInfo();
1336 return StackOffset::getFixed(ObjectOffset + (int64_t)MFI.getStackSize());
1337}
1338
1339// TODO: This function currently does not work for scalable vectors.
1341 int FI) const {
1342 const AArch64RegisterInfo *RegInfo =
1343 MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
1344 int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI);
1345 return RegInfo->getLocalAddressRegister(MF) == AArch64::FP
1346 ? getFPOffset(MF, ObjectOffset).getFixed()
1347 : getStackOffset(MF, ObjectOffset).getFixed();
1348}
1349
1351 const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP,
1352 bool ForSimm) const {
1353 const auto &MFI = MF.getFrameInfo();
1354 int64_t ObjectOffset = MFI.getObjectOffset(FI);
1355 bool isFixed = MFI.isFixedObjectIndex(FI);
1356 auto StackID = static_cast<TargetStackID::Value>(MFI.getStackID(FI));
1357 return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, StackID,
1358 FrameReg, PreferFP, ForSimm);
1359}
1360
1362 const MachineFunction &MF, int64_t ObjectOffset, bool isFixed,
1363 TargetStackID::Value StackID, Register &FrameReg, bool PreferFP,
1364 bool ForSimm) const {
1365 const auto &MFI = MF.getFrameInfo();
1366 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1367 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1368 const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
1369
1370 int64_t FPOffset = getFPOffset(MF, ObjectOffset).getFixed();
1371 int64_t Offset = getStackOffset(MF, ObjectOffset).getFixed();
1372 bool isCSR =
1373 !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
1374 bool isSVE = MFI.isScalableStackID(StackID);
1375
1376 StackOffset ZPRStackSize = getZPRStackSize(MF);
1377 StackOffset PPRStackSize = getPPRStackSize(MF);
1378 StackOffset SVEStackSize = ZPRStackSize + PPRStackSize;
1379
1380 // Use frame pointer to reference fixed objects. Use it for locals if
1381 // there are VLAs or a dynamically realigned SP (and thus the SP isn't
1382 // reliable as a base). Make sure useFPForScavengingIndex() does the
1383 // right thing for the emergency spill slot.
1384 bool UseFP = false;
1385 if (AFI->hasStackFrame() && !isSVE) {
1386 // We shouldn't prefer using the FP to access fixed-sized stack objects when
1387 // there are scalable (SVE) objects in between the FP and the fixed-sized
1388 // objects.
1389 PreferFP &= !SVEStackSize;
1390
1391 // Note: Keeping the following as multiple 'if' statements rather than
1392 // merging to a single expression for readability.
1393 //
1394 // Argument access should always use the FP.
1395 if (isFixed) {
1396 UseFP = hasFP(MF);
1397 } else if (isCSR && RegInfo->hasStackRealignment(MF)) {
1398 // References to the CSR area must use FP if we're re-aligning the stack
1399 // since the dynamically-sized alignment padding is between the SP/BP and
1400 // the CSR area.
1401 assert(hasFP(MF) && "Re-aligned stack must have frame pointer");
1402 UseFP = true;
1403 } else if (hasFP(MF) && !RegInfo->hasStackRealignment(MF)) {
1404 // If the FPOffset is negative and we're producing a signed immediate, we
1405 // have to keep in mind that the available offset range for negative
1406 // offsets is smaller than for positive ones. If an offset is available
1407 // via the FP and the SP, use whichever is closest.
1408 bool FPOffsetFits = !ForSimm || FPOffset >= -256;
1409 PreferFP |= Offset > -FPOffset && !SVEStackSize;
1410
1411 if (FPOffset >= 0) {
1412 // If the FPOffset is positive, that'll always be best, as the SP/BP
1413 // will be even further away.
1414 UseFP = true;
1415 } else if (MFI.hasVarSizedObjects()) {
1416 // If we have variable sized objects, we can use either FP or BP, as the
1417 // SP offset is unknown. We can use the base pointer if we have one and
1418 // FP is not preferred. If not, we're stuck with using FP.
1419 bool CanUseBP = RegInfo->hasBasePointer(MF);
1420 if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best.
1421 UseFP = PreferFP;
1422 else if (!CanUseBP) // Can't use BP. Forced to use FP.
1423 UseFP = true;
1424 // else we can use BP and FP, but the offset from FP won't fit.
1425 // That will make us scavenge registers which we can probably avoid by
1426 // using BP. If it won't fit for BP either, we'll scavenge anyway.
1427 } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) {
1428 // Funclets access the locals contained in the parent's stack frame
1429 // via the frame pointer, so we have to use the FP in the parent
1430 // function.
1431 (void) Subtarget;
1432 assert(Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv(),
1433 MF.getFunction().isVarArg()) &&
1434 "Funclets should only be present on Win64");
1435 UseFP = true;
1436 } else {
1437 // We have the choice between FP and (SP or BP).
1438 if (FPOffsetFits && PreferFP) // If FP is the best fit, use it.
1439 UseFP = true;
1440 }
1441 }
1442 }
1443
1444 assert(
1445 ((isFixed || isCSR) || !RegInfo->hasStackRealignment(MF) || !UseFP) &&
1446 "In the presence of dynamic stack pointer realignment, "
1447 "non-argument/CSR objects cannot be accessed through the frame pointer");
1448
1449 bool FPAfterSVECalleeSaves = hasSVECalleeSavesAboveFrameRecord(MF);
1450
1451 if (isSVE) {
1452 StackOffset FPOffset = StackOffset::get(
1453 -AFI->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset);
1454 StackOffset SPOffset =
1455 SVEStackSize +
1456 StackOffset::get(MFI.getStackSize() - AFI->getCalleeSavedStackSize(),
1457 ObjectOffset);
1458
1459 // With split SVE objects the ObjectOffset is relative to the split area
1460 // (i.e. the PPR area or ZPR area respectively).
1461 if (AFI->hasSplitSVEObjects() && StackID == TargetStackID::ScalableVector) {
1462 // If we're accessing an SVE vector with split SVE objects...
1463 // - From the FP we need to move down past the PPR area:
1464 FPOffset -= PPRStackSize;
1465 // - From the SP we only need to move up to the ZPR area:
1466 SPOffset -= PPRStackSize;
1467 // Note: `SPOffset = SVEStackSize + ...`, so `-= PPRStackSize` results in
1468 // `SPOffset = ZPRStackSize + ...`.
1469 }
1470
1471 if (FPAfterSVECalleeSaves) {
1473 if (-ObjectOffset <= (int64_t)AFI->getSVECalleeSavedStackSize()) {
1476 }
1477 }
1478
1479 // Always use the FP for SVE spills if available and beneficial.
1480 if (hasFP(MF) && (SPOffset.getFixed() ||
1481 FPOffset.getScalable() < SPOffset.getScalable() ||
1482 RegInfo->hasStackRealignment(MF))) {
1483 FrameReg = RegInfo->getFrameRegister(MF);
1484 return FPOffset;
1485 }
1486 FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister()
1487 : MCRegister(AArch64::SP);
1488
1489 return SPOffset;
1490 }
1491
1492 StackOffset SVEAreaOffset = {};
1493 if (FPAfterSVECalleeSaves) {
1494 // In this stack layout, the FP is in between the callee saves and other
1495 // SVE allocations.
1496 StackOffset SVECalleeSavedStack =
1498 if (UseFP) {
1499 if (isFixed)
1500 SVEAreaOffset = SVECalleeSavedStack;
1501 else if (!isCSR)
1502 SVEAreaOffset = SVECalleeSavedStack - SVEStackSize;
1503 } else {
1504 if (isFixed)
1505 SVEAreaOffset = SVEStackSize;
1506 else if (isCSR)
1507 SVEAreaOffset = SVEStackSize - SVECalleeSavedStack;
1508 }
1509 } else {
1510 if (UseFP && !(isFixed || isCSR))
1511 SVEAreaOffset = -SVEStackSize;
1512 if (!UseFP && (isFixed || isCSR))
1513 SVEAreaOffset = SVEStackSize;
1514 }
1515
1516 if (UseFP) {
1517 FrameReg = RegInfo->getFrameRegister(MF);
1518 return StackOffset::getFixed(FPOffset) + SVEAreaOffset;
1519 }
1520
1521 // Use the base pointer if we have one.
1522 if (RegInfo->hasBasePointer(MF))
1523 FrameReg = RegInfo->getBaseRegister();
1524 else {
1525 assert(!MFI.hasVarSizedObjects() &&
1526 "Can't use SP when we have var sized objects.");
1527 FrameReg = AArch64::SP;
1528 // If we're using the red zone for this function, the SP won't actually
1529 // be adjusted, so the offsets will be negative. They're also all
1530 // within range of the signed 9-bit immediate instructions.
1531 if (canUseRedZone(MF))
1532 Offset -= AFI->getLocalStackSize();
1533 }
1534
1535 return StackOffset::getFixed(Offset) + SVEAreaOffset;
1536}
1537
1538static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
1539 // Do not set a kill flag on values that are also marked as live-in. This
1540 // happens with the @llvm-returnaddress intrinsic and with arguments passed in
1541 // callee saved registers.
1542 // Omitting the kill flags is conservatively correct even if the live-in
1543 // is not used after all.
1544 bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
1545 return getKillRegState(!IsLiveIn);
1546}
1547
1549 MachineFunction &MF) {
1550 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1551 AttributeList Attrs = MF.getFunction().getAttributes();
1553 return Subtarget.isTargetMachO() &&
1554 !(Subtarget.getTargetLowering()->supportSwiftError() &&
1555 Attrs.hasAttrSomewhere(Attribute::SwiftError)) &&
1557 !AFL.requiresSaveVG(MF) && !AFI->isSVECC();
1558}
1559
1560static bool invalidateWindowsRegisterPairing(bool SpillExtendedVolatile,
1561 unsigned SpillCount, unsigned Reg1,
1562 unsigned Reg2, bool NeedsWinCFI,
1563 const TargetRegisterInfo *TRI) {
1564 // If we are generating register pairs for a Windows function that requires
1565 // EH support, then pair consecutive registers only. There are no unwind
1566 // opcodes for saves/restores of non-consecutive register pairs.
1567 // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x,
1568 // save_lrpair.
1569 // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
1570
1571 if (Reg2 == AArch64::FP)
1572 return true;
1573 if (!NeedsWinCFI)
1574 return false;
1575
1576 // ARM64EC introduced `save_any_regp`, which expects 16-byte alignment.
1577 // This is handled by only allowing paired spills for registers spilled at
1578 // even positions (which should be 16-byte aligned, as other GPRs/FPRs are
1579 // 8-bytes). We carve out an exception for {FP,LR}, which does not require
1580 // 16-byte alignment in the uop representation.
1581 if (TRI->getEncodingValue(Reg2) == TRI->getEncodingValue(Reg1) + 1)
1582 return SpillExtendedVolatile
1583 ? !((Reg1 == AArch64::FP && Reg2 == AArch64::LR) ||
1584 (SpillCount % 2) == 0)
1585 : false;
1586
1587 // If pairing a GPR with LR, the pair can be described by the save_lrpair
1588 // opcode. The save_lrpair opcode requires the first register to be odd.
1589 if (Reg1 >= AArch64::X19 && Reg1 <= AArch64::X27 &&
1590 (Reg1 - AArch64::X19) % 2 == 0 && Reg2 == AArch64::LR)
1591 return false;
1592 return true;
1593}
1594
1595/// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
1596/// WindowsCFI requires that only consecutive registers can be paired.
1597/// LR and FP need to be allocated together when the frame needs to save
1598/// the frame-record. This means any other register pairing with LR is invalid.
1599static bool invalidateRegisterPairing(bool SpillExtendedVolatile,
1600 unsigned SpillCount, unsigned Reg1,
1601 unsigned Reg2, bool UsesWinAAPCS,
1602 bool NeedsWinCFI, bool NeedsFrameRecord,
1603 const TargetRegisterInfo *TRI) {
1604 if (UsesWinAAPCS)
1605 return invalidateWindowsRegisterPairing(SpillExtendedVolatile, SpillCount,
1606 Reg1, Reg2, NeedsWinCFI, TRI);
1607
1608 // If we need to store the frame record, don't pair any register
1609 // with LR other than FP.
1610 if (NeedsFrameRecord)
1611 return Reg2 == AArch64::LR;
1612
1613 return false;
1614}
1615
1616namespace {
1617
1618struct RegPairInfo {
1619 Register Reg1;
1620 Register Reg2;
1621 int FrameIdx;
1622 int Offset;
1623 enum RegType { GPR, FPR64, FPR128, PPR, ZPR, VG } Type;
1624 const TargetRegisterClass *RC;
1625
1626 RegPairInfo() = default;
1627
1628 bool isPaired() const { return Reg2.isValid(); }
1629
1630 bool isScalable() const { return Type == PPR || Type == ZPR; }
1631};
1632
1633} // end anonymous namespace
1634
1636 for (unsigned PReg = AArch64::P8; PReg <= AArch64::P15; ++PReg) {
1637 if (SavedRegs.test(PReg)) {
1638 unsigned PNReg = PReg - AArch64::P0 + AArch64::PN0;
1639 return MCRegister(PNReg);
1640 }
1641 }
1642 return MCRegister();
1643}
1644
1645// The multivector LD/ST are available only for SME or SVE2p1 targets
1647 MachineFunction &MF) {
1649 return false;
1650
1651 SMEAttrs FuncAttrs = MF.getInfo<AArch64FunctionInfo>()->getSMEFnAttrs();
1652 bool IsLocallyStreaming =
1653 FuncAttrs.hasStreamingBody() && !FuncAttrs.hasStreamingInterface();
1654
1655 // Only when in streaming mode SME2 instructions can be safely used.
1656 // It is not safe to use SME2 instructions when in streaming compatible or
1657 // locally streaming mode.
1658 return Subtarget.hasSVE2p1() ||
1659 (Subtarget.hasSME2() &&
1660 (!IsLocallyStreaming && Subtarget.isStreaming()));
1661}
1662
1664 MachineFunction &MF,
1666 const TargetRegisterInfo *TRI,
1668 bool NeedsFrameRecord) {
1669
1670 if (CSI.empty())
1671 return;
1672
1673 bool IsWindows = isTargetWindows(MF);
1675 unsigned StackHazardSize = getStackHazardSize(MF);
1676 MachineFrameInfo &MFI = MF.getFrameInfo();
1678 unsigned Count = CSI.size();
1679 (void)CC;
1680 // MachO's compact unwind format relies on all registers being stored in
1681 // pairs.
1682 assert((!produceCompactUnwindFrame(AFL, MF) ||
1685 (Count & 1) == 0) &&
1686 "Odd number of callee-saved regs to spill!");
1687 int ByteOffset = AFI->getCalleeSavedStackSize();
1688 int StackFillDir = -1;
1689 int RegInc = 1;
1690 unsigned FirstReg = 0;
1691 if (IsWindows) {
1692 // For WinCFI, fill the stack from the bottom up.
1693 ByteOffset = 0;
1694 StackFillDir = 1;
1695 // As the CSI array is reversed to match PrologEpilogInserter, iterate
1696 // backwards, to pair up registers starting from lower numbered registers.
1697 RegInc = -1;
1698 FirstReg = Count - 1;
1699 }
1700
1701 bool FPAfterSVECalleeSaves = AFL.hasSVECalleeSavesAboveFrameRecord(MF);
1702 // Windows AAPCS has x9-x15 as volatile registers, x16-x17 as intra-procedural
1703 // scratch, x18 as platform reserved. However, clang has extended calling
1704 // convensions such as preserve_most and preserve_all which treat these as
1705 // CSR. As such, the ARM64 unwind uOPs bias registers by 19. We use ARM64EC
1706 // uOPs which have separate restrictions. We need to check for that.
1707 //
1708 // NOTE: we currently do not account for the D registers as LLVM does not
1709 // support non-ABI compliant D register spills.
1710 bool SpillExtendedVolatile =
1711 IsWindows && llvm::any_of(CSI, [](const CalleeSavedInfo &CSI) {
1712 const auto &Reg = CSI.getReg();
1713 return Reg >= AArch64::X0 && Reg <= AArch64::X18;
1714 });
1715
1716 int ZPRByteOffset = 0;
1717 int PPRByteOffset = 0;
1718 bool SplitPPRs = AFI->hasSplitSVEObjects();
1719 if (SplitPPRs) {
1720 ZPRByteOffset = AFI->getZPRCalleeSavedStackSize();
1721 PPRByteOffset = AFI->getPPRCalleeSavedStackSize();
1722 } else if (!FPAfterSVECalleeSaves) {
1723 ZPRByteOffset =
1725 // Unused: Everything goes in ZPR space.
1726 PPRByteOffset = 0;
1727 }
1728
1729 bool NeedGapToAlignStack = AFI->hasCalleeSaveStackFreeSpace();
1730 Register LastReg = 0;
1731 bool HasCSHazardPadding = AFI->hasStackHazardSlotIndex() && !SplitPPRs;
1732
1733 // When iterating backwards, the loop condition relies on unsigned wraparound.
1734 for (unsigned i = FirstReg; i < Count; i += RegInc) {
1735 RegPairInfo RPI;
1736 RPI.Reg1 = CSI[i].getReg();
1737
1738 if (AArch64::GPR64RegClass.contains(RPI.Reg1)) {
1739 RPI.Type = RegPairInfo::GPR;
1740 RPI.RC = &AArch64::GPR64RegClass;
1741 } else if (AArch64::FPR64RegClass.contains(RPI.Reg1)) {
1742 RPI.Type = RegPairInfo::FPR64;
1743 RPI.RC = &AArch64::FPR64RegClass;
1744 } else if (AArch64::FPR128RegClass.contains(RPI.Reg1)) {
1745 RPI.Type = RegPairInfo::FPR128;
1746 RPI.RC = &AArch64::FPR128RegClass;
1747 } else if (AArch64::ZPRRegClass.contains(RPI.Reg1)) {
1748 RPI.Type = RegPairInfo::ZPR;
1749 RPI.RC = &AArch64::ZPRRegClass;
1750 } else if (AArch64::PPRRegClass.contains(RPI.Reg1)) {
1751 RPI.Type = RegPairInfo::PPR;
1752 RPI.RC = &AArch64::PPRRegClass;
1753 } else if (RPI.Reg1 == AArch64::VG) {
1754 RPI.Type = RegPairInfo::VG;
1755 RPI.RC = &AArch64::FIXED_REGSRegClass;
1756 } else {
1757 llvm_unreachable("Unsupported register class.");
1758 }
1759
1760 int &ScalableByteOffset = RPI.Type == RegPairInfo::PPR && SplitPPRs
1761 ? PPRByteOffset
1762 : ZPRByteOffset;
1763
1764 // Add the stack hazard size as we transition from GPR->FPR CSRs.
1765 if (HasCSHazardPadding &&
1766 (!LastReg || !AArch64InstrInfo::isFpOrNEON(LastReg)) &&
1768 ByteOffset += StackFillDir * StackHazardSize;
1769 LastReg = RPI.Reg1;
1770
1771 bool NeedsWinCFI = AFL.needsWinCFI(MF);
1772 int Scale = TRI->getSpillSize(*RPI.RC);
1773 // Add the next reg to the pair if it is in the same register class.
1774 if (unsigned(i + RegInc) < Count && !HasCSHazardPadding) {
1775 MCRegister NextReg = CSI[i + RegInc].getReg();
1776 unsigned SpillCount = NeedsWinCFI ? FirstReg - i : i;
1777 switch (RPI.Type) {
1778 case RegPairInfo::GPR:
1779 if (AArch64::GPR64RegClass.contains(NextReg) &&
1780 !invalidateRegisterPairing(SpillExtendedVolatile, SpillCount,
1781 RPI.Reg1, NextReg, IsWindows,
1782 NeedsWinCFI, NeedsFrameRecord, TRI))
1783 RPI.Reg2 = NextReg;
1784 break;
1785 case RegPairInfo::FPR64:
1786 if (AArch64::FPR64RegClass.contains(NextReg) &&
1787 !invalidateRegisterPairing(SpillExtendedVolatile, SpillCount,
1788 RPI.Reg1, NextReg, IsWindows,
1789 NeedsWinCFI, NeedsFrameRecord, TRI))
1790 RPI.Reg2 = NextReg;
1791 break;
1792 case RegPairInfo::FPR128:
1793 if (AArch64::FPR128RegClass.contains(NextReg))
1794 RPI.Reg2 = NextReg;
1795 break;
1796 case RegPairInfo::PPR:
1797 break;
1798 case RegPairInfo::ZPR:
1799 if (AFI->getPredicateRegForFillSpill() != 0 &&
1800 ((RPI.Reg1 - AArch64::Z0) & 1) == 0 && (NextReg == RPI.Reg1 + 1)) {
1801 // Calculate offset of register pair to see if pair instruction can be
1802 // used.
1803 int Offset = (ScalableByteOffset + StackFillDir * 2 * Scale) / Scale;
1804 if ((-16 <= Offset && Offset <= 14) && (Offset % 2 == 0))
1805 RPI.Reg2 = NextReg;
1806 }
1807 break;
1808 case RegPairInfo::VG:
1809 break;
1810 }
1811 }
1812
1813 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
1814 // list to come in sorted by frame index so that we can issue the store
1815 // pair instructions directly. Assert if we see anything otherwise.
1816 //
1817 // The order of the registers in the list is controlled by
1818 // getCalleeSavedRegs(), so they will always be in-order, as well.
1819 assert((!RPI.isPaired() ||
1820 (CSI[i].getFrameIdx() + RegInc == CSI[i + RegInc].getFrameIdx())) &&
1821 "Out of order callee saved regs!");
1822
1823 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP ||
1824 RPI.Reg1 == AArch64::LR) &&
1825 "FrameRecord must be allocated together with LR");
1826
1827 // Windows AAPCS has FP and LR reversed.
1828 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP ||
1829 RPI.Reg2 == AArch64::LR) &&
1830 "FrameRecord must be allocated together with LR");
1831
1832 // MachO's compact unwind format relies on all registers being stored in
1833 // adjacent register pairs.
1834 assert((!produceCompactUnwindFrame(AFL, MF) ||
1837 (RPI.isPaired() &&
1838 ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
1839 RPI.Reg1 + 1 == RPI.Reg2))) &&
1840 "Callee-save registers not saved as adjacent register pair!");
1841
1842 RPI.FrameIdx = CSI[i].getFrameIdx();
1843 if (IsWindows &&
1844 RPI.isPaired()) // RPI.FrameIdx must be the lower index of the pair
1845 RPI.FrameIdx = CSI[i + RegInc].getFrameIdx();
1846
1847 // Realign the scalable offset if necessary. This is relevant when
1848 // spilling predicates on Windows.
1849 if (RPI.isScalable() && ScalableByteOffset % Scale != 0) {
1850 ScalableByteOffset = alignTo(ScalableByteOffset, Scale);
1851 }
1852
1853 int OffsetPre = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
1854 assert(OffsetPre % Scale == 0);
1855
1856 if (RPI.isScalable())
1857 ScalableByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale);
1858 else
1859 ByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale);
1860
1861 // Swift's async context is directly before FP, so allocate an extra
1862 // 8 bytes for it.
1863 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
1864 ((!IsWindows && RPI.Reg2 == AArch64::FP) ||
1865 (IsWindows && RPI.Reg2 == AArch64::LR)))
1866 ByteOffset += StackFillDir * 8;
1867
1868 // Round up size of non-pair to pair size if we need to pad the
1869 // callee-save area to ensure 16-byte alignment.
1870 if (NeedGapToAlignStack && !IsWindows && !RPI.isScalable() &&
1871 RPI.Type != RegPairInfo::FPR128 && !RPI.isPaired() &&
1872 ByteOffset % 16 != 0) {
1873 ByteOffset += 8 * StackFillDir;
1874 assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16));
1875 // A stack frame with a gap looks like this, bottom up:
1876 // d9, d8. x21, gap, x20, x19.
1877 // Set extra alignment on the x21 object to create the gap above it.
1878 MFI.setObjectAlignment(RPI.FrameIdx, Align(16));
1879 NeedGapToAlignStack = false;
1880 }
1881
1882 int OffsetPost = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
1883 assert(OffsetPost % Scale == 0);
1884 // If filling top down (default), we want the offset after incrementing it.
1885 // If filling bottom up (WinCFI) we need the original offset.
1886 int Offset = IsWindows ? OffsetPre : OffsetPost;
1887
1888 // The FP, LR pair goes 8 bytes into our expanded 24-byte slot so that the
1889 // Swift context can directly precede FP.
1890 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
1891 ((!IsWindows && RPI.Reg2 == AArch64::FP) ||
1892 (IsWindows && RPI.Reg2 == AArch64::LR)))
1893 Offset += 8;
1894 RPI.Offset = Offset / Scale;
1895
1896 assert((!RPI.isPaired() ||
1897 (!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) ||
1898 (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) &&
1899 "Offset out of bounds for LDP/STP immediate");
1900
1901 auto isFrameRecord = [&] {
1902 if (RPI.isPaired())
1903 return IsWindows ? RPI.Reg1 == AArch64::FP && RPI.Reg2 == AArch64::LR
1904 : RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP;
1905 // Otherwise, look for the frame record as two unpaired registers. This is
1906 // needed for -aarch64-stack-hazard-size=<val>, which disables register
1907 // pairing (as the padding may be too large for the LDP/STP offset). Note:
1908 // On Windows, this check works out as current reg == FP, next reg == LR,
1909 // and on other platforms current reg == FP, previous reg == LR. This
1910 // works out as the correct pre-increment or post-increment offsets
1911 // respectively.
1912 return i > 0 && RPI.Reg1 == AArch64::FP &&
1913 CSI[i - 1].getReg() == AArch64::LR;
1914 };
1915
1916 // Save the offset to frame record so that the FP register can point to the
1917 // innermost frame record (spilled FP and LR registers).
1918 if (NeedsFrameRecord && isFrameRecord())
1920
1921 RegPairs.push_back(RPI);
1922 if (RPI.isPaired())
1923 i += RegInc;
1924 }
1925 if (IsWindows) {
1926 // If we need an alignment gap in the stack, align the topmost stack
1927 // object. A stack frame with a gap looks like this, bottom up:
1928 // x19, d8. d9, gap.
1929 // Set extra alignment on the topmost stack object (the first element in
1930 // CSI, which goes top down), to create the gap above it.
1931 if (AFI->hasCalleeSaveStackFreeSpace())
1932 MFI.setObjectAlignment(CSI[0].getFrameIdx(), Align(16));
1933 // We iterated bottom up over the registers; flip RegPairs back to top
1934 // down order.
1935 std::reverse(RegPairs.begin(), RegPairs.end());
1936 }
1937}
1938
1942 MachineFunction &MF = *MBB.getParent();
1943 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1944 auto &TLI = *Subtarget.getTargetLowering();
1945 const AArch64InstrInfo &TII = *Subtarget.getInstrInfo();
1946 bool NeedsWinCFI = needsWinCFI(MF);
1947 DebugLoc DL;
1949
1950 computeCalleeSaveRegisterPairs(*this, MF, CSI, TRI, RegPairs, hasFP(MF));
1951
1953 // Refresh the reserved regs in case there are any potential changes since the
1954 // last freeze.
1955 MRI.freezeReservedRegs();
1956
1957 if (homogeneousPrologEpilog(MF)) {
1958 auto MIB = BuildMI(MBB, MI, DL, TII.get(AArch64::HOM_Prolog))
1960
1961 for (auto &RPI : RegPairs) {
1962 MIB.addReg(RPI.Reg1);
1963 MIB.addReg(RPI.Reg2);
1964
1965 // Update register live in.
1966 if (!MRI.isReserved(RPI.Reg1))
1967 MBB.addLiveIn(RPI.Reg1);
1968 if (RPI.isPaired() && !MRI.isReserved(RPI.Reg2))
1969 MBB.addLiveIn(RPI.Reg2);
1970 }
1971 return true;
1972 }
1973 bool PTrueCreated = false;
1974 for (const RegPairInfo &RPI : llvm::reverse(RegPairs)) {
1975 Register Reg1 = RPI.Reg1;
1976 Register Reg2 = RPI.Reg2;
1977 unsigned StrOpc;
1978
1979 // Issue sequence of spills for cs regs. The first spill may be converted
1980 // to a pre-decrement store later by emitPrologue if the callee-save stack
1981 // area allocation can't be combined with the local stack area allocation.
1982 // For example:
1983 // stp x22, x21, [sp, #0] // addImm(+0)
1984 // stp x20, x19, [sp, #16] // addImm(+2)
1985 // stp fp, lr, [sp, #32] // addImm(+4)
1986 // Rationale: This sequence saves uop updates compared to a sequence of
1987 // pre-increment spills like stp xi,xj,[sp,#-16]!
1988 // Note: Similar rationale and sequence for restores in epilog.
1989 unsigned Size = TRI->getSpillSize(*RPI.RC);
1990 Align Alignment = TRI->getSpillAlign(*RPI.RC);
1991 switch (RPI.Type) {
1992 case RegPairInfo::GPR:
1993 StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
1994 break;
1995 case RegPairInfo::FPR64:
1996 StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
1997 break;
1998 case RegPairInfo::FPR128:
1999 StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui;
2000 break;
2001 case RegPairInfo::ZPR:
2002 StrOpc = RPI.isPaired() ? AArch64::ST1B_2Z_IMM : AArch64::STR_ZXI;
2003 break;
2004 case RegPairInfo::PPR:
2005 StrOpc = AArch64::STR_PXI;
2006 break;
2007 case RegPairInfo::VG:
2008 StrOpc = AArch64::STRXui;
2009 break;
2010 }
2011
2012 Register X0Scratch;
2013 llvm::scope_exit RestoreX0([&] {
2014 if (X0Scratch != AArch64::NoRegister)
2015 BuildMI(MBB, MI, DL, TII.get(TargetOpcode::COPY), AArch64::X0)
2016 .addReg(X0Scratch)
2018 });
2019
2020 if (Reg1 == AArch64::VG) {
2021 // Find an available register to store value of VG to.
2022 Reg1 = findScratchNonCalleeSaveRegister(&MBB, true);
2023 assert(Reg1 != AArch64::NoRegister);
2024 if (MF.getSubtarget<AArch64Subtarget>().hasSVE()) {
2025 BuildMI(MBB, MI, DL, TII.get(AArch64::CNTD_XPiI), Reg1)
2026 .addImm(31)
2027 .addImm(1)
2029 } else {
2031 if (any_of(MBB.liveins(),
2032 [&STI](const MachineBasicBlock::RegisterMaskPair &LiveIn) {
2033 return STI.getRegisterInfo()->isSuperOrSubRegisterEq(
2034 AArch64::X0, LiveIn.PhysReg);
2035 })) {
2036 X0Scratch = Reg1;
2037 BuildMI(MBB, MI, DL, TII.get(TargetOpcode::COPY), X0Scratch)
2038 .addReg(AArch64::X0)
2040 }
2041
2042 RTLIB::Libcall LC = RTLIB::SMEABI_GET_CURRENT_VG;
2043 const uint32_t *RegMask =
2044 TRI->getCallPreservedMask(MF, TLI.getLibcallCallingConv(LC));
2045 BuildMI(MBB, MI, DL, TII.get(AArch64::BL))
2046 .addExternalSymbol(TLI.getLibcallName(LC))
2047 .addRegMask(RegMask)
2048 .addReg(AArch64::X0, RegState::ImplicitDefine)
2050 Reg1 = AArch64::X0;
2051 }
2052 }
2053
2054 LLVM_DEBUG({
2055 dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
2056 if (RPI.isPaired())
2057 dbgs() << ", " << printReg(Reg2, TRI);
2058 dbgs() << ") -> fi#(" << RPI.FrameIdx;
2059 if (RPI.isPaired())
2060 dbgs() << ", " << RPI.FrameIdx + 1;
2061 dbgs() << ")\n";
2062 });
2063
2064 assert((!isTargetWindows(MF) ||
2065 !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) &&
2066 "Windows unwdinding requires a consecutive (FP,LR) pair");
2067 // Windows unwind codes require consecutive registers if registers are
2068 // paired. Make the switch here, so that the code below will save (x,x+1)
2069 // and not (x+1,x).
2070 unsigned FrameIdxReg1 = RPI.FrameIdx;
2071 unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2072 if (isTargetWindows(MF) && RPI.isPaired()) {
2073 std::swap(Reg1, Reg2);
2074 std::swap(FrameIdxReg1, FrameIdxReg2);
2075 }
2076
2077 if (RPI.isPaired() && RPI.isScalable()) {
2078 [[maybe_unused]] const AArch64Subtarget &Subtarget =
2081 unsigned PnReg = AFI->getPredicateRegForFillSpill();
2082 assert((PnReg != 0 && enableMultiVectorSpillFill(Subtarget, MF)) &&
2083 "Expects SVE2.1 or SME2 target and a predicate register");
2084#ifdef EXPENSIVE_CHECKS
2085 auto IsPPR = [](const RegPairInfo &c) {
2086 return c.Reg1 == RegPairInfo::PPR;
2087 };
2088 auto PPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsPPR);
2089 auto IsZPR = [](const RegPairInfo &c) {
2090 return c.Type == RegPairInfo::ZPR;
2091 };
2092 auto ZPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsZPR);
2093 assert(!(PPRBegin < ZPRBegin) &&
2094 "Expected callee save predicate to be handled first");
2095#endif
2096 if (!PTrueCreated) {
2097 PTrueCreated = true;
2098 BuildMI(MBB, MI, DL, TII.get(AArch64::PTRUE_C_B), PnReg)
2100 }
2101 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
2102 if (!MRI.isReserved(Reg1))
2103 MBB.addLiveIn(Reg1);
2104 if (!MRI.isReserved(Reg2))
2105 MBB.addLiveIn(Reg2);
2106 MIB.addReg(/*PairRegs*/ AArch64::Z0_Z1 + (RPI.Reg1 - AArch64::Z0));
2108 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2109 MachineMemOperand::MOStore, Size, Alignment));
2110 MIB.addReg(PnReg);
2111 MIB.addReg(AArch64::SP)
2112 .addImm(RPI.Offset / 2) // [sp, #imm*2*vscale],
2113 // where 2*vscale is implicit
2116 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2117 MachineMemOperand::MOStore, Size, Alignment));
2118 if (NeedsWinCFI)
2119 insertSEH(MIB, TII, MachineInstr::FrameSetup);
2120 } else { // The code when the pair of ZReg is not present
2121 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
2122 if (!MRI.isReserved(Reg1))
2123 MBB.addLiveIn(Reg1);
2124 if (RPI.isPaired()) {
2125 if (!MRI.isReserved(Reg2))
2126 MBB.addLiveIn(Reg2);
2127 MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
2129 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2130 MachineMemOperand::MOStore, Size, Alignment));
2131 }
2132 MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
2133 .addReg(AArch64::SP)
2134 .addImm(RPI.Offset) // [sp, #offset*vscale],
2135 // where factor*vscale is implicit
2138 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2139 MachineMemOperand::MOStore, Size, Alignment));
2140 if (NeedsWinCFI)
2141 insertSEH(MIB, TII, MachineInstr::FrameSetup);
2142 }
2143 // Update the StackIDs of the SVE stack slots.
2144 MachineFrameInfo &MFI = MF.getFrameInfo();
2145 if (RPI.Type == RegPairInfo::ZPR) {
2146 MFI.setStackID(FrameIdxReg1, TargetStackID::ScalableVector);
2147 if (RPI.isPaired())
2148 MFI.setStackID(FrameIdxReg2, TargetStackID::ScalableVector);
2149 } else if (RPI.Type == RegPairInfo::PPR) {
2151 if (RPI.isPaired())
2153 }
2154 }
2155 return true;
2156}
2157
2161 MachineFunction &MF = *MBB.getParent();
2162 const AArch64InstrInfo &TII =
2163 *MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
2164 DebugLoc DL;
2166 bool NeedsWinCFI = needsWinCFI(MF);
2167
2168 if (MBBI != MBB.end())
2169 DL = MBBI->getDebugLoc();
2170
2171 computeCalleeSaveRegisterPairs(*this, MF, CSI, TRI, RegPairs, hasFP(MF));
2172 if (homogeneousPrologEpilog(MF, &MBB)) {
2173 auto MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::HOM_Epilog))
2175 for (auto &RPI : RegPairs) {
2176 MIB.addReg(RPI.Reg1, RegState::Define);
2177 MIB.addReg(RPI.Reg2, RegState::Define);
2178 }
2179 return true;
2180 }
2181
2182 // For performance reasons restore SVE register in increasing order
2183 auto IsPPR = [](const RegPairInfo &c) { return c.Type == RegPairInfo::PPR; };
2184 auto PPRBegin = llvm::find_if(RegPairs, IsPPR);
2185 auto PPREnd = std::find_if_not(PPRBegin, RegPairs.end(), IsPPR);
2186 std::reverse(PPRBegin, PPREnd);
2187 auto IsZPR = [](const RegPairInfo &c) { return c.Type == RegPairInfo::ZPR; };
2188 auto ZPRBegin = llvm::find_if(RegPairs, IsZPR);
2189 auto ZPREnd = std::find_if_not(ZPRBegin, RegPairs.end(), IsZPR);
2190 std::reverse(ZPRBegin, ZPREnd);
2191
2192 bool PTrueCreated = false;
2193 for (const RegPairInfo &RPI : RegPairs) {
2194 Register Reg1 = RPI.Reg1;
2195 Register Reg2 = RPI.Reg2;
2196
2197 // Issue sequence of restores for cs regs. The last restore may be converted
2198 // to a post-increment load later by emitEpilogue if the callee-save stack
2199 // area allocation can't be combined with the local stack area allocation.
2200 // For example:
2201 // ldp fp, lr, [sp, #32] // addImm(+4)
2202 // ldp x20, x19, [sp, #16] // addImm(+2)
2203 // ldp x22, x21, [sp, #0] // addImm(+0)
2204 // Note: see comment in spillCalleeSavedRegisters()
2205 unsigned LdrOpc;
2206 unsigned Size = TRI->getSpillSize(*RPI.RC);
2207 Align Alignment = TRI->getSpillAlign(*RPI.RC);
2208 switch (RPI.Type) {
2209 case RegPairInfo::GPR:
2210 LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
2211 break;
2212 case RegPairInfo::FPR64:
2213 LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
2214 break;
2215 case RegPairInfo::FPR128:
2216 LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui;
2217 break;
2218 case RegPairInfo::ZPR:
2219 LdrOpc = RPI.isPaired() ? AArch64::LD1B_2Z_IMM : AArch64::LDR_ZXI;
2220 break;
2221 case RegPairInfo::PPR:
2222 LdrOpc = AArch64::LDR_PXI;
2223 break;
2224 case RegPairInfo::VG:
2225 continue;
2226 }
2227 LLVM_DEBUG({
2228 dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
2229 if (RPI.isPaired())
2230 dbgs() << ", " << printReg(Reg2, TRI);
2231 dbgs() << ") -> fi#(" << RPI.FrameIdx;
2232 if (RPI.isPaired())
2233 dbgs() << ", " << RPI.FrameIdx + 1;
2234 dbgs() << ")\n";
2235 });
2236
2237 // Windows unwind codes require consecutive registers if registers are
2238 // paired. Make the switch here, so that the code below will save (x,x+1)
2239 // and not (x+1,x).
2240 unsigned FrameIdxReg1 = RPI.FrameIdx;
2241 unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2242 if (isTargetWindows(MF) && RPI.isPaired()) {
2243 std::swap(Reg1, Reg2);
2244 std::swap(FrameIdxReg1, FrameIdxReg2);
2245 }
2246
2248 if (RPI.isPaired() && RPI.isScalable()) {
2249 [[maybe_unused]] const AArch64Subtarget &Subtarget =
2251 unsigned PnReg = AFI->getPredicateRegForFillSpill();
2252 assert((PnReg != 0 && enableMultiVectorSpillFill(Subtarget, MF)) &&
2253 "Expects SVE2.1 or SME2 target and a predicate register");
2254#ifdef EXPENSIVE_CHECKS
2255 assert(!(PPRBegin < ZPRBegin) &&
2256 "Expected callee save predicate to be handled first");
2257#endif
2258 if (!PTrueCreated) {
2259 PTrueCreated = true;
2260 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PTRUE_C_B), PnReg)
2262 }
2263 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc));
2264 MIB.addReg(/*PairRegs*/ AArch64::Z0_Z1 + (RPI.Reg1 - AArch64::Z0),
2265 getDefRegState(true));
2267 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2268 MachineMemOperand::MOLoad, Size, Alignment));
2269 MIB.addReg(PnReg);
2270 MIB.addReg(AArch64::SP)
2271 .addImm(RPI.Offset / 2) // [sp, #imm*2*vscale]
2272 // where 2*vscale is implicit
2275 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2276 MachineMemOperand::MOLoad, Size, Alignment));
2277 if (NeedsWinCFI)
2278 insertSEH(MIB, TII, MachineInstr::FrameDestroy);
2279 } else {
2280 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc));
2281 if (RPI.isPaired()) {
2282 MIB.addReg(Reg2, getDefRegState(true));
2284 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2285 MachineMemOperand::MOLoad, Size, Alignment));
2286 }
2287 MIB.addReg(Reg1, getDefRegState(true));
2288 MIB.addReg(AArch64::SP)
2289 .addImm(RPI.Offset) // [sp, #offset*vscale]
2290 // where factor*vscale is implicit
2293 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2294 MachineMemOperand::MOLoad, Size, Alignment));
2295 if (NeedsWinCFI)
2296 insertSEH(MIB, TII, MachineInstr::FrameDestroy);
2297 }
2298 }
2299 return true;
2300}
2301
2302// Return the FrameID for a MMO.
2303static std::optional<int> getMMOFrameID(MachineMemOperand *MMO,
2304 const MachineFrameInfo &MFI) {
2305 auto *PSV =
2307 if (PSV)
2308 return std::optional<int>(PSV->getFrameIndex());
2309
2310 if (MMO->getValue()) {
2311 if (auto *Al = dyn_cast<AllocaInst>(getUnderlyingObject(MMO->getValue()))) {
2312 for (int FI = MFI.getObjectIndexBegin(); FI < MFI.getObjectIndexEnd();
2313 FI++)
2314 if (MFI.getObjectAllocation(FI) == Al)
2315 return FI;
2316 }
2317 }
2318
2319 return std::nullopt;
2320}
2321
2322// Return the FrameID for a Load/Store instruction by looking at the first MMO.
2323static std::optional<int> getLdStFrameID(const MachineInstr &MI,
2324 const MachineFrameInfo &MFI) {
2325 if (!MI.mayLoadOrStore() || MI.getNumMemOperands() < 1)
2326 return std::nullopt;
2327
2328 return getMMOFrameID(*MI.memoperands_begin(), MFI);
2329}
2330
2331// Returns true if the LDST MachineInstr \p MI is a PPR access.
2332static bool isPPRAccess(const MachineInstr &MI) {
2333 return AArch64::PPRRegClass.contains(MI.getOperand(0).getReg());
2334}
2335
2336// Check if a Hazard slot is needed for the current function, and if so create
2337// one for it. The index is stored in AArch64FunctionInfo->StackHazardSlotIndex,
2338// which can be used to determine if any hazard padding is needed.
2339void AArch64FrameLowering::determineStackHazardSlot(
2340 MachineFunction &MF, BitVector &SavedRegs) const {
2341 unsigned StackHazardSize = getStackHazardSize(MF);
2342 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2343 if (StackHazardSize == 0 || StackHazardSize % 16 != 0 ||
2345 return;
2346
2347 // Stack hazards are only needed in streaming functions.
2348 SMEAttrs Attrs = AFI->getSMEFnAttrs();
2349 if (!StackHazardInNonStreaming && Attrs.hasNonStreamingInterfaceAndBody())
2350 return;
2351
2352 MachineFrameInfo &MFI = MF.getFrameInfo();
2353
2354 // Add a hazard slot if there are any CSR FPR registers, or are any fp-only
2355 // stack objects.
2356 bool HasFPRCSRs = any_of(SavedRegs.set_bits(), [](unsigned Reg) {
2357 return AArch64::FPR64RegClass.contains(Reg) ||
2358 AArch64::FPR128RegClass.contains(Reg) ||
2359 AArch64::ZPRRegClass.contains(Reg);
2360 });
2361 bool HasPPRCSRs = any_of(SavedRegs.set_bits(), [](unsigned Reg) {
2362 return AArch64::PPRRegClass.contains(Reg);
2363 });
2364 bool HasFPRStackObjects = false;
2365 bool HasPPRStackObjects = false;
2366 if (!HasFPRCSRs || SplitSVEObjects) {
2367 enum SlotType : uint8_t {
2368 Unknown = 0,
2369 ZPRorFPR = 1 << 0,
2370 PPR = 1 << 1,
2371 GPR = 1 << 2,
2373 };
2374
2375 // Find stack slots solely used for one kind of register (ZPR, PPR, etc.),
2376 // based on the kinds of accesses used in the function.
2377 SmallVector<SlotType> SlotTypes(MFI.getObjectIndexEnd(), SlotType::Unknown);
2378 for (auto &MBB : MF) {
2379 for (auto &MI : MBB) {
2380 std::optional<int> FI = getLdStFrameID(MI, MFI);
2381 if (!FI || FI < 0 || FI > int(SlotTypes.size()))
2382 continue;
2383 if (MFI.hasScalableStackID(*FI)) {
2384 SlotTypes[*FI] |=
2385 isPPRAccess(MI) ? SlotType::PPR : SlotType::ZPRorFPR;
2386 } else {
2387 SlotTypes[*FI] |= AArch64InstrInfo::isFpOrNEON(MI)
2388 ? SlotType::ZPRorFPR
2389 : SlotType::GPR;
2390 }
2391 }
2392 }
2393
2394 for (int FI = 0; FI < int(SlotTypes.size()); ++FI) {
2395 HasFPRStackObjects |= SlotTypes[FI] == SlotType::ZPRorFPR;
2396 // For SplitSVEObjects remember that this stack slot is a predicate, this
2397 // will be needed later when determining the frame layout.
2398 if (SlotTypes[FI] == SlotType::PPR) {
2400 HasPPRStackObjects = true;
2401 }
2402 }
2403 }
2404
2405 if (HasFPRCSRs || HasFPRStackObjects) {
2406 int ID = MFI.CreateStackObject(StackHazardSize, Align(16), false);
2407 LLVM_DEBUG(dbgs() << "Created Hazard slot at " << ID << " size "
2408 << StackHazardSize << "\n");
2410 }
2411
2412 if (!AFI->hasStackHazardSlotIndex())
2413 return;
2414
2415 if (SplitSVEObjects) {
2416 CallingConv::ID CC = MF.getFunction().getCallingConv();
2417 if (AFI->isSVECC() || CC == CallingConv::AArch64_SVE_VectorCall) {
2418 AFI->setSplitSVEObjects(true);
2419 LLVM_DEBUG(dbgs() << "Using SplitSVEObjects for SVE CC function\n");
2420 return;
2421 }
2422
2423 // We only use SplitSVEObjects in non-SVE CC functions if there's a
2424 // possibility of a stack hazard between PPRs and ZPRs/FPRs.
2425 LLVM_DEBUG(dbgs() << "Determining if SplitSVEObjects should be used in "
2426 "non-SVE CC function...\n");
2427
2428 // If another calling convention is explicitly set FPRs can't be promoted to
2429 // ZPR callee-saves.
2431 LLVM_DEBUG(
2432 dbgs()
2433 << "Calling convention is not supported with SplitSVEObjects\n");
2434 return;
2435 }
2436
2437 if (!HasPPRCSRs && !HasPPRStackObjects) {
2438 LLVM_DEBUG(
2439 dbgs() << "Not using SplitSVEObjects as no PPRs are on the stack\n");
2440 return;
2441 }
2442
2443 if (!HasFPRCSRs && !HasFPRStackObjects) {
2444 LLVM_DEBUG(
2445 dbgs()
2446 << "Not using SplitSVEObjects as no FPRs or ZPRs are on the stack\n");
2447 return;
2448 }
2449
2450 [[maybe_unused]] const AArch64Subtarget &Subtarget =
2451 MF.getSubtarget<AArch64Subtarget>();
2453 "Expected SVE to be available for PPRs");
2454
2455 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2456 // With SplitSVEObjects the CS hazard padding is placed between the
2457 // PPRs and ZPRs. If there are any FPR CS there would be a hazard between
2458 // them and the CS GRPs. Avoid this by promoting all FPR CS to ZPRs.
2459 BitVector FPRZRegs(SavedRegs.size());
2460 for (size_t Reg = 0, E = SavedRegs.size(); HasFPRCSRs && Reg < E; ++Reg) {
2461 BitVector::reference RegBit = SavedRegs[Reg];
2462 if (!RegBit)
2463 continue;
2464 unsigned SubRegIdx = 0;
2465 if (AArch64::FPR64RegClass.contains(Reg))
2466 SubRegIdx = AArch64::dsub;
2467 else if (AArch64::FPR128RegClass.contains(Reg))
2468 SubRegIdx = AArch64::zsub;
2469 else
2470 continue;
2471 // Clear the bit for the FPR save.
2472 RegBit = false;
2473 // Mark that we should save the corresponding ZPR.
2474 Register ZReg =
2475 TRI->getMatchingSuperReg(Reg, SubRegIdx, &AArch64::ZPRRegClass);
2476 FPRZRegs.set(ZReg);
2477 }
2478 SavedRegs |= FPRZRegs;
2479
2480 AFI->setSplitSVEObjects(true);
2481 LLVM_DEBUG(dbgs() << "SplitSVEObjects enabled!\n");
2482 }
2483}
2484
2486 BitVector &SavedRegs,
2487 RegScavenger *RS) const {
2488 // All calls are tail calls in GHC calling conv, and functions have no
2489 // prologue/epilogue.
2491 return;
2492
2493 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2494
2496 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
2498 unsigned UnspilledCSGPR = AArch64::NoRegister;
2499 unsigned UnspilledCSGPRPaired = AArch64::NoRegister;
2500
2501 MachineFrameInfo &MFI = MF.getFrameInfo();
2502 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
2503
2504 MCRegister BasePointerReg =
2505 RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister() : MCRegister();
2506
2507 unsigned ExtraCSSpill = 0;
2508 bool HasUnpairedGPR64 = false;
2509 bool HasPairZReg = false;
2510 BitVector UserReservedRegs = RegInfo->getUserReservedRegs(MF);
2511 BitVector ReservedRegs = RegInfo->getReservedRegs(MF);
2512
2513 // Figure out which callee-saved registers to save/restore.
2514 for (unsigned i = 0; CSRegs[i]; ++i) {
2515 const MCRegister Reg = CSRegs[i];
2516
2517 // Add the base pointer register to SavedRegs if it is callee-save.
2518 if (Reg == BasePointerReg)
2519 SavedRegs.set(Reg);
2520
2521 // Don't save manually reserved registers set through +reserve-x#i,
2522 // even for callee-saved registers, as per GCC's behavior.
2523 if (UserReservedRegs[Reg]) {
2524 SavedRegs.reset(Reg);
2525 continue;
2526 }
2527
2528 bool RegUsed = SavedRegs.test(Reg);
2529 MCRegister PairedReg;
2530 const bool RegIsGPR64 = AArch64::GPR64RegClass.contains(Reg);
2531 if (RegIsGPR64 || AArch64::FPR64RegClass.contains(Reg) ||
2532 AArch64::FPR128RegClass.contains(Reg)) {
2533 // Compensate for odd numbers of GP CSRs.
2534 // For now, all the known cases of odd number of CSRs are of GPRs.
2535 if (HasUnpairedGPR64)
2536 PairedReg = CSRegs[i % 2 == 0 ? i - 1 : i + 1];
2537 else
2538 PairedReg = CSRegs[i ^ 1];
2539 }
2540
2541 // If the function requires all the GP registers to save (SavedRegs),
2542 // and there are an odd number of GP CSRs at the same time (CSRegs),
2543 // PairedReg could be in a different register class from Reg, which would
2544 // lead to a FPR (usually D8) accidentally being marked saved.
2545 if (RegIsGPR64 && !AArch64::GPR64RegClass.contains(PairedReg)) {
2546 PairedReg = AArch64::NoRegister;
2547 HasUnpairedGPR64 = true;
2548 }
2549 assert(PairedReg == AArch64::NoRegister ||
2550 AArch64::GPR64RegClass.contains(Reg, PairedReg) ||
2551 AArch64::FPR64RegClass.contains(Reg, PairedReg) ||
2552 AArch64::FPR128RegClass.contains(Reg, PairedReg));
2553
2554 if (!RegUsed) {
2555 if (AArch64::GPR64RegClass.contains(Reg) && !ReservedRegs[Reg]) {
2556 UnspilledCSGPR = Reg;
2557 UnspilledCSGPRPaired = PairedReg;
2558 }
2559 continue;
2560 }
2561
2562 // MachO's compact unwind format relies on all registers being stored in
2563 // pairs.
2564 // FIXME: the usual format is actually better if unwinding isn't needed.
2565 if (producePairRegisters(MF) && PairedReg != AArch64::NoRegister &&
2566 !SavedRegs.test(PairedReg)) {
2567 SavedRegs.set(PairedReg);
2568 if (AArch64::GPR64RegClass.contains(PairedReg) &&
2569 !ReservedRegs[PairedReg])
2570 ExtraCSSpill = PairedReg;
2571 }
2572 // Check if there is a pair of ZRegs, so it can select PReg for spill/fill
2573 HasPairZReg |= (AArch64::ZPRRegClass.contains(Reg, CSRegs[i ^ 1]) &&
2574 SavedRegs.test(CSRegs[i ^ 1]));
2575 }
2576
2577 if (HasPairZReg && enableMultiVectorSpillFill(Subtarget, MF)) {
2579 // Find a suitable predicate register for the multi-vector spill/fill
2580 // instructions.
2581 MCRegister PnReg = findFreePredicateReg(SavedRegs);
2582 if (PnReg.isValid())
2583 AFI->setPredicateRegForFillSpill(PnReg);
2584 // If no free callee-save has been found assign one.
2585 if (!AFI->getPredicateRegForFillSpill() &&
2586 MF.getFunction().getCallingConv() ==
2588 SavedRegs.set(AArch64::P8);
2589 AFI->setPredicateRegForFillSpill(AArch64::PN8);
2590 }
2591
2592 assert(!ReservedRegs[AFI->getPredicateRegForFillSpill()] &&
2593 "Predicate cannot be a reserved register");
2594 }
2595
2597 !Subtarget.isTargetWindows()) {
2598 // For Windows calling convention on a non-windows OS, where X18 is treated
2599 // as reserved, back up X18 when entering non-windows code (marked with the
2600 // Windows calling convention) and restore when returning regardless of
2601 // whether the individual function uses it - it might call other functions
2602 // that clobber it.
2603 SavedRegs.set(AArch64::X18);
2604 }
2605
2606 // Determine if a Hazard slot should be used and where it should go.
2607 // If SplitSVEObjects is used, the hazard padding is placed between the PPRs
2608 // and ZPRs. Otherwise, it goes in the callee save area.
2609 determineStackHazardSlot(MF, SavedRegs);
2610
2611 // Calculates the callee saved stack size.
2612 unsigned CSStackSize = 0;
2613 unsigned ZPRCSStackSize = 0;
2614 unsigned PPRCSStackSize = 0;
2616 for (unsigned Reg : SavedRegs.set_bits()) {
2617 auto *RC = TRI->getMinimalPhysRegClass(MCRegister(Reg));
2618 assert(RC && "expected register class!");
2619 auto SpillSize = TRI->getSpillSize(*RC);
2620 bool IsZPR = AArch64::ZPRRegClass.contains(Reg);
2621 bool IsPPR = !IsZPR && AArch64::PPRRegClass.contains(Reg);
2622 if (IsZPR)
2623 ZPRCSStackSize += SpillSize;
2624 else if (IsPPR)
2625 PPRCSStackSize += SpillSize;
2626 else
2627 CSStackSize += SpillSize;
2628 }
2629
2630 // Save number of saved regs, so we can easily update CSStackSize later to
2631 // account for any additional 64-bit GPR saves. Note: After this point
2632 // only 64-bit GPRs can be added to SavedRegs.
2633 unsigned NumSavedRegs = SavedRegs.count();
2634
2635 // If we have hazard padding in the CS area add that to the size.
2637 CSStackSize += getStackHazardSize(MF);
2638
2639 // Increase the callee-saved stack size if the function has streaming mode
2640 // changes, as we will need to spill the value of the VG register.
2641 if (requiresSaveVG(MF))
2642 CSStackSize += 8;
2643
2644 // If we must call __arm_get_current_vg in the prologue preserve the LR.
2645 if (requiresSaveVG(MF) && !Subtarget.hasSVE())
2646 SavedRegs.set(AArch64::LR);
2647
2648 // The frame record needs to be created by saving the appropriate registers
2649 uint64_t EstimatedStackSize = MFI.estimateStackSize(MF);
2650 if (hasFP(MF) ||
2651 windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) {
2652 SavedRegs.set(AArch64::FP);
2653 SavedRegs.set(AArch64::LR);
2654 }
2655
2656 LLVM_DEBUG({
2657 dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
2658 for (unsigned Reg : SavedRegs.set_bits())
2659 dbgs() << ' ' << printReg(MCRegister(Reg), RegInfo);
2660 dbgs() << "\n";
2661 });
2662
2663 // If any callee-saved registers are used, the frame cannot be eliminated.
2664 auto [ZPRLocalStackSize, PPRLocalStackSize] =
2666 uint64_t SVELocals = ZPRLocalStackSize + PPRLocalStackSize;
2667 uint64_t SVEStackSize =
2668 alignTo(ZPRCSStackSize + PPRCSStackSize + SVELocals, 16);
2669 bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize;
2670
2671 // The CSR spill slots have not been allocated yet, so estimateStackSize
2672 // won't include them.
2673 unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
2674
2675 // We may address some of the stack above the canonical frame address, either
2676 // for our own arguments or during a call. Include that in calculating whether
2677 // we have complicated addressing concerns.
2678 int64_t CalleeStackUsed = 0;
2679 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) {
2680 int64_t FixedOff = MFI.getObjectOffset(I);
2681 if (FixedOff > CalleeStackUsed)
2682 CalleeStackUsed = FixedOff;
2683 }
2684
2685 // Conservatively always assume BigStack when there are SVE spills.
2686 bool BigStack = SVEStackSize || (EstimatedStackSize + CSStackSize +
2687 CalleeStackUsed) > EstimatedStackSizeLimit;
2688 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
2689 AFI->setHasStackFrame(true);
2690
2691 // Estimate if we might need to scavenge a register at some point in order
2692 // to materialize a stack offset. If so, either spill one additional
2693 // callee-saved register or reserve a special spill slot to facilitate
2694 // register scavenging. If we already spilled an extra callee-saved register
2695 // above to keep the number of spills even, we don't need to do anything else
2696 // here.
2697 if (BigStack) {
2698 if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
2699 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
2700 << " to get a scratch register.\n");
2701 SavedRegs.set(UnspilledCSGPR);
2702 ExtraCSSpill = UnspilledCSGPR;
2703
2704 // MachO's compact unwind format relies on all registers being stored in
2705 // pairs, so if we need to spill one extra for BigStack, then we need to
2706 // store the pair.
2707 if (producePairRegisters(MF)) {
2708 if (UnspilledCSGPRPaired == AArch64::NoRegister) {
2709 // Failed to make a pair for compact unwind format, revert spilling.
2710 if (produceCompactUnwindFrame(*this, MF)) {
2711 SavedRegs.reset(UnspilledCSGPR);
2712 ExtraCSSpill = AArch64::NoRegister;
2713 }
2714 } else
2715 SavedRegs.set(UnspilledCSGPRPaired);
2716 }
2717 }
2718
2719 // If we didn't find an extra callee-saved register to spill, create
2720 // an emergency spill slot.
2721 if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
2723 const TargetRegisterClass &RC = AArch64::GPR64RegClass;
2724 unsigned Size = TRI->getSpillSize(RC);
2725 Align Alignment = TRI->getSpillAlign(RC);
2726 int FI = MFI.CreateSpillStackObject(Size, Alignment);
2727 RS->addScavengingFrameIndex(FI);
2728 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
2729 << " as the emergency spill slot.\n");
2730 }
2731 }
2732
2733 // Adding the size of additional 64bit GPR saves.
2734 CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs);
2735
2736 // A Swift asynchronous context extends the frame record with a pointer
2737 // directly before FP.
2738 if (hasFP(MF) && AFI->hasSwiftAsyncContext())
2739 CSStackSize += 8;
2740
2741 uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16);
2742 LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
2743 << EstimatedStackSize + AlignedCSStackSize << " bytes.\n");
2744
2746 AFI->getCalleeSavedStackSize() == AlignedCSStackSize) &&
2747 "Should not invalidate callee saved info");
2748
2749 // Round up to register pair alignment to avoid additional SP adjustment
2750 // instructions.
2751 AFI->setCalleeSavedStackSize(AlignedCSStackSize);
2752 AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize);
2753 AFI->setSVECalleeSavedStackSize(ZPRCSStackSize, alignTo(PPRCSStackSize, 16));
2754}
2755
2757 MachineFunction &MF, const TargetRegisterInfo *RegInfo,
2758 std::vector<CalleeSavedInfo> &CSI) const {
2759 bool IsWindows = isTargetWindows(MF);
2760 unsigned StackHazardSize = getStackHazardSize(MF);
2761 // To match the canonical windows frame layout, reverse the list of
2762 // callee saved registers to get them laid out by PrologEpilogInserter
2763 // in the right order. (PrologEpilogInserter allocates stack objects top
2764 // down. Windows canonical prologs store higher numbered registers at
2765 // the top, thus have the CSI array start from the highest registers.)
2766 if (IsWindows)
2767 std::reverse(CSI.begin(), CSI.end());
2768
2769 if (CSI.empty())
2770 return true; // Early exit if no callee saved registers are modified!
2771
2772 // Now that we know which registers need to be saved and restored, allocate
2773 // stack slots for them.
2774 MachineFrameInfo &MFI = MF.getFrameInfo();
2775 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2776
2777 if (IsWindows && hasFP(MF) && AFI->hasSwiftAsyncContext()) {
2778 int FrameIdx = MFI.CreateStackObject(8, Align(16), true);
2779 AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
2780 MFI.setIsCalleeSavedObjectIndex(FrameIdx, true);
2781 }
2782
2783 // Insert VG into the list of CSRs, immediately before LR if saved.
2784 if (requiresSaveVG(MF)) {
2785 CalleeSavedInfo VGInfo(AArch64::VG);
2786 auto It =
2787 find_if(CSI, [](auto &Info) { return Info.getReg() == AArch64::LR; });
2788 if (It != CSI.end())
2789 CSI.insert(It, VGInfo);
2790 else
2791 CSI.push_back(VGInfo);
2792 }
2793
2794 Register LastReg = 0;
2795 int HazardSlotIndex = std::numeric_limits<int>::max();
2796 for (auto &CS : CSI) {
2797 MCRegister Reg = CS.getReg();
2798 const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
2799
2800 // Create a hazard slot as we switch between GPR and FPR CSRs.
2802 (!LastReg || !AArch64InstrInfo::isFpOrNEON(LastReg)) &&
2804 assert(HazardSlotIndex == std::numeric_limits<int>::max() &&
2805 "Unexpected register order for hazard slot");
2806 HazardSlotIndex = MFI.CreateStackObject(StackHazardSize, Align(8), true);
2807 LLVM_DEBUG(dbgs() << "Created CSR Hazard at slot " << HazardSlotIndex
2808 << "\n");
2809 AFI->setStackHazardCSRSlotIndex(HazardSlotIndex);
2810 MFI.setIsCalleeSavedObjectIndex(HazardSlotIndex, true);
2811 }
2812
2813 unsigned Size = RegInfo->getSpillSize(*RC);
2814 Align Alignment(RegInfo->getSpillAlign(*RC));
2815 int FrameIdx = MFI.CreateStackObject(Size, Alignment, true);
2816 CS.setFrameIdx(FrameIdx);
2817 MFI.setIsCalleeSavedObjectIndex(FrameIdx, true);
2818
2819 // Grab 8 bytes below FP for the extended asynchronous frame info.
2820 if (hasFP(MF) && AFI->hasSwiftAsyncContext() && !IsWindows &&
2821 Reg == AArch64::FP) {
2822 FrameIdx = MFI.CreateStackObject(8, Alignment, true);
2823 AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
2824 MFI.setIsCalleeSavedObjectIndex(FrameIdx, true);
2825 }
2826 LastReg = Reg;
2827 }
2828
2829 // Add hazard slot in the case where no FPR CSRs are present.
2831 HazardSlotIndex == std::numeric_limits<int>::max()) {
2832 HazardSlotIndex = MFI.CreateStackObject(StackHazardSize, Align(8), true);
2833 LLVM_DEBUG(dbgs() << "Created CSR Hazard at slot " << HazardSlotIndex
2834 << "\n");
2835 AFI->setStackHazardCSRSlotIndex(HazardSlotIndex);
2836 MFI.setIsCalleeSavedObjectIndex(HazardSlotIndex, true);
2837 }
2838
2839 return true;
2840}
2841
2843 const MachineFunction &MF) const {
2845 // If the function has streaming-mode changes, don't scavenge a
2846 // spillslot in the callee-save area, as that might require an
2847 // 'addvl' in the streaming-mode-changing call-sequence when the
2848 // function doesn't use a FP.
2849 if (AFI->hasStreamingModeChanges() && !hasFP(MF))
2850 return false;
2851 // Don't allow register salvaging with hazard slots, in case it moves objects
2852 // into the wrong place.
2853 if (AFI->hasStackHazardSlotIndex())
2854 return false;
2855 return AFI->hasCalleeSaveStackFreeSpace();
2856}
2857
2858/// returns true if there are any SVE callee saves.
2860 int &Min, int &Max) {
2861 Min = std::numeric_limits<int>::max();
2862 Max = std::numeric_limits<int>::min();
2863
2864 if (!MFI.isCalleeSavedInfoValid())
2865 return false;
2866
2867 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
2868 for (auto &CS : CSI) {
2869 if (AArch64::ZPRRegClass.contains(CS.getReg()) ||
2870 AArch64::PPRRegClass.contains(CS.getReg())) {
2871 assert((Max == std::numeric_limits<int>::min() ||
2872 Max + 1 == CS.getFrameIdx()) &&
2873 "SVE CalleeSaves are not consecutive");
2874 Min = std::min(Min, CS.getFrameIdx());
2875 Max = std::max(Max, CS.getFrameIdx());
2876 }
2877 }
2878 return Min != std::numeric_limits<int>::max();
2879}
2880
2882 AssignObjectOffsets AssignOffsets) {
2883 MachineFrameInfo &MFI = MF.getFrameInfo();
2884 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2885
2886 SVEStackSizes SVEStack{};
2887
2888 // With SplitSVEObjects we maintain separate stack offsets for predicates
2889 // (PPRs) and SVE vectors (ZPRs). When SplitSVEObjects is disabled predicates
2890 // are included in the SVE vector area.
2891 uint64_t &ZPRStackTop = SVEStack.ZPRStackSize;
2892 uint64_t &PPRStackTop =
2893 AFI->hasSplitSVEObjects() ? SVEStack.PPRStackSize : SVEStack.ZPRStackSize;
2894
2895#ifndef NDEBUG
2896 // First process all fixed stack objects.
2897 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I)
2898 assert(!MFI.hasScalableStackID(I) &&
2899 "SVE vectors should never be passed on the stack by value, only by "
2900 "reference.");
2901#endif
2902
2903 auto AllocateObject = [&](int FI) {
2905 ? ZPRStackTop
2906 : PPRStackTop;
2907
2908 // FIXME: Given that the length of SVE vectors is not necessarily a power of
2909 // two, we'd need to align every object dynamically at runtime if the
2910 // alignment is larger than 16. This is not yet supported.
2911 Align Alignment = MFI.getObjectAlign(FI);
2912 if (Alignment > Align(16))
2914 "Alignment of scalable vectors > 16 bytes is not yet supported");
2915
2916 StackTop += MFI.getObjectSize(FI);
2917 StackTop = alignTo(StackTop, Alignment);
2918
2919 assert(StackTop < (uint64_t)std::numeric_limits<int64_t>::max() &&
2920 "SVE StackTop far too large?!");
2921
2922 int64_t Offset = -int64_t(StackTop);
2923 if (AssignOffsets == AssignObjectOffsets::Yes)
2924 MFI.setObjectOffset(FI, Offset);
2925
2926 LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n");
2927 };
2928
2929 // Then process all callee saved slots.
2930 int MinCSFrameIndex, MaxCSFrameIndex;
2931 if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) {
2932 for (int FI = MinCSFrameIndex; FI <= MaxCSFrameIndex; ++FI)
2933 AllocateObject(FI);
2934 }
2935
2936 // Ensure the CS area is 16-byte aligned.
2937 PPRStackTop = alignTo(PPRStackTop, Align(16U));
2938 ZPRStackTop = alignTo(ZPRStackTop, Align(16U));
2939
2940 // Create a buffer of SVE objects to allocate and sort it.
2941 SmallVector<int, 8> ObjectsToAllocate;
2942 // If we have a stack protector, and we've previously decided that we have SVE
2943 // objects on the stack and thus need it to go in the SVE stack area, then it
2944 // needs to go first.
2945 int StackProtectorFI = -1;
2946 if (MFI.hasStackProtectorIndex()) {
2947 StackProtectorFI = MFI.getStackProtectorIndex();
2948 if (MFI.getStackID(StackProtectorFI) == TargetStackID::ScalableVector)
2949 ObjectsToAllocate.push_back(StackProtectorFI);
2950 }
2951
2952 for (int FI = 0, E = MFI.getObjectIndexEnd(); FI != E; ++FI) {
2953 if (FI == StackProtectorFI || MFI.isDeadObjectIndex(FI) ||
2955 continue;
2956
2959 continue;
2960
2961 ObjectsToAllocate.push_back(FI);
2962 }
2963
2964 // Allocate all SVE locals and spills
2965 for (unsigned FI : ObjectsToAllocate)
2966 AllocateObject(FI);
2967
2968 PPRStackTop = alignTo(PPRStackTop, Align(16U));
2969 ZPRStackTop = alignTo(ZPRStackTop, Align(16U));
2970
2971 if (AssignOffsets == AssignObjectOffsets::Yes)
2972 AFI->setStackSizeSVE(SVEStack.ZPRStackSize, SVEStack.PPRStackSize);
2973
2974 return SVEStack;
2975}
2976
2978 MachineFunction &MF, RegScavenger *RS) const {
2980 "Upwards growing stack unsupported");
2981
2983
2984 // If this function isn't doing Win64-style C++ EH, we don't need to do
2985 // anything.
2986 if (!MF.hasEHFunclets())
2987 return;
2988
2989 MachineFrameInfo &MFI = MF.getFrameInfo();
2990 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2991
2992 // Win64 C++ EH needs to allocate space for the catch objects in the fixed
2993 // object area right next to the UnwindHelp object.
2994 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
2995 int64_t CurrentOffset =
2997 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
2998 for (WinEHHandlerType &H : TBME.HandlerArray) {
2999 int FrameIndex = H.CatchObj.FrameIndex;
3000 if ((FrameIndex != INT_MAX) && MFI.getObjectOffset(FrameIndex) == 0) {
3001 CurrentOffset =
3002 alignTo(CurrentOffset, MFI.getObjectAlign(FrameIndex).value());
3003 CurrentOffset += MFI.getObjectSize(FrameIndex);
3004 MFI.setObjectOffset(FrameIndex, -CurrentOffset);
3005 }
3006 }
3007 }
3008
3009 // Create an UnwindHelp object.
3010 // The UnwindHelp object is allocated at the start of the fixed object area
3011 int64_t UnwindHelpOffset = alignTo(CurrentOffset + 8, Align(16));
3012 assert(UnwindHelpOffset == getFixedObjectSize(MF, AFI, /*IsWin64*/ true,
3013 /*IsFunclet*/ false) &&
3014 "UnwindHelpOffset must be at the start of the fixed object area");
3015 int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8, -UnwindHelpOffset,
3016 /*IsImmutable=*/false);
3017 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3018
3019 MachineBasicBlock &MBB = MF.front();
3020 auto MBBI = MBB.begin();
3021 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3022 ++MBBI;
3023
3024 // We need to store -2 into the UnwindHelp object at the start of the
3025 // function.
3026 DebugLoc DL;
3027 RS->enterBasicBlockEnd(MBB);
3028 RS->backward(MBBI);
3029 Register DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass);
3030 assert(DstReg && "There must be a free register after frame setup");
3031 const AArch64InstrInfo &TII =
3032 *MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
3033 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2);
3034 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi))
3035 .addReg(DstReg, getKillRegState(true))
3036 .addFrameIndex(UnwindHelpFI)
3037 .addImm(0);
3038}
3039
3040namespace {
3041struct TagStoreInstr {
3043 int64_t Offset, Size;
3044 explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size)
3045 : MI(MI), Offset(Offset), Size(Size) {}
3046};
3047
3048class TagStoreEdit {
3049 MachineFunction *MF;
3050 MachineBasicBlock *MBB;
3051 MachineRegisterInfo *MRI;
3052 // Tag store instructions that are being replaced.
3054 // Combined memref arguments of the above instructions.
3056
3057 // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg +
3058 // FrameRegOffset + Size) with the address tag of SP.
3059 Register FrameReg;
3060 StackOffset FrameRegOffset;
3061 int64_t Size;
3062 // If not std::nullopt, move FrameReg to (FrameReg + FrameRegUpdate) at the
3063 // end.
3064 std::optional<int64_t> FrameRegUpdate;
3065 // MIFlags for any FrameReg updating instructions.
3066 unsigned FrameRegUpdateFlags;
3067
3068 // Use zeroing instruction variants.
3069 bool ZeroData;
3070 DebugLoc DL;
3071
3072 void emitUnrolled(MachineBasicBlock::iterator InsertI);
3073 void emitLoop(MachineBasicBlock::iterator InsertI);
3074
3075public:
3076 TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData)
3077 : MBB(MBB), ZeroData(ZeroData) {
3078 MF = MBB->getParent();
3079 MRI = &MF->getRegInfo();
3080 }
3081 // Add an instruction to be replaced. Instructions must be added in the
3082 // ascending order of Offset, and have to be adjacent.
3083 void addInstruction(TagStoreInstr I) {
3084 assert((TagStores.empty() ||
3085 TagStores.back().Offset + TagStores.back().Size == I.Offset) &&
3086 "Non-adjacent tag store instructions.");
3087 TagStores.push_back(I);
3088 }
3089 void clear() { TagStores.clear(); }
3090 // Emit equivalent code at the given location, and erase the current set of
3091 // instructions. May skip if the replacement is not profitable. May invalidate
3092 // the input iterator and replace it with a valid one.
3093 void emitCode(MachineBasicBlock::iterator &InsertI,
3094 const AArch64FrameLowering *TFI, bool TryMergeSPUpdate);
3095};
3096
3097void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) {
3098 const AArch64InstrInfo *TII =
3099 MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
3100
3101 const int64_t kMinOffset = -256 * 16;
3102 const int64_t kMaxOffset = 255 * 16;
3103
3104 Register BaseReg = FrameReg;
3105 int64_t BaseRegOffsetBytes = FrameRegOffset.getFixed();
3106 if (BaseRegOffsetBytes < kMinOffset ||
3107 BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset ||
3108 // BaseReg can be FP, which is not necessarily aligned to 16-bytes. In
3109 // that case, BaseRegOffsetBytes will not be aligned to 16 bytes, which
3110 // is required for the offset of ST2G.
3111 BaseRegOffsetBytes % 16 != 0) {
3112 Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3113 emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg,
3114 StackOffset::getFixed(BaseRegOffsetBytes), TII);
3115 BaseReg = ScratchReg;
3116 BaseRegOffsetBytes = 0;
3117 }
3118
3119 MachineInstr *LastI = nullptr;
3120 while (Size) {
3121 int64_t InstrSize = (Size > 16) ? 32 : 16;
3122 unsigned Opcode =
3123 InstrSize == 16
3124 ? (ZeroData ? AArch64::STZGi : AArch64::STGi)
3125 : (ZeroData ? AArch64::STZ2Gi : AArch64::ST2Gi);
3126 assert(BaseRegOffsetBytes % 16 == 0);
3127 MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode))
3128 .addReg(AArch64::SP)
3129 .addReg(BaseReg)
3130 .addImm(BaseRegOffsetBytes / 16)
3131 .setMemRefs(CombinedMemRefs);
3132 // A store to [BaseReg, #0] should go last for an opportunity to fold the
3133 // final SP adjustment in the epilogue.
3134 if (BaseRegOffsetBytes == 0)
3135 LastI = I;
3136 BaseRegOffsetBytes += InstrSize;
3137 Size -= InstrSize;
3138 }
3139
3140 if (LastI)
3141 MBB->splice(InsertI, MBB, LastI);
3142}
3143
3144void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) {
3145 const AArch64InstrInfo *TII =
3146 MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
3147
3148 Register BaseReg = FrameRegUpdate
3149 ? FrameReg
3150 : MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3151 Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3152
3153 emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII);
3154
3155 int64_t LoopSize = Size;
3156 // If the loop size is not a multiple of 32, split off one 16-byte store at
3157 // the end to fold BaseReg update into.
3158 if (FrameRegUpdate && *FrameRegUpdate)
3159 LoopSize -= LoopSize % 32;
3160 MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL,
3161 TII->get(ZeroData ? AArch64::STZGloop_wback
3162 : AArch64::STGloop_wback))
3163 .addDef(SizeReg)
3164 .addDef(BaseReg)
3165 .addImm(LoopSize)
3166 .addReg(BaseReg)
3167 .setMemRefs(CombinedMemRefs);
3168 if (FrameRegUpdate)
3169 LoopI->setFlags(FrameRegUpdateFlags);
3170
3171 int64_t ExtraBaseRegUpdate =
3172 FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getFixed() - Size) : 0;
3173 LLVM_DEBUG(dbgs() << "TagStoreEdit::emitLoop: LoopSize=" << LoopSize
3174 << ", Size=" << Size
3175 << ", ExtraBaseRegUpdate=" << ExtraBaseRegUpdate
3176 << ", FrameRegUpdate=" << FrameRegUpdate
3177 << ", FrameRegOffset.getFixed()="
3178 << FrameRegOffset.getFixed() << "\n");
3179 if (LoopSize < Size) {
3180 assert(FrameRegUpdate);
3181 assert(Size - LoopSize == 16);
3182 // Tag 16 more bytes at BaseReg and update BaseReg.
3183 int64_t STGOffset = ExtraBaseRegUpdate + 16;
3184 assert(STGOffset % 16 == 0 && STGOffset >= -4096 && STGOffset <= 4080 &&
3185 "STG immediate out of range");
3186 BuildMI(*MBB, InsertI, DL,
3187 TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex))
3188 .addDef(BaseReg)
3189 .addReg(BaseReg)
3190 .addReg(BaseReg)
3191 .addImm(STGOffset / 16)
3192 .setMemRefs(CombinedMemRefs)
3193 .setMIFlags(FrameRegUpdateFlags);
3194 } else if (ExtraBaseRegUpdate) {
3195 // Update BaseReg.
3196 int64_t AddSubOffset = std::abs(ExtraBaseRegUpdate);
3197 assert(AddSubOffset <= 4095 && "ADD/SUB immediate out of range");
3198 BuildMI(
3199 *MBB, InsertI, DL,
3200 TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri))
3201 .addDef(BaseReg)
3202 .addReg(BaseReg)
3203 .addImm(AddSubOffset)
3204 .addImm(0)
3205 .setMIFlags(FrameRegUpdateFlags);
3206 }
3207}
3208
3209// Check if *II is a register update that can be merged into STGloop that ends
3210// at (Reg + Size). RemainingOffset is the required adjustment to Reg after the
3211// end of the loop.
3212bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg,
3213 int64_t Size, int64_t *TotalOffset) {
3214 MachineInstr &MI = *II;
3215 if ((MI.getOpcode() == AArch64::ADDXri ||
3216 MI.getOpcode() == AArch64::SUBXri) &&
3217 MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) {
3218 unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm());
3219 int64_t Offset = MI.getOperand(2).getImm() << Shift;
3220 if (MI.getOpcode() == AArch64::SUBXri)
3221 Offset = -Offset;
3222 int64_t PostOffset = Offset - Size;
3223 // TagStoreEdit::emitLoop might emit either an ADD/SUB after the loop, or
3224 // an STGPostIndex which does the last 16 bytes of tag write. Which one is
3225 // chosen depends on the alignment of the loop size, but the difference
3226 // between the valid ranges for the two instructions is small, so we
3227 // conservatively assume that it could be either case here.
3228 //
3229 // Max offset of STGPostIndex, minus the 16 byte tag write folded into that
3230 // instruction.
3231 const int64_t kMaxOffset = 4080 - 16;
3232 // Max offset of SUBXri.
3233 const int64_t kMinOffset = -4095;
3234 if (PostOffset <= kMaxOffset && PostOffset >= kMinOffset &&
3235 PostOffset % 16 == 0) {
3236 *TotalOffset = Offset;
3237 return true;
3238 }
3239 }
3240 return false;
3241}
3242
3243void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE,
3245 MemRefs.clear();
3246 for (auto &TS : TSE) {
3247 MachineInstr *MI = TS.MI;
3248 // An instruction without memory operands may access anything. Be
3249 // conservative and return an empty list.
3250 if (MI->memoperands_empty()) {
3251 MemRefs.clear();
3252 return;
3253 }
3254 MemRefs.append(MI->memoperands_begin(), MI->memoperands_end());
3255 }
3256}
3257
3258void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI,
3259 const AArch64FrameLowering *TFI,
3260 bool TryMergeSPUpdate) {
3261 if (TagStores.empty())
3262 return;
3263 TagStoreInstr &FirstTagStore = TagStores[0];
3264 TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1];
3265 Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size;
3266 DL = TagStores[0].MI->getDebugLoc();
3267
3268 Register Reg;
3269 FrameRegOffset = TFI->resolveFrameOffsetReference(
3270 *MF, FirstTagStore.Offset, false /*isFixed*/,
3271 TargetStackID::Default /*StackID*/, Reg,
3272 /*PreferFP=*/false, /*ForSimm=*/true);
3273 FrameReg = Reg;
3274 FrameRegUpdate = std::nullopt;
3275
3276 mergeMemRefs(TagStores, CombinedMemRefs);
3277
3278 LLVM_DEBUG({
3279 dbgs() << "Replacing adjacent STG instructions:\n";
3280 for (const auto &Instr : TagStores) {
3281 dbgs() << " " << *Instr.MI;
3282 }
3283 });
3284
3285 // Size threshold where a loop becomes shorter than a linear sequence of
3286 // tagging instructions.
3287 const int kSetTagLoopThreshold = 176;
3288 if (Size < kSetTagLoopThreshold) {
3289 if (TagStores.size() < 2)
3290 return;
3291 emitUnrolled(InsertI);
3292 } else {
3293 MachineInstr *UpdateInstr = nullptr;
3294 int64_t TotalOffset = 0;
3295 if (TryMergeSPUpdate) {
3296 // See if we can merge base register update into the STGloop.
3297 // This is done in AArch64LoadStoreOptimizer for "normal" stores,
3298 // but STGloop is way too unusual for that, and also it only
3299 // realistically happens in function epilogue. Also, STGloop is expanded
3300 // before that pass.
3301 if (InsertI != MBB->end() &&
3302 canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getFixed() + Size,
3303 &TotalOffset)) {
3304 UpdateInstr = &*InsertI++;
3305 LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n "
3306 << *UpdateInstr);
3307 }
3308 }
3309
3310 if (!UpdateInstr && TagStores.size() < 2)
3311 return;
3312
3313 if (UpdateInstr) {
3314 FrameRegUpdate = TotalOffset;
3315 FrameRegUpdateFlags = UpdateInstr->getFlags();
3316 }
3317 emitLoop(InsertI);
3318 if (UpdateInstr)
3319 UpdateInstr->eraseFromParent();
3320 }
3321
3322 for (auto &TS : TagStores)
3323 TS.MI->eraseFromParent();
3324}
3325
3326bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset,
3327 int64_t &Size, bool &ZeroData) {
3328 MachineFunction &MF = *MI.getParent()->getParent();
3329 const MachineFrameInfo &MFI = MF.getFrameInfo();
3330
3331 unsigned Opcode = MI.getOpcode();
3332 ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGi ||
3333 Opcode == AArch64::STZ2Gi);
3334
3335 if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) {
3336 if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead())
3337 return false;
3338 if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI())
3339 return false;
3340 Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex());
3341 Size = MI.getOperand(2).getImm();
3342 return true;
3343 }
3344
3345 if (Opcode == AArch64::STGi || Opcode == AArch64::STZGi)
3346 Size = 16;
3347 else if (Opcode == AArch64::ST2Gi || Opcode == AArch64::STZ2Gi)
3348 Size = 32;
3349 else
3350 return false;
3351
3352 if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI())
3353 return false;
3354
3355 Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) +
3356 16 * MI.getOperand(2).getImm();
3357 return true;
3358}
3359
3360// Detect a run of memory tagging instructions for adjacent stack frame slots,
3361// and replace them with a shorter instruction sequence:
3362// * replace STG + STG with ST2G
3363// * replace STGloop + STGloop with STGloop
3364// This code needs to run when stack slot offsets are already known, but before
3365// FrameIndex operands in STG instructions are eliminated.
3367 const AArch64FrameLowering *TFI,
3368 RegScavenger *RS) {
3369 bool FirstZeroData;
3370 int64_t Size, Offset;
3371 MachineInstr &MI = *II;
3372 MachineBasicBlock *MBB = MI.getParent();
3374 if (&MI == &MBB->instr_back())
3375 return II;
3376 if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData))
3377 return II;
3378
3380 Instrs.emplace_back(&MI, Offset, Size);
3381
3382 constexpr int kScanLimit = 10;
3383 int Count = 0;
3385 NextI != E && Count < kScanLimit; ++NextI) {
3386 MachineInstr &MI = *NextI;
3387 bool ZeroData;
3388 int64_t Size, Offset;
3389 // Collect instructions that update memory tags with a FrameIndex operand
3390 // and (when applicable) constant size, and whose output registers are dead
3391 // (the latter is almost always the case in practice). Since these
3392 // instructions effectively have no inputs or outputs, we are free to skip
3393 // any non-aliasing instructions in between without tracking used registers.
3394 if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) {
3395 if (ZeroData != FirstZeroData)
3396 break;
3397 Instrs.emplace_back(&MI, Offset, Size);
3398 continue;
3399 }
3400
3401 // Only count non-transient, non-tagging instructions toward the scan
3402 // limit.
3403 if (!MI.isTransient())
3404 ++Count;
3405
3406 // Just in case, stop before the epilogue code starts.
3407 if (MI.getFlag(MachineInstr::FrameSetup) ||
3409 break;
3410
3411 // Reject anything that may alias the collected instructions.
3412 if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects() || MI.isCall())
3413 break;
3414 }
3415
3416 // New code will be inserted after the last tagging instruction we've found.
3417 MachineBasicBlock::iterator InsertI = Instrs.back().MI;
3418
3419 // All the gathered stack tag instructions are merged and placed after
3420 // last tag store in the list. The check should be made if the nzcv
3421 // flag is live at the point where we are trying to insert. Otherwise
3422 // the nzcv flag might get clobbered if any stg loops are present.
3423
3424 // FIXME : This approach of bailing out from merge is conservative in
3425 // some ways like even if stg loops are not present after merge the
3426 // insert list, this liveness check is done (which is not needed).
3428 LiveRegs.addLiveOuts(*MBB);
3429 for (auto I = MBB->rbegin();; ++I) {
3430 MachineInstr &MI = *I;
3431 if (MI == InsertI)
3432 break;
3433 LiveRegs.stepBackward(*I);
3434 }
3435 InsertI++;
3436 if (LiveRegs.contains(AArch64::NZCV))
3437 return InsertI;
3438
3439 llvm::stable_sort(Instrs,
3440 [](const TagStoreInstr &Left, const TagStoreInstr &Right) {
3441 return Left.Offset < Right.Offset;
3442 });
3443
3444 // Make sure that we don't have any overlapping stores.
3445 int64_t CurOffset = Instrs[0].Offset;
3446 for (auto &Instr : Instrs) {
3447 if (CurOffset > Instr.Offset)
3448 return NextI;
3449 CurOffset = Instr.Offset + Instr.Size;
3450 }
3451
3452 // Find contiguous runs of tagged memory and emit shorter instruction
3453 // sequences for them when possible.
3454 TagStoreEdit TSE(MBB, FirstZeroData);
3455 std::optional<int64_t> EndOffset;
3456 for (auto &Instr : Instrs) {
3457 if (EndOffset && *EndOffset != Instr.Offset) {
3458 // Found a gap.
3459 TSE.emitCode(InsertI, TFI, /*TryMergeSPUpdate = */ false);
3460 TSE.clear();
3461 }
3462
3463 TSE.addInstruction(Instr);
3464 EndOffset = Instr.Offset + Instr.Size;
3465 }
3466
3467 const MachineFunction *MF = MBB->getParent();
3468 // Multiple FP/SP updates in a loop cannot be described by CFI instructions.
3469 TSE.emitCode(
3470 InsertI, TFI, /*TryMergeSPUpdate = */
3472
3473 return InsertI;
3474}
3475} // namespace
3476
3478 MachineFunction &MF, RegScavenger *RS = nullptr) const {
3479 for (auto &BB : MF)
3480 for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();) {
3482 II = tryMergeAdjacentSTG(II, this, RS);
3483 }
3484
3485 // By the time this method is called, most of the prologue/epilogue code is
3486 // already emitted, whether its location was affected by the shrink-wrapping
3487 // optimization or not.
3488 if (!MF.getFunction().hasFnAttribute(Attribute::Naked) &&
3489 shouldSignReturnAddressEverywhere(MF))
3491}
3492
3493/// For Win64 AArch64 EH, the offset to the Unwind object is from the SP
3494/// before the update. This is easily retrieved as it is exactly the offset
3495/// that is set in processFunctionBeforeFrameFinalized.
3497 const MachineFunction &MF, int FI, Register &FrameReg,
3498 bool IgnoreSPUpdates) const {
3499 const MachineFrameInfo &MFI = MF.getFrameInfo();
3500 if (IgnoreSPUpdates) {
3501 LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is "
3502 << MFI.getObjectOffset(FI) << "\n");
3503 FrameReg = AArch64::SP;
3504 return StackOffset::getFixed(MFI.getObjectOffset(FI));
3505 }
3506
3507 // Go to common code if we cannot provide sp + offset.
3508 if (MFI.hasVarSizedObjects() ||
3511 return getFrameIndexReference(MF, FI, FrameReg);
3512
3513 FrameReg = AArch64::SP;
3514 return getStackOffset(MF, MFI.getObjectOffset(FI));
3515}
3516
3517/// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
3518/// the parent's frame pointer
3520 const MachineFunction &MF) const {
3521 return 0;
3522}
3523
3524/// Funclets only need to account for space for the callee saved registers,
3525/// as the locals are accounted for in the parent's stack frame.
3527 const MachineFunction &MF) const {
3528 // This is the size of the pushed CSRs.
3529 unsigned CSSize =
3530 MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize();
3531 // This is the amount of stack a funclet needs to allocate.
3532 return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(),
3533 getStackAlign());
3534}
3535
3536namespace {
3537struct FrameObject {
3538 bool IsValid = false;
3539 // Index of the object in MFI.
3540 int ObjectIndex = 0;
3541 // Group ID this object belongs to.
3542 int GroupIndex = -1;
3543 // This object should be placed first (closest to SP).
3544 bool ObjectFirst = false;
3545 // This object's group (which always contains the object with
3546 // ObjectFirst==true) should be placed first.
3547 bool GroupFirst = false;
3548
3549 // Used to distinguish between FP and GPR accesses. The values are decided so
3550 // that they sort FPR < Hazard < GPR and they can be or'd together.
3551 unsigned Accesses = 0;
3552 enum { AccessFPR = 1, AccessHazard = 2, AccessGPR = 4 };
3553};
3554
3555class GroupBuilder {
3556 SmallVector<int, 8> CurrentMembers;
3557 int NextGroupIndex = 0;
3558 std::vector<FrameObject> &Objects;
3559
3560public:
3561 GroupBuilder(std::vector<FrameObject> &Objects) : Objects(Objects) {}
3562 void AddMember(int Index) { CurrentMembers.push_back(Index); }
3563 void EndCurrentGroup() {
3564 if (CurrentMembers.size() > 1) {
3565 // Create a new group with the current member list. This might remove them
3566 // from their pre-existing groups. That's OK, dealing with overlapping
3567 // groups is too hard and unlikely to make a difference.
3568 LLVM_DEBUG(dbgs() << "group:");
3569 for (int Index : CurrentMembers) {
3570 Objects[Index].GroupIndex = NextGroupIndex;
3571 LLVM_DEBUG(dbgs() << " " << Index);
3572 }
3573 LLVM_DEBUG(dbgs() << "\n");
3574 NextGroupIndex++;
3575 }
3576 CurrentMembers.clear();
3577 }
3578};
3579
3580bool FrameObjectCompare(const FrameObject &A, const FrameObject &B) {
3581 // Objects at a lower index are closer to FP; objects at a higher index are
3582 // closer to SP.
3583 //
3584 // For consistency in our comparison, all invalid objects are placed
3585 // at the end. This also allows us to stop walking when we hit the
3586 // first invalid item after it's all sorted.
3587 //
3588 // If we want to include a stack hazard region, order FPR accesses < the
3589 // hazard object < GPRs accesses in order to create a separation between the
3590 // two. For the Accesses field 1 = FPR, 2 = Hazard Object, 4 = GPR.
3591 //
3592 // Otherwise the "first" object goes first (closest to SP), followed by the
3593 // members of the "first" group.
3594 //
3595 // The rest are sorted by the group index to keep the groups together.
3596 // Higher numbered groups are more likely to be around longer (i.e. untagged
3597 // in the function epilogue and not at some earlier point). Place them closer
3598 // to SP.
3599 //
3600 // If all else equal, sort by the object index to keep the objects in the
3601 // original order.
3602 return std::make_tuple(!A.IsValid, A.Accesses, A.ObjectFirst, A.GroupFirst,
3603 A.GroupIndex, A.ObjectIndex) <
3604 std::make_tuple(!B.IsValid, B.Accesses, B.ObjectFirst, B.GroupFirst,
3605 B.GroupIndex, B.ObjectIndex);
3606}
3607} // namespace
3608
3610 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3612
3613 if ((!OrderFrameObjects && !AFI.hasSplitSVEObjects()) ||
3614 ObjectsToAllocate.empty())
3615 return;
3616
3617 const MachineFrameInfo &MFI = MF.getFrameInfo();
3618 std::vector<FrameObject> FrameObjects(MFI.getObjectIndexEnd());
3619 for (auto &Obj : ObjectsToAllocate) {
3620 FrameObjects[Obj].IsValid = true;
3621 FrameObjects[Obj].ObjectIndex = Obj;
3622 }
3623
3624 // Identify FPR vs GPR slots for hazards, and stack slots that are tagged at
3625 // the same time.
3626 GroupBuilder GB(FrameObjects);
3627 for (auto &MBB : MF) {
3628 for (auto &MI : MBB) {
3629 if (MI.isDebugInstr())
3630 continue;
3631
3632 if (AFI.hasStackHazardSlotIndex()) {
3633 std::optional<int> FI = getLdStFrameID(MI, MFI);
3634 if (FI && *FI >= 0 && *FI < (int)FrameObjects.size()) {
3635 if (MFI.getStackID(*FI) == TargetStackID::ScalableVector ||
3637 FrameObjects[*FI].Accesses |= FrameObject::AccessFPR;
3638 else
3639 FrameObjects[*FI].Accesses |= FrameObject::AccessGPR;
3640 }
3641 }
3642
3643 int OpIndex;
3644 switch (MI.getOpcode()) {
3645 case AArch64::STGloop:
3646 case AArch64::STZGloop:
3647 OpIndex = 3;
3648 break;
3649 case AArch64::STGi:
3650 case AArch64::STZGi:
3651 case AArch64::ST2Gi:
3652 case AArch64::STZ2Gi:
3653 OpIndex = 1;
3654 break;
3655 default:
3656 OpIndex = -1;
3657 }
3658
3659 int TaggedFI = -1;
3660 if (OpIndex >= 0) {
3661 const MachineOperand &MO = MI.getOperand(OpIndex);
3662 if (MO.isFI()) {
3663 int FI = MO.getIndex();
3664 if (FI >= 0 && FI < MFI.getObjectIndexEnd() &&
3665 FrameObjects[FI].IsValid)
3666 TaggedFI = FI;
3667 }
3668 }
3669
3670 // If this is a stack tagging instruction for a slot that is not part of a
3671 // group yet, either start a new group or add it to the current one.
3672 if (TaggedFI >= 0)
3673 GB.AddMember(TaggedFI);
3674 else
3675 GB.EndCurrentGroup();
3676 }
3677 // Groups should never span multiple basic blocks.
3678 GB.EndCurrentGroup();
3679 }
3680
3681 if (AFI.hasStackHazardSlotIndex()) {
3682 FrameObjects[AFI.getStackHazardSlotIndex()].Accesses =
3683 FrameObject::AccessHazard;
3684 // If a stack object is unknown or both GPR and FPR, sort it into GPR.
3685 for (auto &Obj : FrameObjects)
3686 if (!Obj.Accesses ||
3687 Obj.Accesses == (FrameObject::AccessGPR | FrameObject::AccessFPR))
3688 Obj.Accesses = FrameObject::AccessGPR;
3689 }
3690
3691 // If the function's tagged base pointer is pinned to a stack slot, we want to
3692 // put that slot first when possible. This will likely place it at SP + 0,
3693 // and save one instruction when generating the base pointer because IRG does
3694 // not allow an immediate offset.
3695 std::optional<int> TBPI = AFI.getTaggedBasePointerIndex();
3696 if (TBPI) {
3697 FrameObjects[*TBPI].ObjectFirst = true;
3698 FrameObjects[*TBPI].GroupFirst = true;
3699 int FirstGroupIndex = FrameObjects[*TBPI].GroupIndex;
3700 if (FirstGroupIndex >= 0)
3701 for (FrameObject &Object : FrameObjects)
3702 if (Object.GroupIndex == FirstGroupIndex)
3703 Object.GroupFirst = true;
3704 }
3705
3706 llvm::stable_sort(FrameObjects, FrameObjectCompare);
3707
3708 int i = 0;
3709 for (auto &Obj : FrameObjects) {
3710 // All invalid items are sorted at the end, so it's safe to stop.
3711 if (!Obj.IsValid)
3712 break;
3713 ObjectsToAllocate[i++] = Obj.ObjectIndex;
3714 }
3715
3716 LLVM_DEBUG({
3717 dbgs() << "Final frame order:\n";
3718 for (auto &Obj : FrameObjects) {
3719 if (!Obj.IsValid)
3720 break;
3721 dbgs() << " " << Obj.ObjectIndex << ": group " << Obj.GroupIndex;
3722 if (Obj.ObjectFirst)
3723 dbgs() << ", first";
3724 if (Obj.GroupFirst)
3725 dbgs() << ", group-first";
3726 dbgs() << "\n";
3727 }
3728 });
3729}
3730
3731/// Emit a loop to decrement SP until it is equal to TargetReg, with probes at
3732/// least every ProbeSize bytes. Returns an iterator of the first instruction
3733/// after the loop. The difference between SP and TargetReg must be an exact
3734/// multiple of ProbeSize.
3736AArch64FrameLowering::inlineStackProbeLoopExactMultiple(
3737 MachineBasicBlock::iterator MBBI, int64_t ProbeSize,
3738 Register TargetReg) const {
3739 MachineBasicBlock &MBB = *MBBI->getParent();
3740 MachineFunction &MF = *MBB.getParent();
3741 const AArch64InstrInfo *TII =
3742 MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
3743 DebugLoc DL = MBB.findDebugLoc(MBBI);
3744
3745 MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator());
3746 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock());
3747 MF.insert(MBBInsertPoint, LoopMBB);
3748 MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock());
3749 MF.insert(MBBInsertPoint, ExitMBB);
3750
3751 // SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not encodable
3752 // in SUB).
3753 emitFrameOffset(*LoopMBB, LoopMBB->end(), DL, AArch64::SP, AArch64::SP,
3754 StackOffset::getFixed(-ProbeSize), TII,
3756 // LDR XZR, [SP]
3757 BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::LDRXui))
3758 .addDef(AArch64::XZR)
3759 .addReg(AArch64::SP)
3760 .addImm(0)
3764 Align(8)))
3766 // CMP SP, TargetReg
3767 BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::SUBSXrx64),
3768 AArch64::XZR)
3769 .addReg(AArch64::SP)
3770 .addReg(TargetReg)
3773 // B.CC Loop
3774 BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::Bcc))
3776 .addMBB(LoopMBB)
3778
3779 LoopMBB->addSuccessor(ExitMBB);
3780 LoopMBB->addSuccessor(LoopMBB);
3781 // Synthesize the exit MBB.
3782 ExitMBB->splice(ExitMBB->end(), &MBB, MBBI, MBB.end());
3784 MBB.addSuccessor(LoopMBB);
3785 // Update liveins.
3786 fullyRecomputeLiveIns({ExitMBB, LoopMBB});
3787
3788 return ExitMBB->begin();
3789}
3790
3791void AArch64FrameLowering::inlineStackProbeFixed(
3792 MachineBasicBlock::iterator MBBI, Register ScratchReg, int64_t FrameSize,
3793 StackOffset CFAOffset) const {
3794 MachineBasicBlock *MBB = MBBI->getParent();
3795 MachineFunction &MF = *MBB->getParent();
3796 const AArch64InstrInfo *TII =
3797 MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
3798 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3799 bool EmitAsyncCFI = AFI->needsAsyncDwarfUnwindInfo(MF);
3800 bool HasFP = hasFP(MF);
3801
3802 DebugLoc DL;
3803 int64_t ProbeSize = MF.getInfo<AArch64FunctionInfo>()->getStackProbeSize();
3804 int64_t NumBlocks = FrameSize / ProbeSize;
3805 int64_t ResidualSize = FrameSize % ProbeSize;
3806
3807 LLVM_DEBUG(dbgs() << "Stack probing: total " << FrameSize << " bytes, "
3808 << NumBlocks << " blocks of " << ProbeSize
3809 << " bytes, plus " << ResidualSize << " bytes\n");
3810
3811 // Decrement SP by NumBlock * ProbeSize bytes, with either unrolled or
3812 // ordinary loop.
3813 if (NumBlocks <= AArch64::StackProbeMaxLoopUnroll) {
3814 for (int i = 0; i < NumBlocks; ++i) {
3815 // SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not
3816 // encodable in a SUB).
3817 emitFrameOffset(*MBB, MBBI, DL, AArch64::SP, AArch64::SP,
3818 StackOffset::getFixed(-ProbeSize), TII,
3819 MachineInstr::FrameSetup, false, false, nullptr,
3820 EmitAsyncCFI && !HasFP, CFAOffset);
3821 CFAOffset += StackOffset::getFixed(ProbeSize);
3822 // LDR XZR, [SP]
3823 BuildMI(*MBB, MBBI, DL, TII->get(AArch64::LDRXui))
3824 .addDef(AArch64::XZR)
3825 .addReg(AArch64::SP)
3826 .addImm(0)
3830 Align(8)))
3832 }
3833 } else if (NumBlocks != 0) {
3834 // SUB ScratchReg, SP, #FrameSize (or equivalent if FrameSize is not
3835 // encodable in ADD). ScrathReg may temporarily become the CFA register.
3836 emitFrameOffset(*MBB, MBBI, DL, ScratchReg, AArch64::SP,
3837 StackOffset::getFixed(-ProbeSize * NumBlocks), TII,
3838 MachineInstr::FrameSetup, false, false, nullptr,
3839 EmitAsyncCFI && !HasFP, CFAOffset);
3840 CFAOffset += StackOffset::getFixed(ProbeSize * NumBlocks);
3841 MBBI = inlineStackProbeLoopExactMultiple(MBBI, ProbeSize, ScratchReg);
3842 MBB = MBBI->getParent();
3843 if (EmitAsyncCFI && !HasFP) {
3844 // Set the CFA register back to SP.
3845 CFIInstBuilder(*MBB, MBBI, MachineInstr::FrameSetup)
3846 .buildDefCFARegister(AArch64::SP);
3847 }
3848 }
3849
3850 if (ResidualSize != 0) {
3851 // SUB SP, SP, #ResidualSize (or equivalent if ResidualSize is not encodable
3852 // in SUB).
3853 emitFrameOffset(*MBB, MBBI, DL, AArch64::SP, AArch64::SP,
3854 StackOffset::getFixed(-ResidualSize), TII,
3855 MachineInstr::FrameSetup, false, false, nullptr,
3856 EmitAsyncCFI && !HasFP, CFAOffset);
3857 if (ResidualSize > AArch64::StackProbeMaxUnprobedStack) {
3858 // LDR XZR, [SP]
3859 BuildMI(*MBB, MBBI, DL, TII->get(AArch64::LDRXui))
3860 .addDef(AArch64::XZR)
3861 .addReg(AArch64::SP)
3862 .addImm(0)
3866 Align(8)))
3868 }
3869 }
3870}
3871
3872void AArch64FrameLowering::inlineStackProbe(MachineFunction &MF,
3873 MachineBasicBlock &MBB) const {
3874 // Get the instructions that need to be replaced. We emit at most two of
3875 // these. Remember them in order to avoid complications coming from the need
3876 // to traverse the block while potentially creating more blocks.
3877 SmallVector<MachineInstr *, 4> ToReplace;
3878 for (MachineInstr &MI : MBB)
3879 if (MI.getOpcode() == AArch64::PROBED_STACKALLOC ||
3880 MI.getOpcode() == AArch64::PROBED_STACKALLOC_VAR)
3881 ToReplace.push_back(&MI);
3882
3883 for (MachineInstr *MI : ToReplace) {
3884 if (MI->getOpcode() == AArch64::PROBED_STACKALLOC) {
3885 Register ScratchReg = MI->getOperand(0).getReg();
3886 int64_t FrameSize = MI->getOperand(1).getImm();
3887 StackOffset CFAOffset = StackOffset::get(MI->getOperand(2).getImm(),
3888 MI->getOperand(3).getImm());
3889 inlineStackProbeFixed(MI->getIterator(), ScratchReg, FrameSize,
3890 CFAOffset);
3891 } else {
3892 assert(MI->getOpcode() == AArch64::PROBED_STACKALLOC_VAR &&
3893 "Stack probe pseudo-instruction expected");
3894 const AArch64InstrInfo *TII =
3895 MI->getMF()->getSubtarget<AArch64Subtarget>().getInstrInfo();
3896 Register TargetReg = MI->getOperand(0).getReg();
3897 (void)TII->probedStackAlloc(MI->getIterator(), TargetReg, true);
3898 }
3899 MI->eraseFromParent();
3900 }
3901}
3902
3905 NotAccessed = 0, // Stack object not accessed by load/store instructions.
3906 GPR = 1 << 0, // A general purpose register.
3907 PPR = 1 << 1, // A predicate register.
3908 FPR = 1 << 2, // A floating point/Neon/SVE register.
3909 };
3910
3911 int Idx;
3913 int64_t Size;
3914 unsigned AccessTypes;
3915
3917
3918 bool operator<(const StackAccess &Rhs) const {
3919 return std::make_tuple(start(), Idx) <
3920 std::make_tuple(Rhs.start(), Rhs.Idx);
3921 }
3922
3923 bool isCPU() const {
3924 // Predicate register load and store instructions execute on the CPU.
3926 }
3927 bool isSME() const { return AccessTypes & AccessType::FPR; }
3928 bool isMixed() const { return isCPU() && isSME(); }
3929
3930 int64_t start() const { return Offset.getFixed() + Offset.getScalable(); }
3931 int64_t end() const { return start() + Size; }
3932
3933 std::string getTypeString() const {
3934 switch (AccessTypes) {
3935 case AccessType::FPR:
3936 return "FPR";
3937 case AccessType::PPR:
3938 return "PPR";
3939 case AccessType::GPR:
3940 return "GPR";
3942 return "NA";
3943 default:
3944 return "Mixed";
3945 }
3946 }
3947
3948 void print(raw_ostream &OS) const {
3949 OS << getTypeString() << " stack object at [SP"
3950 << (Offset.getFixed() < 0 ? "" : "+") << Offset.getFixed();
3951 if (Offset.getScalable())
3952 OS << (Offset.getScalable() < 0 ? "" : "+") << Offset.getScalable()
3953 << " * vscale";
3954 OS << "]";
3955 }
3956};
3957
3958static inline raw_ostream &operator<<(raw_ostream &OS, const StackAccess &SA) {
3959 SA.print(OS);
3960 return OS;
3961}
3962
3963void AArch64FrameLowering::emitRemarks(
3964 const MachineFunction &MF, MachineOptimizationRemarkEmitter *ORE) const {
3965
3966 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
3968 return;
3969
3970 unsigned StackHazardSize = getStackHazardSize(MF);
3971 const uint64_t HazardSize =
3972 (StackHazardSize) ? StackHazardSize : StackHazardRemarkSize;
3973
3974 if (HazardSize == 0)
3975 return;
3976
3977 const MachineFrameInfo &MFI = MF.getFrameInfo();
3978 // Bail if function has no stack objects.
3979 if (!MFI.hasStackObjects())
3980 return;
3981
3982 std::vector<StackAccess> StackAccesses(MFI.getNumObjects());
3983
3984 size_t NumFPLdSt = 0;
3985 size_t NumNonFPLdSt = 0;
3986
3987 // Collect stack accesses via Load/Store instructions.
3988 for (const MachineBasicBlock &MBB : MF) {
3989 for (const MachineInstr &MI : MBB) {
3990 if (!MI.mayLoadOrStore() || MI.getNumMemOperands() < 1)
3991 continue;
3992 for (MachineMemOperand *MMO : MI.memoperands()) {
3993 std::optional<int> FI = getMMOFrameID(MMO, MFI);
3994 if (FI && !MFI.isDeadObjectIndex(*FI)) {
3995 int FrameIdx = *FI;
3996
3997 size_t ArrIdx = FrameIdx + MFI.getNumFixedObjects();
3998 if (StackAccesses[ArrIdx].AccessTypes == StackAccess::NotAccessed) {
3999 StackAccesses[ArrIdx].Idx = FrameIdx;
4000 StackAccesses[ArrIdx].Offset =
4001 getFrameIndexReferenceFromSP(MF, FrameIdx);
4002 StackAccesses[ArrIdx].Size = MFI.getObjectSize(FrameIdx);
4003 }
4004
4005 unsigned RegTy = StackAccess::AccessType::GPR;
4006 if (MFI.hasScalableStackID(FrameIdx))
4009 RegTy = StackAccess::FPR;
4010
4011 StackAccesses[ArrIdx].AccessTypes |= RegTy;
4012
4013 if (RegTy == StackAccess::FPR)
4014 ++NumFPLdSt;
4015 else
4016 ++NumNonFPLdSt;
4017 }
4018 }
4019 }
4020 }
4021
4022 if (NumFPLdSt == 0 || NumNonFPLdSt == 0)
4023 return;
4024
4025 llvm::sort(StackAccesses);
4026 llvm::erase_if(StackAccesses, [](const StackAccess &S) {
4028 });
4029
4032
4033 if (StackAccesses.front().isMixed())
4034 MixedObjects.push_back(&StackAccesses.front());
4035
4036 for (auto It = StackAccesses.begin(), End = std::prev(StackAccesses.end());
4037 It != End; ++It) {
4038 const auto &First = *It;
4039 const auto &Second = *(It + 1);
4040
4041 if (Second.isMixed())
4042 MixedObjects.push_back(&Second);
4043
4044 if ((First.isSME() && Second.isCPU()) ||
4045 (First.isCPU() && Second.isSME())) {
4046 uint64_t Distance = static_cast<uint64_t>(Second.start() - First.end());
4047 if (Distance < HazardSize)
4048 HazardPairs.emplace_back(&First, &Second);
4049 }
4050 }
4051
4052 auto EmitRemark = [&](llvm::StringRef Str) {
4053 ORE->emit([&]() {
4054 auto R = MachineOptimizationRemarkAnalysis(
4055 "sme", "StackHazard", MF.getFunction().getSubprogram(), &MF.front());
4056 return R << formatv("stack hazard in '{0}': ", MF.getName()).str() << Str;
4057 });
4058 };
4059
4060 for (const auto &P : HazardPairs)
4061 EmitRemark(formatv("{0} is too close to {1}", *P.first, *P.second).str());
4062
4063 for (const auto *Obj : MixedObjects)
4064 EmitRemark(
4065 formatv("{0} accessed by both GP and FP instructions", *Obj).str());
4066}
unsigned const MachineRegisterInfo * MRI
static void getLiveRegsForEntryMBB(LivePhysRegs &LiveRegs, const MachineBasicBlock &MBB)
static const unsigned DefaultSafeSPDisplacement
This is the biggest offset to the stack pointer we can encode in aarch64 instructions (without using ...
static bool produceCompactUnwindFrame(const AArch64FrameLowering &, MachineFunction &MF)
static cl::opt< bool > StackTaggingMergeSetTag("stack-tagging-merge-settag", cl::desc("merge settag instruction in function epilog"), cl::init(true), cl::Hidden)
bool enableMultiVectorSpillFill(const AArch64Subtarget &Subtarget, MachineFunction &MF)
static std::optional< int > getLdStFrameID(const MachineInstr &MI, const MachineFrameInfo &MFI)
static cl::opt< bool > SplitSVEObjects("aarch64-split-sve-objects", cl::desc("Split allocation of ZPR & PPR objects"), cl::init(true), cl::Hidden)
static cl::opt< bool > StackHazardInNonStreaming("aarch64-stack-hazard-in-non-streaming", cl::init(false), cl::Hidden)
void computeCalleeSaveRegisterPairs(const AArch64FrameLowering &AFL, MachineFunction &MF, ArrayRef< CalleeSavedInfo > CSI, const TargetRegisterInfo *TRI, SmallVectorImpl< RegPairInfo > &RegPairs, bool NeedsFrameRecord)
static cl::opt< bool > OrderFrameObjects("aarch64-order-frame-objects", cl::desc("sort stack allocations"), cl::init(true), cl::Hidden)
static cl::opt< bool > DisableMultiVectorSpillFill("aarch64-disable-multivector-spill-fill", cl::desc("Disable use of LD/ST pairs for SME2 or SVE2p1"), cl::init(false), cl::Hidden)
static cl::opt< bool > EnableRedZone("aarch64-redzone", cl::desc("enable use of redzone on AArch64"), cl::init(false), cl::Hidden)
static bool invalidateRegisterPairing(bool SpillExtendedVolatile, unsigned SpillCount, unsigned Reg1, unsigned Reg2, bool UsesWinAAPCS, bool NeedsWinCFI, bool NeedsFrameRecord, const TargetRegisterInfo *TRI)
Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
cl::opt< bool > EnableHomogeneousPrologEpilog("homogeneous-prolog-epilog", cl::Hidden, cl::desc("Emit homogeneous prologue and epilogue for the size " "optimization (default = off)"))
static bool isLikelyToHaveSVEStack(const AArch64FrameLowering &AFL, const MachineFunction &MF)
static bool invalidateWindowsRegisterPairing(bool SpillExtendedVolatile, unsigned SpillCount, unsigned Reg1, unsigned Reg2, bool NeedsWinCFI, const TargetRegisterInfo *TRI)
static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg)
static SVEStackSizes determineSVEStackSizes(MachineFunction &MF, AssignObjectOffsets AssignOffsets)
Process all the SVE stack objects and the SVE stack size and offsets for each object.
static bool isTargetWindows(const MachineFunction &MF)
static unsigned estimateRSStackSizeLimit(MachineFunction &MF)
Look at each instruction that references stack frames and return the stack size limit beyond which so...
static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI, int &Min, int &Max)
returns true if there are any SVE callee saves.
static cl::opt< unsigned > StackHazardRemarkSize("aarch64-stack-hazard-remark-size", cl::init(0), cl::Hidden)
static MCRegister getRegisterOrZero(MCRegister Reg, bool HasSVE)
static unsigned getStackHazardSize(const MachineFunction &MF)
MCRegister findFreePredicateReg(BitVector &SavedRegs)
static bool isPPRAccess(const MachineInstr &MI)
static std::optional< int > getMMOFrameID(MachineMemOperand *MMO, const MachineFrameInfo &MFI)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file contains the declaration of the AArch64PrologueEmitter and AArch64EpilogueEmitter classes,...
static const int kSetTagLoopThreshold
static int getArgumentStackToRestore(MachineFunction &MF, MachineBasicBlock &MBB)
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
This file contains the simple types necessary to represent the attributes associated with functions a...
#define CASE(ATTRNAME, AANAME,...)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
DXIL Forward Handle Accesses
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
static std::string getTypeString(Type *T)
Definition LLParser.cpp:67
This file implements the LivePhysRegs utility for tracking liveness of physical registers.
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
#define H(x, y, z)
Definition MD5.cpp:56
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
uint64_t IntrinsicInst * II
#define P(N)
This file declares the machine register scavenger class.
unsigned OpIndex
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition Value.cpp:487
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
StackOffset getSVEStackSize(const MachineFunction &MF) const
Returns the size of the entire SVE stackframe (PPRs + ZPRs).
StackOffset getZPRStackSize(const MachineFunction &MF) const
Returns the size of the entire ZPR stackframe (calleesaves + spills).
void processFunctionBeforeFrameIndicesReplaced(MachineFunction &MF, RegScavenger *RS) const override
processFunctionBeforeFrameIndicesReplaced - This method is called immediately before MO_FrameIndex op...
MachineBasicBlock::iterator eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const override
This method is called during prolog/epilog code insertion to eliminate call frame setup and destroy p...
bool canUseAsPrologue(const MachineBasicBlock &MBB) const override
Check whether or not the given MBB can be used as a prologue for the target.
bool enableStackSlotScavenging(const MachineFunction &MF) const override
Returns true if the stack slot holes in the fixed and callee-save stack area should be used when allo...
bool assignCalleeSavedSpillSlots(MachineFunction &MF, const TargetRegisterInfo *TRI, std::vector< CalleeSavedInfo > &CSI) const override
assignCalleeSavedSpillSlots - Allows target to override spill slot assignment logic.
bool spillCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, ArrayRef< CalleeSavedInfo > CSI, const TargetRegisterInfo *TRI) const override
spillCalleeSavedRegisters - Issues instruction(s) to spill all callee saved registers and returns tru...
bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, MutableArrayRef< CalleeSavedInfo > CSI, const TargetRegisterInfo *TRI) const override
restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee saved registers and returns...
bool enableFullCFIFixup(const MachineFunction &MF) const override
enableFullCFIFixup - Returns true if we may need to fix the unwind information such that it is accura...
StackOffset getFrameIndexReferenceFromSP(const MachineFunction &MF, int FI) const override
getFrameIndexReferenceFromSP - This method returns the offset from the stack pointer to the slot of t...
bool enableCFIFixup(const MachineFunction &MF) const override
Returns true if we may need to fix the unwind information for the function.
StackOffset getNonLocalFrameIndexReference(const MachineFunction &MF, int FI) const override
getNonLocalFrameIndexReference - This method returns the offset used to reference a frame index locat...
TargetStackID::Value getStackIDForScalableVectors() const override
Returns the StackID that scalable vectors should be associated with.
bool hasFPImpl(const MachineFunction &MF) const override
hasFPImpl - Return true if the specified function should have a dedicated frame pointer register.
void emitPrologue(MachineFunction &MF, MachineBasicBlock &MBB) const override
emitProlog/emitEpilog - These methods insert prolog and epilog code into the function.
void resetCFIToInitialState(MachineBasicBlock &MBB) const override
Emit CFI instructions that recreate the state of the unwind information upon function entry.
bool hasReservedCallFrame(const MachineFunction &MF) const override
hasReservedCallFrame - Under normal circumstances, when a frame pointer is not required,...
bool hasSVECalleeSavesAboveFrameRecord(const MachineFunction &MF) const
StackOffset resolveFrameOffsetReference(const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, TargetStackID::Value StackID, Register &FrameReg, bool PreferFP, bool ForSimm) const
bool canUseRedZone(const MachineFunction &MF) const
Can this function use the red zone for local allocations.
bool needsWinCFI(const MachineFunction &MF) const
bool isFPReserved(const MachineFunction &MF) const
Should the Frame Pointer be reserved for the current function?
void processFunctionBeforeFrameFinalized(MachineFunction &MF, RegScavenger *RS) const override
processFunctionBeforeFrameFinalized - This method is called immediately before the specified function...
int getSEHFrameIndexOffset(const MachineFunction &MF, int FI) const
unsigned getWinEHFuncletFrameSize(const MachineFunction &MF) const
Funclets only need to account for space for the callee saved registers, as the locals are accounted f...
void orderFrameObjects(const MachineFunction &MF, SmallVectorImpl< int > &ObjectsToAllocate) const override
Order the symbols in the local stack frame.
void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const override
StackOffset getPPRStackSize(const MachineFunction &MF) const
Returns the size of the entire PPR stackframe (calleesaves + spills + hazard padding).
void determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs, RegScavenger *RS) const override
This method determines which of the registers reported by TargetRegisterInfo::getCalleeSavedRegs() sh...
StackOffset getFrameIndexReference(const MachineFunction &MF, int FI, Register &FrameReg) const override
getFrameIndexReference - Provide a base+offset reference to an FI slot for debug info.
StackOffset getFrameIndexReferencePreferSP(const MachineFunction &MF, int FI, Register &FrameReg, bool IgnoreSPUpdates) const override
For Win64 AArch64 EH, the offset to the Unwind object is from the SP before the update.
StackOffset resolveFrameIndexReference(const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP, bool ForSimm) const
unsigned getWinEHParentFrameOffset(const MachineFunction &MF) const override
The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve the parent's frame pointer...
bool requiresSaveVG(const MachineFunction &MF) const
void emitPacRetPlusLeafHardening(MachineFunction &MF) const
Harden the entire function with pac-ret.
AArch64FunctionInfo - This class is derived from MachineFunctionInfo and contains private AArch64-spe...
unsigned getCalleeSavedStackSize(const MachineFrameInfo &MFI) const
void setCalleeSaveBaseToFrameRecordOffset(int Offset)
SignReturnAddress getSignReturnAddressCondition() const
void setStackSizeSVE(uint64_t ZPR, uint64_t PPR)
std::optional< int > getTaggedBasePointerIndex() const
bool needsDwarfUnwindInfo(const MachineFunction &MF) const
void setSVECalleeSavedStackSize(unsigned ZPR, unsigned PPR)
bool needsAsyncDwarfUnwindInfo(const MachineFunction &MF) const
static bool isTailCallReturnInst(const MachineInstr &MI)
Returns true if MI is one of the TCRETURN* instructions.
static bool isFpOrNEON(Register Reg)
Returns whether the physical register is FP or NEON.
const AArch64RegisterInfo * getRegisterInfo() const override
bool isNeonAvailable() const
Returns true if the target has NEON and the function at runtime is known to have NEON enabled (e....
const AArch64InstrInfo * getInstrInfo() const override
const AArch64TargetLowering * getTargetLowering() const override
bool isSVEorStreamingSVEAvailable() const
Returns true if the target has access to either the full range of SVE instructions,...
bool isStreaming() const
Returns true if the function has a streaming body.
bool hasInlineStackProbe(const MachineFunction &MF) const override
True if stack clash protection is enabled for this functions.
unsigned getRedZoneSize(const Function &F) const
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
bool test(unsigned Idx) const
Definition BitVector.h:480
BitVector & reset()
Definition BitVector.h:411
size_type count() const
count - Returns the number of bits which are set.
Definition BitVector.h:181
BitVector & set()
Definition BitVector.h:370
iterator_range< const_set_bits_iterator > set_bits() const
Definition BitVector.h:159
size_type size() const
size - Returns the number of bits in this bitvector.
Definition BitVector.h:178
Helper class for creating CFI instructions and inserting them into MIR.
The CalleeSavedInfo class tracks the information need to locate where a callee saved register is in t...
A debug info location.
Definition DebugLoc.h:123
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition Function.h:703
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition Function.h:270
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
bool isVarArg() const
isVarArg - Return true if this function takes a variable number of arguments.
Definition Function.h:227
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:730
A set of physical registers with utility functions to track liveness when walking backward/forward th...
bool usesWindowsCFI() const
Definition MCAsmInfo.h:652
Wrapper class representing physical registers. Should be passed by value.
Definition MCRegister.h:41
LLVM_ABI void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
LLVM_ABI iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
reverse_iterator rbegin()
iterator insertAfter(iterator I, MachineInstr *MI)
Insert MI into the instruction list after I.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, bool isAliased=false)
Create a new object at a fixed location on the stack.
bool hasVarSizedObjects() const
This method may be called any time after instruction selection is complete to determine if the stack ...
const AllocaInst * getObjectAllocation(int ObjectIdx) const
Return the underlying Alloca of the specified stack object if it exists.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
bool hasCalls() const
Return true if the current function has any function calls.
bool isFrameAddressTaken() const
This method may be called any time after instruction selection is complete to determine if there is a...
void setObjectOffset(int ObjectIdx, int64_t SPOffset)
Set the stack frame offset of the specified object.
bool isCalleeSavedObjectIndex(int ObjectIdx) const
uint64_t getMaxCallFrameSize() const
Return the maximum size of a call frame that must be allocated for an outgoing function call.
bool hasPatchPoint() const
This method may be called any time after instruction selection is complete to determine if there is a...
bool hasScalableStackID(int ObjectIdx) const
int getStackProtectorIndex() const
Return the index for the stack protector object.
LLVM_ABI int CreateSpillStackObject(uint64_t Size, Align Alignment)
Create a new statically sized stack object that represents a spill slot, returning a nonnegative iden...
LLVM_ABI uint64_t estimateStackSize(const MachineFunction &MF) const
Estimate and return the size of the stack frame.
void setStackID(int ObjectIdx, uint8_t ID)
bool isCalleeSavedInfoValid() const
Has the callee saved info been calculated yet?
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
bool isMaxCallFrameSizeComputed() const
bool hasStackMap() const
This method may be called any time after instruction selection is complete to determine if there is a...
const std::vector< CalleeSavedInfo > & getCalleeSavedInfo() const
Returns a reference to call saved info vector for the current function.
unsigned getNumObjects() const
Return the number of objects.
int getObjectIndexEnd() const
Return one past the maximum frame object index.
bool hasStackProtectorIndex() const
bool hasStackObjects() const
Return true if there are any stack objects in this function.
uint8_t getStackID(int ObjectIdx) const
unsigned getNumFixedObjects() const
Return the number of fixed objects.
void setIsCalleeSavedObjectIndex(int ObjectIdx, bool IsCalleeSaved)
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
int getObjectIndexBegin() const
Return the minimum frame object index.
void setObjectAlignment(int ObjectIdx, Align Alignment)
setObjectAlignment - Change the alignment of the specified stack object.
bool isDeadObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a dead object.
const WinEHFuncInfo * getWinEHFuncInfo() const
getWinEHFuncInfo - Return information about how the current function uses Windows exception handling.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const MachineBasicBlock & front() const
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & setMemRefs(ArrayRef< MachineMemOperand * > MMOs) const
const MachineInstrBuilder & addExternalSymbol(const char *FnName, unsigned TargetFlags=0) const
const MachineInstrBuilder & setMIFlag(MachineInstr::MIFlag Flag) const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addFrameIndex(int Idx) const
const MachineInstrBuilder & addRegMask(const uint32_t *Mask) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & setMIFlags(unsigned Flags) const
const MachineInstrBuilder & addMemOperand(MachineMemOperand *MMO) const
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
Representation of each machine instruction.
void setFlags(unsigned flags)
LLVM_ABI void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
uint32_t getFlags() const
Return the MI flags bitvector.
A description of a memory reference used in the backend.
const PseudoSourceValue * getPseudoValue() const
@ MOVolatile
The memory access is volatile.
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
const Value * getValue() const
Return the base address of the memory access.
MachineOperand class - Representation of each machine instruction operand.
int64_t getImm() const
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
LLVM_ABI void emit(DiagnosticInfoOptimizationBase &OptDiag)
Emit an optimization remark.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
LLVM_ABI bool isLiveIn(Register Reg) const
LLVM_ABI const MCPhysReg * getCalleeSavedRegs() const
Returns list of callee saved registers.
LLVM_ABI bool isPhysRegUsed(MCRegister PhysReg, bool SkipRegMaskTest=false) const
Return true if the specified register is modified or read in this function.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition ArrayRef.h:298
Wrapper class representing virtual and physical registers.
Definition Register.h:20
constexpr bool isValid() const
Definition Register.h:112
SMEAttrs is a utility class to parse the SME ACLE attributes on functions.
bool hasStreamingInterface() const
bool hasNonStreamingInterfaceAndBody() const
bool hasStreamingBody() const
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:151
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:339
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
Definition TypeSize.h:30
int64_t getFixed() const
Returns the fixed component of the stack.
Definition TypeSize.h:46
int64_t getScalable() const
Returns the scalable component of the stack.
Definition TypeSize.h:49
static StackOffset get(int64_t Fixed, int64_t Scalable)
Definition TypeSize.h:41
static StackOffset getScalable(int64_t Scalable)
Definition TypeSize.h:40
static StackOffset getFixed(int64_t Fixed)
Definition TypeSize.h:39
bool hasFP(const MachineFunction &MF) const
hasFP - Return true if the specified function should have a dedicated frame pointer register.
virtual void determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs, RegScavenger *RS=nullptr) const
This method determines which of the registers reported by TargetRegisterInfo::getCalleeSavedRegs() sh...
int getOffsetOfLocalArea() const
getOffsetOfLocalArea - This method returns the offset of the local area from the stack pointer on ent...
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
StackDirection getStackGrowthDirection() const
getStackGrowthDirection - Return the direction the stack grows
virtual bool enableCFIFixup(const MachineFunction &MF) const
Returns true if we may need to fix the unwind information for the function.
Primary interface to the complete machine description for the target machine.
const Triple & getTargetTriple() const
TargetOptions Options
const MCAsmInfo * getMCAsmInfo() const
Return target specific asm information.
LLVM_ABI bool FramePointerIsReserved(const MachineFunction &MF) const
FramePointerIsReserved - This returns true if the frame pointer must always either point to a new fra...
LLVM_ABI bool DisableFramePointerElim(const MachineFunction &MF) const
DisableFramePointerElim - This returns true if frame pointer elimination optimization should be disab...
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
bool hasStackRealignment(const MachineFunction &MF) const
True if stack realignment is required and still possible.
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
Triple - Helper class for working with autoconf configuration names.
Definition Triple.h:47
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
static unsigned getShiftValue(unsigned Imm)
getShiftValue - Extract the shift value.
static unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET, unsigned Imm)
getArithExtendImm - Encode the extend type and shift amount for an arithmetic instruction: imm: 3-bit...
const unsigned StackProbeMaxLoopUnroll
Maximum number of iterations to unroll for a constant size probing loop.
const unsigned StackProbeMaxUnprobedStack
Maximum allowed number of unprobed bytes above SP at an ABI boundary.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ AArch64_SVE_VectorCall
Used between AArch64 SVE functions.
@ PreserveMost
Used for runtime calls that preserves most registers.
Definition CallingConv.h:63
@ CXX_FAST_TLS
Used for access functions.
Definition CallingConv.h:72
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
Definition CallingConv.h:50
@ PreserveAll
Used for runtime calls that preserves (almost) all registers.
Definition CallingConv.h:66
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
@ PreserveNone
Used for runtime calls that preserves none general registers.
Definition CallingConv.h:90
@ Win64
The C convention as implemented on Windows/x86-64 and AArch64.
@ SwiftTail
This follows the Swift calling convention in how arguments are passed but guarantees tail calls will ...
Definition CallingConv.h:87
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ Define
Register definition.
initializer< Ty > init(const Ty &Val)
NodeAddr< InstrNode * > Instr
Definition RDFGraph.h:389
BaseReg
Stack frame base register. Bit 0 of FREInfo.Info.
Definition SFrame.h:77
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
@ Offset
Definition DWP.cpp:532
void stable_sort(R &&Range)
Definition STLExtras.h:2106
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr unsigned getKillRegState(bool B)
int isAArch64FrameOffsetLegal(const MachineInstr &MI, StackOffset &Offset, bool *OutUseUnscaledOp=nullptr, unsigned *OutUnscaledOp=nullptr, int64_t *EmittableOffset=nullptr)
Check if the Offset is a valid frame offset for MI.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
@ AArch64FrameOffsetCannotUpdate
Offset cannot apply.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
auto formatv(bool Validate, const char *Fmt, Ts &&...Vals)
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1634
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
void emitFrameOffset(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, unsigned DestReg, unsigned SrcReg, StackOffset Offset, const TargetInstrInfo *TII, MachineInstr::MIFlag=MachineInstr::NoFlags, bool SetNZCV=false, bool NeedsWinCFI=false, bool *HasWinCFI=nullptr, bool EmitCFAOffset=false, StackOffset InitialOffset={}, unsigned FrameReg=AArch64::SP)
emitFrameOffset - Emit instructions as needed to set DestReg to SrcReg plus Offset.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:163
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
@ LLVM_MARK_AS_BITMASK_ENUM
Definition ModRef.h:37
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:74
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition MCRegister.h:21
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
constexpr unsigned getDefRegState(bool B)
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1770
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition STLExtras.h:2182
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1945
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
void fullyRecomputeLiveIns(ArrayRef< MachineBasicBlock * > MBBs)
Convenience function for recomputing live-in's for a set of MBBs until the computation converges.
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
bool operator<(const StackAccess &Rhs) const
void print(raw_ostream &OS) const
int64_t start() const
std::string getTypeString() const
int64_t end() const
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:77
Pair of physical register and lane mask.
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
SmallVector< WinEHTryBlockMapEntry, 4 > TryBlockMap
SmallVector< WinEHHandlerType, 1 > HandlerArray