LLVM 22.0.0git
AArch64RegisterBankInfo.cpp
Go to the documentation of this file.
1//===- AArch64RegisterBankInfo.cpp ----------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file implements the targeting of the RegisterBankInfo class for
10/// AArch64.
11/// \todo This should be generated by TableGen.
12//===----------------------------------------------------------------------===//
13
15#include "AArch64RegisterInfo.h"
16#include "AArch64Subtarget.h"
18#include "llvm/ADT/STLExtras.h"
33#include "llvm/IR/IntrinsicsAArch64.h"
36#include <cassert>
37
38#define GET_TARGET_REGBANK_IMPL
39#include "AArch64GenRegisterBank.inc"
40
41// This file will be TableGen'ed at some point.
42#include "AArch64GenRegisterBankInfo.def"
43
44using namespace llvm;
45static const unsigned CustomMappingID = 1;
46
48 const TargetRegisterInfo &TRI) {
49 static llvm::once_flag InitializeRegisterBankFlag;
50
51 static auto InitializeRegisterBankOnce = [&]() {
52 // We have only one set of register banks, whatever the subtarget
53 // is. Therefore, the initialization of the RegBanks table should be
54 // done only once. Indeed the table of all register banks
55 // (AArch64::RegBanks) is unique in the compiler. At some point, it
56 // will get tablegen'ed and the whole constructor becomes empty.
57
58 const RegisterBank &RBGPR = getRegBank(AArch64::GPRRegBankID);
59 (void)RBGPR;
60 assert(&AArch64::GPRRegBank == &RBGPR &&
61 "The order in RegBanks is messed up");
62
63 const RegisterBank &RBFPR = getRegBank(AArch64::FPRRegBankID);
64 (void)RBFPR;
65 assert(&AArch64::FPRRegBank == &RBFPR &&
66 "The order in RegBanks is messed up");
67
68 const RegisterBank &RBCCR = getRegBank(AArch64::CCRegBankID);
69 (void)RBCCR;
70 assert(&AArch64::CCRegBank == &RBCCR &&
71 "The order in RegBanks is messed up");
72
73 // The GPR register bank is fully defined by all the registers in
74 // GR64all + its subclasses.
75 assert(RBGPR.covers(*TRI.getRegClass(AArch64::GPR32RegClassID)) &&
76 "Subclass not added?");
77 assert(getMaximumSize(RBGPR.getID()) == 128 &&
78 "GPRs should hold up to 128-bit");
79
80 // The FPR register bank is fully defined by all the registers in
81 // GR64all + its subclasses.
82 assert(RBFPR.covers(*TRI.getRegClass(AArch64::QQRegClassID)) &&
83 "Subclass not added?");
84 assert(RBFPR.covers(*TRI.getRegClass(AArch64::FPR64RegClassID)) &&
85 "Subclass not added?");
86 assert(getMaximumSize(RBFPR.getID()) == 512 &&
87 "FPRs should hold up to 512-bit via QQQQ sequence");
88
89 assert(RBCCR.covers(*TRI.getRegClass(AArch64::CCRRegClassID)) &&
90 "Class not added?");
91 assert(getMaximumSize(RBCCR.getID()) == 32 &&
92 "CCR should hold up to 32-bit");
93
94 // Check that the TableGen'ed like file is in sync we our expectations.
95 // First, the Idx.
98 "PartialMappingIdx's are incorrectly ordered");
102 "PartialMappingIdx's are incorrectly ordered");
103// Now, the content.
104// Check partial mapping.
105#define CHECK_PARTIALMAP(Idx, ValStartIdx, ValLength, RB) \
106 do { \
107 assert( \
108 checkPartialMap(PartialMappingIdx::Idx, ValStartIdx, ValLength, RB) && \
109 #Idx " is incorrectly initialized"); \
110 } while (false)
111
112 CHECK_PARTIALMAP(PMI_GPR32, 0, 32, RBGPR);
113 CHECK_PARTIALMAP(PMI_GPR64, 0, 64, RBGPR);
114 CHECK_PARTIALMAP(PMI_GPR128, 0, 128, RBGPR);
115 CHECK_PARTIALMAP(PMI_FPR16, 0, 16, RBFPR);
116 CHECK_PARTIALMAP(PMI_FPR32, 0, 32, RBFPR);
117 CHECK_PARTIALMAP(PMI_FPR64, 0, 64, RBFPR);
118 CHECK_PARTIALMAP(PMI_FPR128, 0, 128, RBFPR);
119 CHECK_PARTIALMAP(PMI_FPR256, 0, 256, RBFPR);
120 CHECK_PARTIALMAP(PMI_FPR512, 0, 512, RBFPR);
121
122// Check value mapping.
123#define CHECK_VALUEMAP_IMPL(RBName, Size, Offset) \
124 do { \
125 assert(checkValueMapImpl(PartialMappingIdx::PMI_##RBName##Size, \
126 PartialMappingIdx::PMI_First##RBName, Size, \
127 Offset) && \
128 #RBName #Size " " #Offset " is incorrectly initialized"); \
129 } while (false)
130
131#define CHECK_VALUEMAP(RBName, Size) CHECK_VALUEMAP_IMPL(RBName, Size, 0)
132
133 CHECK_VALUEMAP(GPR, 32);
134 CHECK_VALUEMAP(GPR, 64);
135 CHECK_VALUEMAP(GPR, 128);
136 CHECK_VALUEMAP(FPR, 16);
137 CHECK_VALUEMAP(FPR, 32);
138 CHECK_VALUEMAP(FPR, 64);
139 CHECK_VALUEMAP(FPR, 128);
140 CHECK_VALUEMAP(FPR, 256);
141 CHECK_VALUEMAP(FPR, 512);
142
143// Check the value mapping for 3-operands instructions where all the operands
144// map to the same value mapping.
145#define CHECK_VALUEMAP_3OPS(RBName, Size) \
146 do { \
147 CHECK_VALUEMAP_IMPL(RBName, Size, 0); \
148 CHECK_VALUEMAP_IMPL(RBName, Size, 1); \
149 CHECK_VALUEMAP_IMPL(RBName, Size, 2); \
150 } while (false)
151
152 CHECK_VALUEMAP_3OPS(GPR, 32);
153 CHECK_VALUEMAP_3OPS(GPR, 64);
154 CHECK_VALUEMAP_3OPS(GPR, 128);
160
161#define CHECK_VALUEMAP_CROSSREGCPY(RBNameDst, RBNameSrc, Size) \
162 do { \
163 unsigned PartialMapDstIdx = PMI_##RBNameDst##Size - PMI_Min; \
164 unsigned PartialMapSrcIdx = PMI_##RBNameSrc##Size - PMI_Min; \
165 (void)PartialMapDstIdx; \
166 (void)PartialMapSrcIdx; \
167 const ValueMapping *Map = getCopyMapping(AArch64::RBNameDst##RegBankID, \
168 AArch64::RBNameSrc##RegBankID, \
169 TypeSize::getFixed(Size)); \
170 (void)Map; \
171 assert(Map[0].BreakDown == \
172 &AArch64GenRegisterBankInfo::PartMappings[PartialMapDstIdx] && \
173 Map[0].NumBreakDowns == 1 && \
174 #RBNameDst #Size " Dst is incorrectly initialized"); \
175 assert(Map[1].BreakDown == \
176 &AArch64GenRegisterBankInfo::PartMappings[PartialMapSrcIdx] && \
177 Map[1].NumBreakDowns == 1 && \
178 #RBNameSrc #Size " Src is incorrectly initialized"); \
179 \
180 } while (false)
181
182 CHECK_VALUEMAP_CROSSREGCPY(GPR, GPR, 32);
184 CHECK_VALUEMAP_CROSSREGCPY(GPR, GPR, 64);
190
191#define CHECK_VALUEMAP_FPEXT(DstSize, SrcSize) \
192 do { \
193 unsigned PartialMapDstIdx = PMI_FPR##DstSize - PMI_Min; \
194 unsigned PartialMapSrcIdx = PMI_FPR##SrcSize - PMI_Min; \
195 (void)PartialMapDstIdx; \
196 (void)PartialMapSrcIdx; \
197 const ValueMapping *Map = getFPExtMapping(DstSize, SrcSize); \
198 (void)Map; \
199 assert(Map[0].BreakDown == \
200 &AArch64GenRegisterBankInfo::PartMappings[PartialMapDstIdx] && \
201 Map[0].NumBreakDowns == 1 && "FPR" #DstSize \
202 " Dst is incorrectly initialized"); \
203 assert(Map[1].BreakDown == \
204 &AArch64GenRegisterBankInfo::PartMappings[PartialMapSrcIdx] && \
205 Map[1].NumBreakDowns == 1 && "FPR" #SrcSize \
206 " Src is incorrectly initialized"); \
207 \
208 } while (false)
209
210 CHECK_VALUEMAP_FPEXT(32, 16);
211 CHECK_VALUEMAP_FPEXT(64, 16);
212 CHECK_VALUEMAP_FPEXT(64, 32);
213 CHECK_VALUEMAP_FPEXT(128, 64);
214
215 assert(verify(TRI) && "Invalid register bank information");
216 };
217
218 llvm::call_once(InitializeRegisterBankFlag, InitializeRegisterBankOnce);
219}
220
222 const RegisterBank &B,
223 const TypeSize Size) const {
224 // What do we do with different size?
225 // copy are same size.
226 // Will introduce other hooks for different size:
227 // * extract cost.
228 // * build_sequence cost.
229
230 // Copy from (resp. to) GPR to (resp. from) FPR involves FMOV.
231 // FIXME: This should be deduced from the scheduling model.
232 if (&A == &AArch64::GPRRegBank && &B == &AArch64::FPRRegBank)
233 // FMOVXDr or FMOVWSr.
234 return 5;
235 if (&A == &AArch64::FPRRegBank && &B == &AArch64::GPRRegBank)
236 // FMOVDXr or FMOVSWr.
237 return 4;
238
240}
241
242const RegisterBank &
244 LLT Ty) const {
245 switch (RC.getID()) {
246 case AArch64::GPR64sponlyRegClassID:
247 return getRegBank(AArch64::GPRRegBankID);
248 default:
250 }
251}
252
255 const MachineInstr &MI) const {
256 const MachineFunction &MF = *MI.getParent()->getParent();
257 const TargetSubtargetInfo &STI = MF.getSubtarget();
258 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
259 const MachineRegisterInfo &MRI = MF.getRegInfo();
260
261 switch (MI.getOpcode()) {
262 case TargetOpcode::G_OR: {
263 // 32 and 64-bit or can be mapped on either FPR or
264 // GPR for the same cost.
265 TypeSize Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
266 if (Size != 32 && Size != 64)
267 break;
268
269 // If the instruction has any implicit-defs or uses,
270 // do not mess with it.
271 if (MI.getNumOperands() != 3)
272 break;
273 InstructionMappings AltMappings;
274 const InstructionMapping &GPRMapping = getInstructionMapping(
275 /*ID*/ 1, /*Cost*/ 1, getValueMapping(PMI_FirstGPR, Size),
276 /*NumOperands*/ 3);
277 const InstructionMapping &FPRMapping = getInstructionMapping(
278 /*ID*/ 2, /*Cost*/ 1, getValueMapping(PMI_FirstFPR, Size),
279 /*NumOperands*/ 3);
280
281 AltMappings.push_back(&GPRMapping);
282 AltMappings.push_back(&FPRMapping);
283 return AltMappings;
284 }
285 case TargetOpcode::G_BITCAST: {
286 TypeSize Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
287 if (Size != 32 && Size != 64)
288 break;
289
290 // If the instruction has any implicit-defs or uses,
291 // do not mess with it.
292 if (MI.getNumOperands() != 2)
293 break;
294
295 InstructionMappings AltMappings;
296 const InstructionMapping &GPRMapping = getInstructionMapping(
297 /*ID*/ 1, /*Cost*/ 1,
298 getCopyMapping(AArch64::GPRRegBankID, AArch64::GPRRegBankID, Size),
299 /*NumOperands*/ 2);
300 const InstructionMapping &FPRMapping = getInstructionMapping(
301 /*ID*/ 2, /*Cost*/ 1,
302 getCopyMapping(AArch64::FPRRegBankID, AArch64::FPRRegBankID, Size),
303 /*NumOperands*/ 2);
304 const InstructionMapping &GPRToFPRMapping = getInstructionMapping(
305 /*ID*/ 3,
306 /*Cost*/
307 copyCost(AArch64::GPRRegBank, AArch64::FPRRegBank,
309 getCopyMapping(AArch64::FPRRegBankID, AArch64::GPRRegBankID, Size),
310 /*NumOperands*/ 2);
311 const InstructionMapping &FPRToGPRMapping = getInstructionMapping(
312 /*ID*/ 3,
313 /*Cost*/
314 copyCost(AArch64::GPRRegBank, AArch64::FPRRegBank,
316 getCopyMapping(AArch64::GPRRegBankID, AArch64::FPRRegBankID, Size),
317 /*NumOperands*/ 2);
318
319 AltMappings.push_back(&GPRMapping);
320 AltMappings.push_back(&FPRMapping);
321 AltMappings.push_back(&GPRToFPRMapping);
322 AltMappings.push_back(&FPRToGPRMapping);
323 return AltMappings;
324 }
325 case TargetOpcode::G_LOAD: {
326 TypeSize Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
327 if (Size != 64)
328 break;
329
330 // If the instruction has any implicit-defs or uses,
331 // do not mess with it.
332 if (MI.getNumOperands() != 2)
333 break;
334
335 InstructionMappings AltMappings;
336 const InstructionMapping &GPRMapping = getInstructionMapping(
337 /*ID*/ 1, /*Cost*/ 1,
340 // Addresses are GPR 64-bit.
342 /*NumOperands*/ 2);
343 const InstructionMapping &FPRMapping = getInstructionMapping(
344 /*ID*/ 2, /*Cost*/ 1,
347 // Addresses are GPR 64-bit.
349 /*NumOperands*/ 2);
350
351 AltMappings.push_back(&GPRMapping);
352 AltMappings.push_back(&FPRMapping);
353 return AltMappings;
354 }
355 default:
356 break;
357 }
359}
360
361void AArch64RegisterBankInfo::applyMappingImpl(
362 MachineIRBuilder &Builder, const OperandsMapper &OpdMapper) const {
363 MachineInstr &MI = OpdMapper.getMI();
364 MachineRegisterInfo &MRI = OpdMapper.getMRI();
365
366 switch (MI.getOpcode()) {
367 case TargetOpcode::G_OR:
368 case TargetOpcode::G_BITCAST:
369 case TargetOpcode::G_LOAD:
370 // Those ID must match getInstrAlternativeMappings.
371 assert((OpdMapper.getInstrMapping().getID() >= 1 &&
372 OpdMapper.getInstrMapping().getID() <= 4) &&
373 "Don't know how to handle that ID");
374 return applyDefaultMapping(OpdMapper);
375 case TargetOpcode::G_INSERT_VECTOR_ELT: {
376 // Extend smaller gpr operands to 32 bit.
377 Builder.setInsertPt(*MI.getParent(), MI.getIterator());
378 auto Ext = Builder.buildAnyExt(LLT::scalar(32), MI.getOperand(2).getReg());
379 MRI.setRegBank(Ext.getReg(0), getRegBank(AArch64::GPRRegBankID));
380 MI.getOperand(2).setReg(Ext.getReg(0));
381 return applyDefaultMapping(OpdMapper);
382 }
383 case AArch64::G_DUP: {
384 // Extend smaller gpr to 32-bits
385 assert(MRI.getType(MI.getOperand(1).getReg()).getSizeInBits() < 32 &&
386 "Expected sources smaller than 32-bits");
387 Builder.setInsertPt(*MI.getParent(), MI.getIterator());
388
389 Register ConstReg;
390 auto ConstMI = MRI.getVRegDef(MI.getOperand(1).getReg());
391 if (ConstMI->getOpcode() == TargetOpcode::G_CONSTANT) {
392 auto CstVal = ConstMI->getOperand(1).getCImm()->getValue();
393 ConstReg =
394 Builder.buildConstant(LLT::scalar(32), CstVal.sext(32)).getReg(0);
395 } else {
396 ConstReg = Builder.buildAnyExt(LLT::scalar(32), MI.getOperand(1).getReg())
397 .getReg(0);
398 }
399 MRI.setRegBank(ConstReg, getRegBank(AArch64::GPRRegBankID));
400 MI.getOperand(1).setReg(ConstReg);
401 return applyDefaultMapping(OpdMapper);
402 }
403 default:
404 llvm_unreachable("Don't know how to handle that operation");
405 }
406}
407
409AArch64RegisterBankInfo::getSameKindOfOperandsMapping(
410 const MachineInstr &MI) const {
411 const unsigned Opc = MI.getOpcode();
412 const MachineFunction &MF = *MI.getParent()->getParent();
413 const MachineRegisterInfo &MRI = MF.getRegInfo();
414
415 unsigned NumOperands = MI.getNumOperands();
416 assert(NumOperands <= 3 &&
417 "This code is for instructions with 3 or less operands");
418
419 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
420 TypeSize Size = Ty.getSizeInBits();
422
424
425#ifndef NDEBUG
426 // Make sure all the operands are using similar size and type.
427 // Should probably be checked by the machine verifier.
428 // This code won't catch cases where the number of lanes is
429 // different between the operands.
430 // If we want to go to that level of details, it is probably
431 // best to check that the types are the same, period.
432 // Currently, we just check that the register banks are the same
433 // for each types.
434 for (unsigned Idx = 1; Idx != NumOperands; ++Idx) {
435 LLT OpTy = MRI.getType(MI.getOperand(Idx).getReg());
436 assert(
438 RBIdx, OpTy.getSizeInBits()) ==
440 "Operand has incompatible size");
441 bool OpIsFPR = OpTy.isVector() || isPreISelGenericFloatingPointOpcode(Opc);
442 (void)OpIsFPR;
443 assert(IsFPR == OpIsFPR && "Operand has incompatible type");
444 }
445#endif // End NDEBUG.
446
448 getValueMapping(RBIdx, Size), NumOperands);
449}
450
451/// \returns true if a given intrinsic only uses and defines FPRs.
453 const MachineInstr &MI) {
454 // TODO: Add more intrinsics.
456 default:
457 return false;
458 case Intrinsic::aarch64_neon_uaddlv:
459 case Intrinsic::aarch64_neon_uaddv:
460 case Intrinsic::aarch64_neon_saddv:
461 case Intrinsic::aarch64_neon_umaxv:
462 case Intrinsic::aarch64_neon_smaxv:
463 case Intrinsic::aarch64_neon_uminv:
464 case Intrinsic::aarch64_neon_sminv:
465 case Intrinsic::aarch64_neon_faddv:
466 case Intrinsic::aarch64_neon_fmaxv:
467 case Intrinsic::aarch64_neon_fminv:
468 case Intrinsic::aarch64_neon_fmaxnmv:
469 case Intrinsic::aarch64_neon_fminnmv:
470 case Intrinsic::aarch64_neon_fmulx:
471 case Intrinsic::aarch64_neon_frecpe:
472 case Intrinsic::aarch64_neon_frecps:
473 case Intrinsic::aarch64_neon_frecpx:
474 case Intrinsic::aarch64_neon_frsqrte:
475 case Intrinsic::aarch64_neon_frsqrts:
476 case Intrinsic::aarch64_neon_facge:
477 case Intrinsic::aarch64_neon_facgt:
478 case Intrinsic::aarch64_neon_fabd:
479 case Intrinsic::aarch64_sisd_fabd:
480 case Intrinsic::aarch64_neon_sqrdmlah:
481 case Intrinsic::aarch64_neon_sqrdmlsh:
482 case Intrinsic::aarch64_neon_sqrdmulh:
483 case Intrinsic::aarch64_neon_sqadd:
484 case Intrinsic::aarch64_neon_sqsub:
485 case Intrinsic::aarch64_crypto_sha1h:
486 case Intrinsic::aarch64_neon_srshl:
487 case Intrinsic::aarch64_neon_urshl:
488 case Intrinsic::aarch64_neon_sqshl:
489 case Intrinsic::aarch64_neon_uqshl:
490 case Intrinsic::aarch64_neon_sqrshl:
491 case Intrinsic::aarch64_neon_uqrshl:
492 case Intrinsic::aarch64_neon_ushl:
493 case Intrinsic::aarch64_neon_sshl:
494 case Intrinsic::aarch64_crypto_sha1c:
495 case Intrinsic::aarch64_crypto_sha1p:
496 case Intrinsic::aarch64_crypto_sha1m:
497 case Intrinsic::aarch64_sisd_fcvtxn:
498 return true;
499 case Intrinsic::aarch64_neon_saddlv: {
500 const LLT SrcTy = MRI.getType(MI.getOperand(2).getReg());
501 return SrcTy.getElementType().getSizeInBits() >= 16 &&
502 SrcTy.getElementCount().getFixedValue() >= 4;
503 }
504 }
505}
506
507bool AArch64RegisterBankInfo::isPHIWithFPConstraints(
508 const MachineInstr &MI, const MachineRegisterInfo &MRI,
509 const AArch64RegisterInfo &TRI, const unsigned Depth) const {
510 if (!MI.isPHI() || Depth > MaxFPRSearchDepth)
511 return false;
512
513 return any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
514 [&](const MachineInstr &UseMI) {
515 if (onlyUsesFP(UseMI, MRI, TRI, Depth + 1))
516 return true;
517 return isPHIWithFPConstraints(UseMI, MRI, TRI, Depth + 1);
518 });
519}
520
521bool AArch64RegisterBankInfo::hasFPConstraints(const MachineInstr &MI,
524 unsigned Depth) const {
525 unsigned Op = MI.getOpcode();
526 if (Op == TargetOpcode::G_INTRINSIC && isFPIntrinsic(MRI, MI))
527 return true;
528
529 // Do we have an explicit floating point instruction?
531 return true;
532
533 // No. Check if we have a copy-like instruction. If we do, then we could
534 // still be fed by floating point instructions.
535 if (Op != TargetOpcode::COPY && !MI.isPHI() &&
537 return false;
538
539 // Check if we already know the register bank.
540 auto *RB = getRegBank(MI.getOperand(0).getReg(), MRI, TRI);
541 if (RB == &AArch64::FPRRegBank)
542 return true;
543 if (RB == &AArch64::GPRRegBank)
544 return false;
545
546 // We don't know anything.
547 //
548 // If we have a phi, we may be able to infer that it will be assigned a FPR
549 // based off of its inputs.
550 if (!MI.isPHI() || Depth > MaxFPRSearchDepth)
551 return false;
552
553 return any_of(MI.explicit_uses(), [&](const MachineOperand &Op) {
554 return Op.isReg() &&
555 onlyDefinesFP(*MRI.getVRegDef(Op.getReg()), MRI, TRI, Depth + 1);
556 });
557}
558
559bool AArch64RegisterBankInfo::onlyUsesFP(const MachineInstr &MI,
562 unsigned Depth) const {
563 switch (MI.getOpcode()) {
564 case TargetOpcode::G_FPTOSI:
565 case TargetOpcode::G_FPTOUI:
566 case TargetOpcode::G_FPTOSI_SAT:
567 case TargetOpcode::G_FPTOUI_SAT:
568 case TargetOpcode::G_FCMP:
569 case TargetOpcode::G_LROUND:
570 case TargetOpcode::G_LLROUND:
571 case AArch64::G_PMULL:
572 return true;
573 case TargetOpcode::G_INTRINSIC:
575 case Intrinsic::aarch64_neon_fcvtas:
576 case Intrinsic::aarch64_neon_fcvtau:
577 case Intrinsic::aarch64_neon_fcvtzs:
578 case Intrinsic::aarch64_neon_fcvtzu:
579 case Intrinsic::aarch64_neon_fcvtms:
580 case Intrinsic::aarch64_neon_fcvtmu:
581 case Intrinsic::aarch64_neon_fcvtns:
582 case Intrinsic::aarch64_neon_fcvtnu:
583 case Intrinsic::aarch64_neon_fcvtps:
584 case Intrinsic::aarch64_neon_fcvtpu:
585 return true;
586 default:
587 break;
588 }
589 break;
590 default:
591 break;
592 }
593 return hasFPConstraints(MI, MRI, TRI, Depth);
594}
595
596bool AArch64RegisterBankInfo::onlyDefinesFP(const MachineInstr &MI,
599 unsigned Depth) const {
600 switch (MI.getOpcode()) {
601 case AArch64::G_DUP:
602 case AArch64::G_SADDLP:
603 case AArch64::G_UADDLP:
604 case TargetOpcode::G_SITOFP:
605 case TargetOpcode::G_UITOFP:
606 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
607 case TargetOpcode::G_INSERT_VECTOR_ELT:
608 case TargetOpcode::G_BUILD_VECTOR:
609 case TargetOpcode::G_BUILD_VECTOR_TRUNC:
610 return true;
611 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
613 case Intrinsic::aarch64_neon_ld1x2:
614 case Intrinsic::aarch64_neon_ld1x3:
615 case Intrinsic::aarch64_neon_ld1x4:
616 case Intrinsic::aarch64_neon_ld2:
617 case Intrinsic::aarch64_neon_ld2lane:
618 case Intrinsic::aarch64_neon_ld2r:
619 case Intrinsic::aarch64_neon_ld3:
620 case Intrinsic::aarch64_neon_ld3lane:
621 case Intrinsic::aarch64_neon_ld3r:
622 case Intrinsic::aarch64_neon_ld4:
623 case Intrinsic::aarch64_neon_ld4lane:
624 case Intrinsic::aarch64_neon_ld4r:
625 return true;
626 default:
627 break;
628 }
629 break;
630 default:
631 break;
632 }
633 return hasFPConstraints(MI, MRI, TRI, Depth);
634}
635
636bool AArch64RegisterBankInfo::prefersFPUse(const MachineInstr &MI,
639 unsigned Depth) const {
640 switch (MI.getOpcode()) {
641 case TargetOpcode::G_SITOFP:
642 case TargetOpcode::G_UITOFP:
643 return MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() ==
644 MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
645 }
646 return onlyDefinesFP(MI, MRI, TRI, Depth);
647}
648
649bool AArch64RegisterBankInfo::isLoadFromFPType(const MachineInstr &MI) const {
650 // GMemOperation because we also want to match indexed loads.
651 auto *MemOp = cast<GMemOperation>(&MI);
652 const Value *LdVal = MemOp->getMMO().getValue();
653 if (!LdVal)
654 return false;
655
656 Type *EltTy = nullptr;
657 if (const GlobalValue *GV = dyn_cast<GlobalValue>(LdVal)) {
658 EltTy = GV->getValueType();
659 // Look at the first element of the struct to determine the type we are
660 // loading
661 while (StructType *StructEltTy = dyn_cast<StructType>(EltTy)) {
662 if (StructEltTy->getNumElements() == 0)
663 break;
664 EltTy = StructEltTy->getTypeAtIndex(0U);
665 }
666 // Look at the first element of the array to determine its type
667 if (isa<ArrayType>(EltTy))
668 EltTy = EltTy->getArrayElementType();
669 } else if (!isa<Constant>(LdVal)) {
670 // FIXME: grubbing around uses is pretty ugly, but with no more
671 // `getPointerElementType` there's not much else we can do.
672 for (const auto *LdUser : LdVal->users()) {
673 if (isa<LoadInst>(LdUser)) {
674 EltTy = LdUser->getType();
675 break;
676 }
677 if (isa<StoreInst>(LdUser) && LdUser->getOperand(1) == LdVal) {
678 EltTy = LdUser->getOperand(0)->getType();
679 break;
680 }
681 }
682 }
683 return EltTy && EltTy->isFPOrFPVectorTy();
684}
685
688 const unsigned Opc = MI.getOpcode();
689
690 // Try the default logic for non-generic instructions that are either copies
691 // or already have some operands assigned to banks.
692 if ((Opc != TargetOpcode::COPY && !isPreISelGenericOpcode(Opc)) ||
693 Opc == TargetOpcode::G_PHI) {
696 if (Mapping.isValid())
697 return Mapping;
698 }
699
700 const MachineFunction &MF = *MI.getParent()->getParent();
701 const MachineRegisterInfo &MRI = MF.getRegInfo();
704
705 switch (Opc) {
706 // G_{F|S|U}REM are not listed because they are not legal.
707 // Arithmetic ops.
708 case TargetOpcode::G_ADD:
709 case TargetOpcode::G_SUB:
710 case TargetOpcode::G_PTR_ADD:
711 case TargetOpcode::G_MUL:
712 case TargetOpcode::G_SDIV:
713 case TargetOpcode::G_UDIV:
714 // Bitwise ops.
715 case TargetOpcode::G_AND:
716 case TargetOpcode::G_OR:
717 case TargetOpcode::G_XOR:
718 // Floating point ops.
719 case TargetOpcode::G_FADD:
720 case TargetOpcode::G_FSUB:
721 case TargetOpcode::G_FMUL:
722 case TargetOpcode::G_FDIV:
723 case TargetOpcode::G_FMAXIMUM:
724 case TargetOpcode::G_FMINIMUM:
725 return getSameKindOfOperandsMapping(MI);
726 case TargetOpcode::G_FPEXT: {
727 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
728 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
730 DefaultMappingID, /*Cost*/ 1,
731 getFPExtMapping(DstTy.getSizeInBits(), SrcTy.getSizeInBits()),
732 /*NumOperands*/ 2);
733 }
734 // Shifts.
735 case TargetOpcode::G_SHL:
736 case TargetOpcode::G_LSHR:
737 case TargetOpcode::G_ASHR: {
738 LLT ShiftAmtTy = MRI.getType(MI.getOperand(2).getReg());
739 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
740 if (ShiftAmtTy.getSizeInBits() == 64 && SrcTy.getSizeInBits() == 32)
743 return getSameKindOfOperandsMapping(MI);
744 }
745 case TargetOpcode::COPY: {
746 Register DstReg = MI.getOperand(0).getReg();
747 Register SrcReg = MI.getOperand(1).getReg();
748 // Check if one of the register is not a generic register.
749 if ((DstReg.isPhysical() || !MRI.getType(DstReg).isValid()) ||
750 (SrcReg.isPhysical() || !MRI.getType(SrcReg).isValid())) {
751 const RegisterBank *DstRB = getRegBank(DstReg, MRI, TRI);
752 const RegisterBank *SrcRB = getRegBank(SrcReg, MRI, TRI);
753 if (!DstRB)
754 DstRB = SrcRB;
755 else if (!SrcRB)
756 SrcRB = DstRB;
757 // If both RB are null that means both registers are generic.
758 // We shouldn't be here.
759 assert(DstRB && SrcRB && "Both RegBank were nullptr");
760 TypeSize Size = getSizeInBits(DstReg, MRI, TRI);
762 DefaultMappingID, copyCost(*DstRB, *SrcRB, Size),
763 getCopyMapping(DstRB->getID(), SrcRB->getID(), Size),
764 // We only care about the mapping of the destination.
765 /*NumOperands*/ 1);
766 }
767 // Both registers are generic, use G_BITCAST.
768 [[fallthrough]];
769 }
770 case TargetOpcode::G_BITCAST: {
771 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
772 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
773 TypeSize Size = DstTy.getSizeInBits();
774 bool DstIsGPR = !DstTy.isVector() && DstTy.getSizeInBits() <= 64;
775 bool SrcIsGPR = !SrcTy.isVector() && SrcTy.getSizeInBits() <= 64;
776 const RegisterBank &DstRB =
777 DstIsGPR ? AArch64::GPRRegBank : AArch64::FPRRegBank;
778 const RegisterBank &SrcRB =
779 SrcIsGPR ? AArch64::GPRRegBank : AArch64::FPRRegBank;
781 DefaultMappingID, copyCost(DstRB, SrcRB, Size),
782 getCopyMapping(DstRB.getID(), SrcRB.getID(), Size),
783 // We only care about the mapping of the destination for COPY.
784 /*NumOperands*/ Opc == TargetOpcode::G_BITCAST ? 2 : 1);
785 }
786 default:
787 break;
788 }
789
790 unsigned NumOperands = MI.getNumOperands();
791 unsigned MappingID = DefaultMappingID;
792
793 // Track the size and bank of each register. We don't do partial mappings.
794 SmallVector<unsigned, 4> OpSize(NumOperands);
795 SmallVector<PartialMappingIdx, 4> OpRegBankIdx(NumOperands);
796 for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
797 auto &MO = MI.getOperand(Idx);
798 if (!MO.isReg() || !MO.getReg())
799 continue;
800
801 LLT Ty = MRI.getType(MO.getReg());
802 if (!Ty.isValid())
803 continue;
804 OpSize[Idx] = Ty.getSizeInBits().getKnownMinValue();
805
806 // As a top-level guess, vectors including both scalable and non-scalable
807 // ones go in FPRs, scalars and pointers in GPRs.
808 // For floating-point instructions, scalars go in FPRs.
809 if (Ty.isVector())
810 OpRegBankIdx[Idx] = PMI_FirstFPR;
812 (MO.isDef() && onlyDefinesFP(MI, MRI, TRI)) ||
813 (MO.isUse() && onlyUsesFP(MI, MRI, TRI)) ||
814 Ty.getSizeInBits() > 64)
815 OpRegBankIdx[Idx] = PMI_FirstFPR;
816 else
817 OpRegBankIdx[Idx] = PMI_FirstGPR;
818 }
819
820 unsigned Cost = 1;
821 // Some of the floating-point instructions have mixed GPR and FPR operands:
822 // fine-tune the computed mapping.
823 switch (Opc) {
824 case AArch64::G_DUP: {
825 Register ScalarReg = MI.getOperand(1).getReg();
826 LLT ScalarTy = MRI.getType(ScalarReg);
827 auto ScalarDef = MRI.getVRegDef(ScalarReg);
828 // We want to select dup(load) into LD1R.
829 if (ScalarDef->getOpcode() == TargetOpcode::G_LOAD)
830 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
831 // s8 is an exception for G_DUP, which we always want on gpr.
832 else if (ScalarTy.getSizeInBits() != 8 &&
833 (getRegBank(ScalarReg, MRI, TRI) == &AArch64::FPRRegBank ||
834 onlyDefinesFP(*ScalarDef, MRI, TRI)))
835 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
836 else {
837 if (ScalarTy.getSizeInBits() < 32 &&
838 getRegBank(ScalarReg, MRI, TRI) == &AArch64::GPRRegBank) {
839 // Calls applyMappingImpl()
840 MappingID = CustomMappingID;
841 }
842 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR};
843 }
844 break;
845 }
846 case TargetOpcode::G_TRUNC: {
847 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
848 if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128)
849 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
850 break;
851 }
852 case TargetOpcode::G_SITOFP:
853 case TargetOpcode::G_UITOFP: {
854 if (MRI.getType(MI.getOperand(0).getReg()).isVector())
855 break;
856 // Integer to FP conversions don't necessarily happen between GPR -> FPR
857 // regbanks. They can also be done within an FPR register.
858 Register SrcReg = MI.getOperand(1).getReg();
859 if (getRegBank(SrcReg, MRI, TRI) == &AArch64::FPRRegBank &&
860 MRI.getType(SrcReg).getSizeInBits() ==
861 MRI.getType(MI.getOperand(0).getReg()).getSizeInBits())
862 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
863 else
864 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR};
865 break;
866 }
867 case TargetOpcode::G_FPTOSI_SAT:
868 case TargetOpcode::G_FPTOUI_SAT:
869 case TargetOpcode::G_FPTOSI:
870 case TargetOpcode::G_FPTOUI: {
871 LLT DstType = MRI.getType(MI.getOperand(0).getReg());
872 if (DstType.isVector())
873 break;
874 if (DstType == LLT::scalar(16)) {
875 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
876 break;
877 }
878 TypeSize DstSize = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
879 TypeSize SrcSize = getSizeInBits(MI.getOperand(1).getReg(), MRI, TRI);
880 if (((DstSize == SrcSize) || STI.hasFeature(AArch64::FeatureFPRCVT)) &&
881 all_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
882 [&](const MachineInstr &UseMI) {
883 return onlyUsesFP(UseMI, MRI, TRI) ||
884 prefersFPUse(UseMI, MRI, TRI);
885 }))
886 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
887 else
888 OpRegBankIdx = {PMI_FirstGPR, PMI_FirstFPR};
889 break;
890 }
891 case TargetOpcode::G_INTRINSIC_LRINT:
892 case TargetOpcode::G_INTRINSIC_LLRINT:
893 if (MRI.getType(MI.getOperand(0).getReg()).isVector())
894 break;
895 OpRegBankIdx = {PMI_FirstGPR, PMI_FirstFPR};
896 break;
897 case TargetOpcode::G_FCMP: {
898 // If the result is a vector, it must use a FPR.
900 MRI.getType(MI.getOperand(0).getReg()).isVector() ? PMI_FirstFPR
901 : PMI_FirstGPR;
902 OpRegBankIdx = {Idx0,
903 /* Predicate */ PMI_None, PMI_FirstFPR, PMI_FirstFPR};
904 break;
905 }
906 case TargetOpcode::G_BITCAST:
907 // This is going to be a cross register bank copy and this is expensive.
908 if (OpRegBankIdx[0] != OpRegBankIdx[1])
909 Cost = copyCost(
910 *AArch64GenRegisterBankInfo::PartMappings[OpRegBankIdx[0]].RegBank,
911 *AArch64GenRegisterBankInfo::PartMappings[OpRegBankIdx[1]].RegBank,
912 TypeSize::getFixed(OpSize[0]));
913 break;
914 case TargetOpcode::G_LOAD: {
915 // Loading in vector unit is slightly more expensive.
916 // This is actually only true for the LD1R and co instructions,
917 // but anyway for the fast mode this number does not matter and
918 // for the greedy mode the cost of the cross bank copy will
919 // offset this number.
920 // FIXME: Should be derived from the scheduling model.
921 if (OpRegBankIdx[0] != PMI_FirstGPR) {
922 Cost = 2;
923 break;
924 }
925
926 if (cast<GLoad>(MI).isAtomic()) {
927 // Atomics always use GPR destinations. Don't refine any further.
928 OpRegBankIdx[0] = PMI_FirstGPR;
929 break;
930 }
931
932 // Try to guess the type of the load from the MMO.
933 if (isLoadFromFPType(MI)) {
934 OpRegBankIdx[0] = PMI_FirstFPR;
935 break;
936 }
937
938 // Check if that load feeds fp instructions.
939 // In that case, we want the default mapping to be on FPR
940 // instead of blind map every scalar to GPR.
941 if (any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
942 [&](const MachineInstr &UseMI) {
943 // If we have at least one direct or indirect use
944 // in a FP instruction,
945 // assume this was a floating point load in the IR. If it was
946 // not, we would have had a bitcast before reaching that
947 // instruction.
948 //
949 // Int->FP conversion operations are also captured in
950 // prefersFPUse().
951
952 if (isPHIWithFPConstraints(UseMI, MRI, TRI))
953 return true;
954
955 return onlyUsesFP(UseMI, MRI, TRI) ||
956 prefersFPUse(UseMI, MRI, TRI);
957 }))
958 OpRegBankIdx[0] = PMI_FirstFPR;
959 break;
960 }
961 case TargetOpcode::G_STORE:
962 // Check if that store is fed by fp instructions.
963 if (OpRegBankIdx[0] == PMI_FirstGPR) {
964 Register VReg = MI.getOperand(0).getReg();
965 if (!VReg)
966 break;
967 MachineInstr *DefMI = MRI.getVRegDef(VReg);
968 if (onlyDefinesFP(*DefMI, MRI, TRI))
969 OpRegBankIdx[0] = PMI_FirstFPR;
970 break;
971 }
972 break;
973 case TargetOpcode::G_INDEXED_STORE:
974 if (OpRegBankIdx[1] == PMI_FirstGPR) {
975 Register VReg = MI.getOperand(1).getReg();
976 if (!VReg)
977 break;
978 MachineInstr *DefMI = MRI.getVRegDef(VReg);
979 if (onlyDefinesFP(*DefMI, MRI, TRI))
980 OpRegBankIdx[1] = PMI_FirstFPR;
981 break;
982 }
983 break;
984 case TargetOpcode::G_INDEXED_SEXTLOAD:
985 case TargetOpcode::G_INDEXED_ZEXTLOAD:
986 // These should always be GPR.
987 OpRegBankIdx[0] = PMI_FirstGPR;
988 break;
989 case TargetOpcode::G_INDEXED_LOAD: {
990 if (isLoadFromFPType(MI))
991 OpRegBankIdx[0] = PMI_FirstFPR;
992 break;
993 }
994 case TargetOpcode::G_SELECT: {
995 // If the destination is FPR, preserve that.
996 if (OpRegBankIdx[0] != PMI_FirstGPR)
997 break;
998
999 // If we're taking in vectors, we have no choice but to put everything on
1000 // FPRs, except for the condition. The condition must always be on a GPR.
1001 LLT SrcTy = MRI.getType(MI.getOperand(2).getReg());
1002 if (SrcTy.isVector()) {
1004 break;
1005 }
1006
1007 // Try to minimize the number of copies. If we have more floating point
1008 // constrained values than not, then we'll put everything on FPR. Otherwise,
1009 // everything has to be on GPR.
1010 unsigned NumFP = 0;
1011
1012 // Check if the uses of the result always produce floating point values.
1013 //
1014 // For example:
1015 //
1016 // %z = G_SELECT %cond %x %y
1017 // fpr = G_FOO %z ...
1018 if (any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
1019 [&](MachineInstr &MI) { return onlyUsesFP(MI, MRI, TRI); }))
1020 ++NumFP;
1021
1022 // Check if the defs of the source values always produce floating point
1023 // values.
1024 //
1025 // For example:
1026 //
1027 // %x = G_SOMETHING_ALWAYS_FLOAT %a ...
1028 // %z = G_SELECT %cond %x %y
1029 //
1030 // Also check whether or not the sources have already been decided to be
1031 // FPR. Keep track of this.
1032 //
1033 // This doesn't check the condition, since it's just whatever is in NZCV.
1034 // This isn't passed explicitly in a register to fcsel/csel.
1035 for (unsigned Idx = 2; Idx < 4; ++Idx) {
1036 Register VReg = MI.getOperand(Idx).getReg();
1037 MachineInstr *DefMI = MRI.getVRegDef(VReg);
1038 if (getRegBank(VReg, MRI, TRI) == &AArch64::FPRRegBank ||
1039 onlyDefinesFP(*DefMI, MRI, TRI))
1040 ++NumFP;
1041 }
1042
1043 // If we have more FP constraints than not, then move everything over to
1044 // FPR.
1045 if (NumFP >= 2)
1047
1048 break;
1049 }
1050 case TargetOpcode::G_UNMERGE_VALUES: {
1051 // If the first operand belongs to a FPR register bank, then make sure that
1052 // we preserve that.
1053 if (OpRegBankIdx[0] != PMI_FirstGPR)
1054 break;
1055
1056 LLT SrcTy = MRI.getType(MI.getOperand(MI.getNumOperands()-1).getReg());
1057 // UNMERGE into scalars from a vector should always use FPR.
1058 // Likewise if any of the uses are FP instructions.
1059 if (SrcTy.isVector() || SrcTy == LLT::scalar(128) ||
1060 any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
1061 [&](MachineInstr &MI) { return onlyUsesFP(MI, MRI, TRI); })) {
1062 // Set the register bank of every operand to FPR.
1063 for (unsigned Idx = 0, NumOperands = MI.getNumOperands();
1064 Idx < NumOperands; ++Idx)
1065 OpRegBankIdx[Idx] = PMI_FirstFPR;
1066 }
1067 break;
1068 }
1069 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1070 // Destination and source need to be FPRs.
1071 OpRegBankIdx[0] = PMI_FirstFPR;
1072 OpRegBankIdx[1] = PMI_FirstFPR;
1073
1074 // Index needs to be a GPR.
1075 OpRegBankIdx[2] = PMI_FirstGPR;
1076 break;
1077 case TargetOpcode::G_INSERT_VECTOR_ELT:
1078 OpRegBankIdx[0] = PMI_FirstFPR;
1079 OpRegBankIdx[1] = PMI_FirstFPR;
1080
1081 // The element may be either a GPR or FPR. Preserve that behaviour.
1082 if (getRegBank(MI.getOperand(2).getReg(), MRI, TRI) == &AArch64::FPRRegBank)
1083 OpRegBankIdx[2] = PMI_FirstFPR;
1084 else {
1085 // If the type is i8/i16, and the regank will be GPR, then we change the
1086 // type to i32 in applyMappingImpl.
1087 LLT Ty = MRI.getType(MI.getOperand(2).getReg());
1088 if (Ty.getSizeInBits() == 8 || Ty.getSizeInBits() == 16) {
1089 // Calls applyMappingImpl()
1090 MappingID = CustomMappingID;
1091 }
1092 OpRegBankIdx[2] = PMI_FirstGPR;
1093 }
1094
1095 // Index needs to be a GPR.
1096 OpRegBankIdx[3] = PMI_FirstGPR;
1097 break;
1098 case TargetOpcode::G_EXTRACT: {
1099 // For s128 sources we have to use fpr unless we know otherwise.
1100 auto Src = MI.getOperand(1).getReg();
1101 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
1102 if (SrcTy.getSizeInBits() != 128)
1103 break;
1104 auto Idx = MRI.getRegClassOrNull(Src) == &AArch64::XSeqPairsClassRegClass
1105 ? PMI_FirstGPR
1106 : PMI_FirstFPR;
1107 OpRegBankIdx[0] = Idx;
1108 OpRegBankIdx[1] = Idx;
1109 break;
1110 }
1111 case TargetOpcode::G_BUILD_VECTOR: {
1112 // If the first source operand belongs to a FPR register bank, then make
1113 // sure that we preserve that.
1114 if (OpRegBankIdx[1] != PMI_FirstGPR)
1115 break;
1116 Register VReg = MI.getOperand(1).getReg();
1117 if (!VReg)
1118 break;
1119
1120 // Get the instruction that defined the source operand reg, and check if
1121 // it's a floating point operation. Or, if it's a type like s16 which
1122 // doesn't have a exact size gpr register class. The exception is if the
1123 // build_vector has all constant operands, which may be better to leave as
1124 // gpr without copies, so it can be matched in imported patterns.
1125 MachineInstr *DefMI = MRI.getVRegDef(VReg);
1126 unsigned DefOpc = DefMI->getOpcode();
1127 const LLT SrcTy = MRI.getType(VReg);
1128 if (all_of(MI.operands(), [&](const MachineOperand &Op) {
1129 return Op.isDef() || MRI.getVRegDef(Op.getReg())->getOpcode() ==
1130 TargetOpcode::G_CONSTANT;
1131 }))
1132 break;
1134 SrcTy.getSizeInBits() < 32 ||
1135 getRegBank(VReg, MRI, TRI) == &AArch64::FPRRegBank) {
1136 // Have a floating point op.
1137 // Make sure every operand gets mapped to a FPR register class.
1138 unsigned NumOperands = MI.getNumOperands();
1139 for (unsigned Idx = 0; Idx < NumOperands; ++Idx)
1140 OpRegBankIdx[Idx] = PMI_FirstFPR;
1141 }
1142 break;
1143 }
1144 case TargetOpcode::G_VECREDUCE_FADD:
1145 case TargetOpcode::G_VECREDUCE_FMUL:
1146 case TargetOpcode::G_VECREDUCE_FMAX:
1147 case TargetOpcode::G_VECREDUCE_FMIN:
1148 case TargetOpcode::G_VECREDUCE_FMAXIMUM:
1149 case TargetOpcode::G_VECREDUCE_FMINIMUM:
1150 case TargetOpcode::G_VECREDUCE_ADD:
1151 case TargetOpcode::G_VECREDUCE_MUL:
1152 case TargetOpcode::G_VECREDUCE_AND:
1153 case TargetOpcode::G_VECREDUCE_OR:
1154 case TargetOpcode::G_VECREDUCE_XOR:
1155 case TargetOpcode::G_VECREDUCE_SMAX:
1156 case TargetOpcode::G_VECREDUCE_SMIN:
1157 case TargetOpcode::G_VECREDUCE_UMAX:
1158 case TargetOpcode::G_VECREDUCE_UMIN:
1159 // Reductions produce a scalar value from a vector, the scalar should be on
1160 // FPR bank.
1161 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
1162 break;
1163 case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1164 case TargetOpcode::G_VECREDUCE_SEQ_FMUL:
1165 // These reductions also take a scalar accumulator input.
1166 // Assign them FPR for now.
1167 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR, PMI_FirstFPR};
1168 break;
1169 case TargetOpcode::G_INTRINSIC:
1170 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1171 switch (cast<GIntrinsic>(MI).getIntrinsicID()) {
1172 case Intrinsic::aarch64_neon_fcvtas:
1173 case Intrinsic::aarch64_neon_fcvtau:
1174 case Intrinsic::aarch64_neon_fcvtzs:
1175 case Intrinsic::aarch64_neon_fcvtzu:
1176 case Intrinsic::aarch64_neon_fcvtms:
1177 case Intrinsic::aarch64_neon_fcvtmu:
1178 case Intrinsic::aarch64_neon_fcvtns:
1179 case Intrinsic::aarch64_neon_fcvtnu:
1180 case Intrinsic::aarch64_neon_fcvtps:
1181 case Intrinsic::aarch64_neon_fcvtpu: {
1182 OpRegBankIdx[2] = PMI_FirstFPR;
1183 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) {
1184 OpRegBankIdx[0] = PMI_FirstFPR;
1185 break;
1186 }
1187 TypeSize DstSize = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
1188 TypeSize SrcSize = getSizeInBits(MI.getOperand(2).getReg(), MRI, TRI);
1189 if (((DstSize == SrcSize) || STI.hasFeature(AArch64::FeatureFPRCVT)) &&
1190 all_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
1191 [&](const MachineInstr &UseMI) {
1192 return onlyUsesFP(UseMI, MRI, TRI) ||
1193 prefersFPUse(UseMI, MRI, TRI);
1194 }))
1195 OpRegBankIdx[0] = PMI_FirstFPR;
1196 else
1197 OpRegBankIdx[0] = PMI_FirstGPR;
1198 break;
1199 }
1200 case Intrinsic::aarch64_neon_vcvtfxs2fp:
1201 case Intrinsic::aarch64_neon_vcvtfxu2fp:
1202 case Intrinsic::aarch64_neon_vcvtfp2fxs:
1203 case Intrinsic::aarch64_neon_vcvtfp2fxu:
1204 // Override these intrinsics, because they would have a partial
1205 // mapping. This is needed for 'half' types, which otherwise don't
1206 // get legalised correctly.
1207 OpRegBankIdx[0] = PMI_FirstFPR;
1208 OpRegBankIdx[2] = PMI_FirstFPR;
1209 // OpRegBankIdx[1] is the intrinsic ID.
1210 // OpRegBankIdx[3] is an integer immediate.
1211 break;
1212 default: {
1213 // Check if we know that the intrinsic has any constraints on its register
1214 // banks. If it does, then update the mapping accordingly.
1215 unsigned Idx = 0;
1216 if (onlyDefinesFP(MI, MRI, TRI))
1217 for (const auto &Op : MI.defs()) {
1218 if (Op.isReg())
1219 OpRegBankIdx[Idx] = PMI_FirstFPR;
1220 ++Idx;
1221 }
1222 else
1223 Idx += MI.getNumExplicitDefs();
1224
1225 if (onlyUsesFP(MI, MRI, TRI))
1226 for (const auto &Op : MI.explicit_uses()) {
1227 if (Op.isReg())
1228 OpRegBankIdx[Idx] = PMI_FirstFPR;
1229 ++Idx;
1230 }
1231 break;
1232 }
1233 }
1234 break;
1235 }
1236 case TargetOpcode::G_LROUND:
1237 case TargetOpcode::G_LLROUND: {
1238 // Source is always floating point and destination is always integer.
1239 OpRegBankIdx = {PMI_FirstGPR, PMI_FirstFPR};
1240 break;
1241 }
1242 }
1243
1244 // Finally construct the computed mapping.
1245 SmallVector<const ValueMapping *, 8> OpdsMapping(NumOperands);
1246 for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
1247 if (MI.getOperand(Idx).isReg() && MI.getOperand(Idx).getReg()) {
1248 LLT Ty = MRI.getType(MI.getOperand(Idx).getReg());
1249 if (!Ty.isValid())
1250 continue;
1251 auto Mapping =
1252 getValueMapping(OpRegBankIdx[Idx], TypeSize::getFixed(OpSize[Idx]));
1253 if (!Mapping->isValid())
1255
1256 OpdsMapping[Idx] = Mapping;
1257 }
1258 }
1259
1260 return getInstructionMapping(MappingID, Cost, getOperandsMapping(OpdsMapping),
1261 NumOperands);
1262}
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
#define CHECK_VALUEMAP(RBName, Size)
static bool isFPIntrinsic(const MachineRegisterInfo &MRI, const MachineInstr &MI)
#define CHECK_VALUEMAP_3OPS(RBName, Size)
static const unsigned CustomMappingID
#define CHECK_PARTIALMAP(Idx, ValStartIdx, ValLength, RB)
#define CHECK_VALUEMAP_CROSSREGCPY(RBNameDst, RBNameSrc, Size)
#define CHECK_VALUEMAP_FPEXT(DstSize, SrcSize)
This file declares the targeting of the RegisterBankInfo class for AArch64.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
IRTranslator LLVM IR MI
Implement a low-level type suitable for MachineInstr level instruction selection.
This file declares the MachineIRBuilder class.
Register const TargetRegisterInfo * TRI
ppc ctr loops verify
static const MCPhysReg FPR[]
FPR - The set of FP registers that should be allocated for arguments on Darwin and AIX.
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
static unsigned getRegBankBaseIdxOffset(unsigned RBIdx, TypeSize Size)
static const RegisterBankInfo::ValueMapping * getCopyMapping(unsigned DstBankID, unsigned SrcBankID, TypeSize Size)
Get the pointer to the ValueMapping of the operands of a copy instruction from the SrcBankID register...
static bool checkPartialMappingIdx(PartialMappingIdx FirstAlias, PartialMappingIdx LastAlias, ArrayRef< PartialMappingIdx > Order)
static const RegisterBankInfo::PartialMapping PartMappings[]
static const RegisterBankInfo::ValueMapping * getFPExtMapping(unsigned DstSize, unsigned SrcSize)
Get the instruction mapping for G_FPEXT.
static const RegisterBankInfo::ValueMapping * getValueMapping(PartialMappingIdx RBIdx, TypeSize Size)
Get the pointer to the ValueMapping representing the RegisterBank at RBIdx with a size of Size.
static const RegisterBankInfo::ValueMapping ValMappings[]
InstructionMappings getInstrAlternativeMappings(const MachineInstr &MI) const override
Get the alternative mappings for MI.
unsigned copyCost(const RegisterBank &A, const RegisterBank &B, TypeSize Size) const override
Get the cost of a copy from B to A, or put differently, get the cost of A = COPY B.
const RegisterBank & getRegBankFromRegClass(const TargetRegisterClass &RC, LLT Ty) const override
Get a register bank that covers RC.
AArch64RegisterBankInfo(const TargetRegisterInfo &TRI)
const InstructionMapping & getInstrMapping(const MachineInstr &MI) const override
Get the mapping of the different operands of MI on the register bank.
const AArch64RegisterInfo * getRegisterInfo() const override
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr bool isVector() const
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Helper class to build MachineInstr.
MachineInstrBuilder buildAnyExt(const DstOp &Res, const SrcOp &Op)
Build and insert Res = G_ANYEXT Op0.
Register getReg(unsigned Idx) const
Get the register for the operand index.
Representation of each machine instruction.
MachineOperand class - Representation of each machine instruction operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Helper class that represents how the value of an instruction may be mapped and what is the related co...
bool isValid() const
Check whether this object is valid.
virtual InstructionMappings getInstrAlternativeMappings(const MachineInstr &MI) const
Get the alternative mappings for MI.
const InstructionMapping & getInstructionMapping(unsigned ID, unsigned Cost, const ValueMapping *OperandsMapping, unsigned NumOperands) const
Method to get a uniquely generated InstructionMapping.
static void applyDefaultMapping(const OperandsMapper &OpdMapper)
Helper method to apply something that is like the default mapping.
const InstructionMapping & getInvalidInstructionMapping() const
Method to get a uniquely generated invalid InstructionMapping.
const RegisterBank & getRegBank(unsigned ID)
Get the register bank identified by ID.
unsigned getMaximumSize(unsigned RegBankID) const
Get the maximum size in bits that fits in the given register bank.
TypeSize getSizeInBits(Register Reg, const MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI) const
Get the size in bits of Reg.
virtual const RegisterBank & getRegBankFromRegClass(const TargetRegisterClass &RC, LLT Ty) const
Get a register bank that covers RC.
const ValueMapping * getOperandsMapping(Iterator Begin, Iterator End) const
Get the uniquely generated array of ValueMapping for the elements of between Begin and End.
static const unsigned DefaultMappingID
Identifier used when the related instruction mapping instance is generated by target independent code...
SmallVector< const InstructionMapping *, 4 > InstructionMappings
Convenient type to represent the alternatives for mapping an instruction.
virtual unsigned copyCost(const RegisterBank &A, const RegisterBank &B, TypeSize Size) const
Get the cost of a copy from B to A, or put differently, get the cost of A = COPY B.
const InstructionMapping & getInstrMappingImpl(const MachineInstr &MI) const
Try to get the mapping of MI.
This class implements the register bank concept.
LLVM_ABI bool covers(const TargetRegisterClass &RC) const
Check whether this register bank covers RC.
unsigned getID() const
Get the identifier of this register bank.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition Register.h:83
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
unsigned getID() const
Return the register class ID number.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
Type * getArrayElementType() const
Definition Type.h:408
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Definition Type.h:225
iterator_range< user_iterator > users()
Definition Value.h:426
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
InstructionCost Cost
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
bool isPreISelGenericOpcode(unsigned Opcode)
Check whether the given Opcode is a generic opcode that is not supposed to appear after ISel.
bool isPreISelGenericOptimizationHint(unsigned Opcode)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
DWARFExpression::Operation Op
void call_once(once_flag &flag, Function &&F, Args &&... ArgList)
Execute the function specified as a parameter once.
Definition Threading.h:86
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI bool isPreISelGenericFloatingPointOpcode(unsigned Opc)
Returns whether opcode Opc is a pre-isel generic floating-point opcode, having only floating-point op...
Definition Utils.cpp:1748
The llvm::once_flag structure.
Definition Threading.h:67