31#include "llvm/Config/llvm-config.h"
96 cl::desc(
"Print addresses of instructions when dumping"));
100 cl::desc(
"Pretty print debug locations of instructions when dumping"));
104 cl::desc(
"Pretty print perf data (branch weights, etc) when dumping"));
108 cl::desc(
"Preserve use-list order when writing LLVM assembly."));
127 return VAM->getValue();
140 for (
const Value *
Op :
C->operands())
147 unsigned ID = OM.size() + 1;
154 auto OrderConstantValue = [&OM](
const Value *V) {
159 auto OrderConstantFromMetadata = [&](
Metadata *MD) {
161 OrderConstantValue(VAM->getValue());
163 for (
const auto *VAM : AL->getArgs())
164 OrderConstantValue(VAM->getValue());
169 if (
G.hasInitializer())
185 for (
const Use &U :
F.operands())
191 if (
F.isDeclaration())
204 OrderConstantFromMetadata(DVR.getRawLocation());
205 if (DVR.isDbgAssign())
206 OrderConstantFromMetadata(DVR.getRawAddress());
209 for (
const Value *
Op :
I.operands()) {
222static std::vector<unsigned>
225 using Entry = std::pair<const Use *, unsigned>;
229 if (OM.lookup(U.getUser()))
230 List.
push_back(std::make_pair(&U, List.size()));
241 ID = OM.lookup(BA->getBasicBlock());
242 llvm::sort(List, [&](
const Entry &L,
const Entry &R) {
243 const Use *LU = L.first;
244 const Use *RU = R.first;
248 auto LID = OM.lookup(LU->getUser());
249 auto RID = OM.lookup(RU->getUser());
269 return LU->getOperandNo() < RU->getOperandNo();
270 return LU->getOperandNo() > RU->getOperandNo();
278 std::vector<unsigned> Shuffle(List.size());
279 for (
size_t I = 0,
E = List.size();
I !=
E; ++
I)
280 Shuffle[
I] = List[
I].second;
287 for (
const auto &Pair : OM) {
288 const Value *V = Pair.first;
289 if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
292 std::vector<unsigned> Shuffle =
299 F =
I->getFunction();
304 ULOM[
F][V] = std::move(Shuffle);
311 return MA->getParent() ? MA->getParent()->getParent() :
nullptr;
314 return BB->getParent() ? BB->getParent()->getParent() :
nullptr;
317 const Function *M =
I->getParent() ?
I->getParent()->getParent() :
nullptr;
318 return M ? M->getParent() :
nullptr;
322 return GV->getParent();
347 default: Out <<
"cc" << cc;
break;
370 Out <<
"aarch64_sve_vector_pcs";
373 Out <<
"aarch64_sme_preservemost_from_x0";
376 Out <<
"aarch64_sme_preservemost_from_x1";
379 Out <<
"aarch64_sme_preservemost_from_x2";
407 Out <<
"amdgpu_cs_chain";
410 Out <<
"amdgpu_cs_chain_preserve";
415 Out <<
"amdgpu_gfx_whole_wave";
419 Out <<
"riscv_vector_cc";
421#define CC_VLS_CASE(ABI_VLEN) \
422 case CallingConv::RISCV_VLSCall_##ABI_VLEN: \
423 Out << "riscv_vls_cc(" #ABI_VLEN ")"; \
439 Out <<
"cheriot_compartmentcallcc";
442 Out <<
"cheriot_compartmentcalleecc";
445 Out <<
"cheriot_librarycallcc";
459 assert(!Name.empty() &&
"Cannot get empty name!");
462 bool NeedsQuotes = isdigit(
static_cast<unsigned char>(Name[0]));
464 for (
unsigned char C : Name) {
469 if (!isalnum(
C) &&
C !=
'-' &&
C !=
'.' &&
C !=
'_') {
523 Out << Mask.size() <<
" x i32> ";
524 if (
all_of(Mask, [](
int Elt) {
return Elt == 0; })) {
525 Out <<
"zeroinitializer";
531 for (
int Elt : Mask) {
546 TypePrinting(
const Module *M =
nullptr) : DeferredM(
M) {}
548 TypePrinting(
const TypePrinting &) =
delete;
549 TypePrinting &operator=(
const TypePrinting &) =
delete;
552 TypeFinder &getNamedTypes();
555 std::vector<StructType *> &getNumberedTypes();
561 void printStructBody(StructType *Ty, raw_ostream &OS);
564 void incorporateTypes();
569 TypeFinder NamedTypes;
572 DenseMap<StructType *, unsigned> Type2Number;
574 std::vector<StructType *> NumberedTypes;
584std::vector<StructType *> &TypePrinting::getNumberedTypes() {
590 if (NumberedTypes.size() == Type2Number.size())
591 return NumberedTypes;
593 NumberedTypes.resize(Type2Number.size());
594 for (
const auto &
P : Type2Number) {
595 assert(
P.second < NumberedTypes.size() &&
"Didn't get a dense numbering?");
596 assert(!NumberedTypes[
P.second] &&
"Didn't get a unique numbering?");
597 NumberedTypes[
P.second] =
P.first;
599 return NumberedTypes;
602bool TypePrinting::empty() {
604 return NamedTypes.
empty() && Type2Number.empty();
607void TypePrinting::incorporateTypes() {
611 NamedTypes.
run(*DeferredM,
false);
616 unsigned NextNumber = 0;
618 std::vector<StructType *>::iterator NextToUse = NamedTypes.
begin();
619 for (StructType *STy : NamedTypes) {
621 if (STy->isLiteral())
624 if (STy->getName().empty())
625 Type2Number[STy] = NextNumber++;
630 NamedTypes.erase(NextToUse, NamedTypes.end());
635void TypePrinting::print(
Type *Ty, raw_ostream &OS) {
637 case Type::VoidTyID: OS <<
"void";
return;
638 case Type::HalfTyID: OS <<
"half";
return;
639 case Type::BFloatTyID: OS <<
"bfloat";
return;
640 case Type::FloatTyID: OS <<
"float";
return;
641 case Type::DoubleTyID: OS <<
"double";
return;
642 case Type::X86_FP80TyID: OS <<
"x86_fp80";
return;
643 case Type::FP128TyID: OS <<
"fp128";
return;
644 case Type::PPC_FP128TyID: OS <<
"ppc_fp128";
return;
645 case Type::LabelTyID: OS <<
"label";
return;
646 case Type::MetadataTyID:
649 case Type::X86_AMXTyID: OS <<
"x86_amx";
return;
650 case Type::TokenTyID: OS <<
"token";
return;
651 case Type::IntegerTyID:
652 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
655 case Type::FunctionTyID: {
657 print(FTy->getReturnType(), OS);
660 for (
Type *Ty : FTy->params()) {
669 case Type::StructTyID: {
673 return printStructBody(STy, OS);
679 const auto I = Type2Number.find(STy);
680 if (
I != Type2Number.end())
681 OS <<
'%' <<
I->second;
683 OS <<
"%\"type " << STy <<
'\"';
686 case Type::PointerTyID: {
693 case Type::ArrayTyID: {
695 OS <<
'[' << ATy->getNumElements() <<
" x ";
696 print(ATy->getElementType(), OS);
700 case Type::FixedVectorTyID:
701 case Type::ScalableVectorTyID: {
703 ElementCount
EC = PTy->getElementCount();
707 OS <<
EC.getKnownMinValue() <<
" x ";
708 print(PTy->getElementType(), OS);
712 case Type::TypedPointerTyID: {
718 case Type::TargetExtTyID:
725 Inner->print(OS,
false,
true);
728 OS <<
", " << IntParam;
735void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
777 const Function* TheFunction =
nullptr;
778 bool FunctionProcessed =
false;
779 bool ShouldInitializeAllMetadata;
784 ProcessFunctionHookFn;
799 unsigned mdnNext = 0;
807 unsigned ModulePathNext = 0;
811 unsigned GUIDNext = 0;
815 unsigned TypeIdNext = 0;
820 unsigned TypeIdCompatibleVtableNext = 0;
829 bool ShouldInitializeAllMetadata =
false);
837 bool ShouldInitializeAllMetadata =
false);
854 void createMetadataSlot(
const MDNode *
N)
override;
858 int getLocalSlot(
const Value *V);
860 int getMetadataSlot(
const MDNode *
N)
override;
865 int getTypeIdCompatibleVtableSlot(
StringRef Id);
871 FunctionProcessed =
false;
879 void purgeFunction();
886 unsigned mdn_size()
const {
return mdnMap.size(); }
894 unsigned as_size()
const {
return asMap.size(); }
910 void CreateMetadataSlot(
const MDNode *
N);
913 void CreateFunctionSlot(
const Value *V);
918 inline void CreateModulePathSlot(
StringRef Path);
921 void CreateTypeIdCompatibleVtableSlot(
StringRef Id);
925 void processModule();
933 void processGlobalObjectMetadata(
const GlobalObject &GO);
936 void processFunctionMetadata(
const Function &
F);
942 void processDbgRecordMetadata(
const DbgRecord &DVR);
947 : M(M), F(F), Machine(&Machine) {}
950 bool ShouldInitializeAllMetadata)
951 : ShouldCreateStorage(M),
952 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
957 if (!ShouldCreateStorage)
960 ShouldCreateStorage =
false;
962 std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
963 Machine = MachineStorage.get();
964 if (ProcessModuleHookFn)
965 Machine->setProcessHook(ProcessModuleHookFn);
966 if (ProcessFunctionHookFn)
967 Machine->setProcessHook(ProcessFunctionHookFn);
980 Machine->purgeFunction();
981 Machine->incorporateFunction(&F);
986 assert(F &&
"No function incorporated");
987 return Machine->getLocalSlot(V);
993 ProcessModuleHookFn = Fn;
999 ProcessFunctionHookFn = Fn;
1029#define ST_DEBUG(X) dbgs() << X
1037 : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
1042 : TheModule(
F ?
F->
getParent() : nullptr), TheFunction(
F),
1043 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
1046 : TheModule(nullptr), ShouldInitializeAllMetadata(
false), TheIndex(Index) {}
1051 TheModule =
nullptr;
1054 if (TheFunction && !FunctionProcessed)
1061 int NumSlots = processIndex();
1068void SlotTracker::processModule() {
1069 ST_DEBUG(
"begin processModule!\n");
1074 CreateModuleSlot(&Var);
1075 processGlobalObjectMetadata(Var);
1076 auto Attrs = Var.getAttributes();
1077 if (Attrs.hasAttributes())
1078 CreateAttributeSetSlot(Attrs);
1083 CreateModuleSlot(&
A);
1086 for (
const GlobalIFunc &
I : TheModule->ifuncs()) {
1088 CreateModuleSlot(&
I);
1089 processGlobalObjectMetadata(
I);
1093 for (
const NamedMDNode &NMD : TheModule->named_metadata()) {
1094 for (
const MDNode *
N : NMD.operands())
1095 CreateMetadataSlot(
N);
1098 for (
const Function &
F : *TheModule) {
1101 CreateModuleSlot(&
F);
1103 if (ShouldInitializeAllMetadata)
1104 processFunctionMetadata(
F);
1108 AttributeSet FnAttrs =
F.getAttributes().getFnAttrs();
1110 CreateAttributeSetSlot(FnAttrs);
1113 if (ProcessModuleHookFn)
1114 ProcessModuleHookFn(
this, TheModule, ShouldInitializeAllMetadata);
1120void SlotTracker::processFunction() {
1121 ST_DEBUG(
"begin processFunction!\n");
1125 if (!ShouldInitializeAllMetadata)
1126 processFunctionMetadata(*TheFunction);
1130 AE = TheFunction->arg_end(); AI != AE; ++AI)
1132 CreateFunctionSlot(&*AI);
1134 ST_DEBUG(
"Inserting Instructions:\n");
1137 for (
auto &BB : *TheFunction) {
1139 CreateFunctionSlot(&BB);
1141 for (
auto &
I : BB) {
1142 if (!
I.getType()->isVoidTy() && !
I.hasName())
1143 CreateFunctionSlot(&
I);
1150 if (
Attrs.hasAttributes())
1151 CreateAttributeSetSlot(Attrs);
1156 if (ProcessFunctionHookFn)
1157 ProcessFunctionHookFn(
this, TheFunction, ShouldInitializeAllMetadata);
1159 FunctionProcessed =
true;
1161 ST_DEBUG(
"end processFunction!\n");
1165int SlotTracker::processIndex() {
1172 std::vector<StringRef> ModulePaths;
1173 for (
auto &[ModPath,
_] : TheIndex->modulePaths())
1174 ModulePaths.push_back(ModPath);
1176 for (
auto &ModPath : ModulePaths)
1177 CreateModulePathSlot(ModPath);
1180 GUIDNext = ModulePathNext;
1182 for (
auto &GlobalList : *TheIndex)
1183 CreateGUIDSlot(GlobalList.first);
1186 TypeIdCompatibleVtableNext = GUIDNext;
1187 for (
auto &TId : TheIndex->typeIdCompatibleVtableMap())
1188 CreateTypeIdCompatibleVtableSlot(TId.first);
1191 TypeIdNext = TypeIdCompatibleVtableNext;
1192 for (
const auto &TID : TheIndex->typeIds())
1193 CreateTypeIdSlot(TID.second.first);
1199void SlotTracker::processGlobalObjectMetadata(
const GlobalObject &GO) {
1202 for (
auto &MD : MDs)
1203 CreateMetadataSlot(MD.second);
1206void SlotTracker::processFunctionMetadata(
const Function &
F) {
1207 processGlobalObjectMetadata(
F);
1208 for (
auto &BB :
F) {
1209 for (
auto &
I : BB) {
1210 for (
const DbgRecord &DR :
I.getDbgRecordRange())
1211 processDbgRecordMetadata(DR);
1212 processInstructionMetadata(
I);
1217void SlotTracker::processDbgRecordMetadata(
const DbgRecord &DR) {
1228 CreateMetadataSlot(
Empty);
1229 if (DVR->getRawVariable())
1230 CreateMetadataSlot(DVR->getRawVariable());
1231 if (DVR->isDbgAssign()) {
1232 if (
auto *AssignID = DVR->getRawAssignID())
1235 CreateMetadataSlot(
Empty);
1238 CreateMetadataSlot(DLR->getRawLabel());
1246void SlotTracker::processInstructionMetadata(
const Instruction &
I) {
1249 if (Function *
F = CI->getCalledFunction())
1250 if (
F->isIntrinsic())
1251 for (
auto &
Op :
I.operands())
1254 CreateMetadataSlot(
N);
1258 I.getAllMetadata(MDs);
1259 for (
auto &MD : MDs)
1260 CreateMetadataSlot(MD.second);
1267 ST_DEBUG(
"begin purgeFunction!\n");
1269 TheFunction =
nullptr;
1270 FunctionProcessed =
false;
1281 return MI == mMap.end() ? -1 : (int)
MI->second;
1287 ProcessModuleHookFn = Fn;
1293 ProcessFunctionHookFn = Fn;
1306 return MI == mdnMap.end() ? -1 : (int)
MI->second;
1317 return FI == fMap.end() ? -1 : (int)FI->second;
1326 return AI == asMap.end() ? -1 : (int)AI->second;
1334 auto I = ModulePathMap.find(Path);
1335 return I == ModulePathMap.end() ? -1 : (int)
I->second;
1344 return I == GUIDMap.end() ? -1 : (int)
I->second;
1352 auto I = TypeIdMap.find(Id);
1353 return I == TypeIdMap.end() ? -1 : (int)
I->second;
1361 auto I = TypeIdCompatibleVtableMap.find(Id);
1362 return I == TypeIdCompatibleVtableMap.end() ? -1 : (int)
I->second;
1366void SlotTracker::CreateModuleSlot(
const GlobalValue *V) {
1367 assert(V &&
"Can't insert a null Value into SlotTracker!");
1368 assert(!V->getType()->isVoidTy() &&
"Doesn't need a slot!");
1369 assert(!V->hasName() &&
"Doesn't need a slot!");
1371 unsigned DestSlot = mNext++;
1374 ST_DEBUG(
" Inserting value [" << V->getType() <<
"] = " << V <<
" slot=" <<
1384void SlotTracker::CreateFunctionSlot(
const Value *V) {
1385 assert(!V->getType()->isVoidTy() && !V->hasName() &&
"Doesn't need a slot!");
1387 unsigned DestSlot = fNext++;
1391 ST_DEBUG(
" Inserting value [" << V->getType() <<
"] = " << V <<
" slot=" <<
1392 DestSlot <<
" [o]\n");
1396void SlotTracker::CreateMetadataSlot(
const MDNode *
N) {
1397 assert(
N &&
"Can't insert a null Value into SlotTracker!");
1403 unsigned DestSlot = mdnNext;
1404 if (!mdnMap.insert(std::make_pair(
N, DestSlot)).second)
1409 for (
unsigned i = 0, e =
N->getNumOperands(); i != e; ++i)
1411 CreateMetadataSlot(
Op);
1414void SlotTracker::CreateAttributeSetSlot(
AttributeSet AS) {
1417 if (asMap.try_emplace(AS, asNext).second)
1422void SlotTracker::CreateModulePathSlot(
StringRef Path) {
1423 ModulePathMap[
Path] = ModulePathNext++;
1428 GUIDMap[
GUID] = GUIDNext++;
1432void SlotTracker::CreateTypeIdSlot(
StringRef Id) {
1433 TypeIdMap[
Id] = TypeIdNext++;
1437void SlotTracker::CreateTypeIdCompatibleVtableSlot(
StringRef Id) {
1438 TypeIdCompatibleVtableMap[
Id] = TypeIdCompatibleVtableNext++;
1443struct AsmWriterContext {
1444 TypePrinting *TypePrinter =
nullptr;
1445 SlotTracker *
Machine =
nullptr;
1448 AsmWriterContext(TypePrinting *TP, SlotTracker *ST,
const Module *M =
nullptr)
1451 static AsmWriterContext &getEmpty() {
1452 static AsmWriterContext EmptyCtx(
nullptr,
nullptr);
1458 virtual void onWriteMetadataAsOperand(
const Metadata *) {}
1460 virtual ~AsmWriterContext() =
default;
1469 AsmWriterContext &WriterCtx,
1470 bool PrintType =
false);
1473 AsmWriterContext &WriterCtx,
1474 bool FromValue =
false);
1478 Out << FPO->getFastMathFlags();
1481 if (OBO->hasNoUnsignedWrap())
1483 if (OBO->hasNoSignedWrap())
1489 if (PDI->isDisjoint())
1492 if (
GEP->isInBounds())
1494 else if (
GEP->hasNoUnsignedSignedWrap())
1496 if (
GEP->hasNoUnsignedWrap())
1499 Out <<
" inrange(" <<
InRange->getLower() <<
", " <<
InRange->getUpper()
1503 if (NNI->hasNonNeg())
1506 if (TI->hasNoUnsignedWrap())
1508 if (TI->hasNoSignedWrap())
1511 if (ICmp->hasSameSign())
1527 bool isNaN = APF.
isNaN();
1529 if (!isInf && !isNaN) {
1538 ((StrVal[0] ==
'-' || StrVal[0] ==
'+') &&
isDigit(StrVal[1]))) &&
1539 "[-+]?[0-9] regex does not match!");
1551 static_assert(
sizeof(double) ==
sizeof(
uint64_t),
1552 "assuming that double is 64 bits!");
1610 AsmWriterContext &WriterCtx) {
1612 Type *Ty = CI->getType();
1614 if (Ty->isVectorTy()) {
1616 WriterCtx.TypePrinter->print(Ty->getScalarType(), Out);
1620 if (Ty->getScalarType()->isIntegerTy(1))
1621 Out << (CI->getZExtValue() ?
"true" :
"false");
1623 Out << CI->getValue();
1625 if (Ty->isVectorTy())
1632 Type *Ty = CFP->getType();
1634 if (Ty->isVectorTy()) {
1636 WriterCtx.TypePrinter->print(Ty->getScalarType(), Out);
1642 if (Ty->isVectorTy())
1649 Out <<
"zeroinitializer";
1654 Out <<
"blockaddress(";
1663 Out <<
"dso_local_equivalent ";
1678 unsigned NumOpsToWrite = 2;
1679 if (!CPA->getOperand(2)->isNullValue())
1681 if (!CPA->getOperand(3)->isNullValue())
1683 if (!CPA->getOperand(4)->isNullValue())
1687 for (
unsigned i = 0, e = NumOpsToWrite; i != e; ++i) {
1699 for (
const Value *
Op : CA->operands()) {
1710 if (CA->isString()) {
1719 for (
uint64_t i = 0, e = CA->getNumElements(); i != e; ++i) {
1729 if (CS->getType()->isPacked())
1732 if (CS->getNumOperands() != 0) {
1735 for (
const Value *
Op : CS->operands()) {
1742 if (CS->getType()->isPacked())
1766 for (
unsigned i = 0, e = CVVTy->getNumElements(); i != e; ++i) {
1801 if (CE->getOpcode() == Instruction::ShuffleVector) {
1802 if (
auto *SplatVal = CE->getSplatValue()) {
1812 Out << CE->getOpcodeName();
1817 WriterCtx.TypePrinter->print(
GEP->getSourceElementType(), Out);
1822 for (
const Value *
Op : CE->operands()) {
1829 WriterCtx.TypePrinter->print(CE->getType(), Out);
1832 if (CE->getOpcode() == Instruction::ShuffleVector)
1839 Out <<
"<placeholder or erroneous Constant>";
1843 AsmWriterContext &WriterCtx) {
1851 Value *V = MDV->getValue();
1855 WriterCtx.onWriteMetadataAsOperand(MD);
1864struct MDFieldPrinter {
1867 AsmWriterContext &WriterCtx;
1869 explicit MDFieldPrinter(raw_ostream &Out)
1870 : Out(Out), WriterCtx(AsmWriterContext::getEmpty()) {}
1871 MDFieldPrinter(raw_ostream &Out, AsmWriterContext &Ctx)
1872 : Out(Out), WriterCtx(Ctx) {}
1874 void printTag(
const DINode *
N);
1875 void printMacinfoType(
const DIMacroNode *
N);
1876 void printChecksum(
const DIFile::ChecksumInfo<StringRef> &
N);
1877 void printString(StringRef Name, StringRef
Value,
1878 bool ShouldSkipEmpty =
true);
1879 void printMetadata(StringRef Name,
const Metadata *MD,
1880 bool ShouldSkipNull =
true);
1881 void printMetadataOrInt(StringRef Name,
const Metadata *MD,
bool IsUnsigned,
1882 bool ShouldSkipZero =
true);
1883 template <
class IntTy>
1884 void printInt(StringRef Name, IntTy
Int,
bool ShouldSkipZero =
true);
1885 void printAPInt(StringRef Name,
const APInt &
Int,
bool IsUnsigned,
1886 bool ShouldSkipZero);
1887 void printBool(StringRef Name,
bool Value,
1888 std::optional<bool>
Default = std::nullopt);
1891 template <
class IntTy,
class Stringifier>
1892 void printDwarfEnum(StringRef Name, IntTy
Value, Stringifier
toString,
1893 bool ShouldSkipZero =
true);
1895 void printNameTableKind(StringRef Name,
1902void MDFieldPrinter::printTag(
const DINode *
N) {
1903 Out <<
FS <<
"tag: ";
1911void MDFieldPrinter::printMacinfoType(
const DIMacroNode *
N) {
1912 Out <<
FS <<
"type: ";
1917 Out <<
N->getMacinfoType();
1920void MDFieldPrinter::printChecksum(
1923 printString(
"checksum", Checksum.
Value,
false);
1927 bool ShouldSkipEmpty) {
1928 if (ShouldSkipEmpty &&
Value.empty())
1931 Out <<
FS <<
Name <<
": \"";
1937 AsmWriterContext &WriterCtx) {
1943 WriterCtx.onWriteMetadataAsOperand(MD);
1947 bool ShouldSkipNull) {
1948 if (ShouldSkipNull && !MD)
1951 Out <<
FS <<
Name <<
": ";
1956 bool IsUnsigned,
bool ShouldSkipZero) {
1963 printInt(Name, CV->getZExtValue(), ShouldSkipZero);
1965 printInt(Name, CV->getSExtValue(), ShouldSkipZero);
1967 printMetadata(Name, MD);
1970template <
class IntTy>
1971void MDFieldPrinter::printInt(
StringRef Name, IntTy
Int,
bool ShouldSkipZero) {
1972 if (ShouldSkipZero && !
Int)
1979 bool IsUnsigned,
bool ShouldSkipZero) {
1980 if (ShouldSkipZero &&
Int.isZero())
1983 Out <<
FS <<
Name <<
": ";
1984 Int.print(Out, !IsUnsigned);
1988 std::optional<bool>
Default) {
1991 Out <<
FS <<
Name <<
": " << (
Value ?
"true" :
"false");
1998 Out <<
FS <<
Name <<
": ";
2004 for (
auto F : SplitFlags) {
2006 assert(!StringF.empty() &&
"Expected valid flag");
2007 Out << FlagsFS << StringF;
2009 if (Extra || SplitFlags.empty())
2010 Out << FlagsFS << Extra;
2013void MDFieldPrinter::printDISPFlags(
StringRef Name,
2017 Out <<
FS <<
Name <<
": ";
2028 for (
auto F : SplitFlags) {
2030 assert(!StringF.empty() &&
"Expected valid flag");
2031 Out << FlagsFS << StringF;
2033 if (Extra || SplitFlags.empty())
2034 Out << FlagsFS << Extra;
2037void MDFieldPrinter::printEmissionKind(
StringRef Name,
2042void MDFieldPrinter::printNameTableKind(
StringRef Name,
2049void MDFieldPrinter::printFixedPointKind(
StringRef Name,
2054template <
class IntTy,
class Stringifier>
2056 Stringifier
toString,
bool ShouldSkipZero) {
2057 if (ShouldSkipZero && !
Value)
2060 Out <<
FS <<
Name <<
": ";
2069 AsmWriterContext &WriterCtx) {
2070 Out <<
"!GenericDINode(";
2071 MDFieldPrinter
Printer(Out, WriterCtx);
2073 Printer.printString(
"header",
N->getHeader());
2074 if (
N->getNumDwarfOperands()) {
2075 Out <<
Printer.FS <<
"operands: {";
2077 for (
auto &
I :
N->dwarf_operands()) {
2087 AsmWriterContext &WriterCtx) {
2088 Out <<
"!DILocation(";
2089 MDFieldPrinter
Printer(Out, WriterCtx);
2091 Printer.printInt(
"line",
DL->getLine(),
false);
2092 Printer.printInt(
"column",
DL->getColumn());
2093 Printer.printMetadata(
"scope",
DL->getRawScope(),
false);
2094 Printer.printMetadata(
"inlinedAt",
DL->getRawInlinedAt());
2095 Printer.printBool(
"isImplicitCode",
DL->isImplicitCode(),
2097 Printer.printInt(
"atomGroup",
DL->getAtomGroup());
2098 Printer.printInt<
unsigned>(
"atomRank",
DL->getAtomRank());
2103 AsmWriterContext &WriterCtx) {
2104 Out <<
"!DIAssignID()";
2105 MDFieldPrinter
Printer(Out, WriterCtx);
2109 AsmWriterContext &WriterCtx) {
2110 Out <<
"!DISubrange(";
2111 MDFieldPrinter
Printer(Out, WriterCtx);
2113 Printer.printMetadataOrInt(
"count",
N->getRawCountNode(),
2119 Printer.printMetadataOrInt(
"lowerBound",
N->getRawLowerBound(),
2122 Printer.printMetadataOrInt(
"upperBound",
N->getRawUpperBound(),
2125 Printer.printMetadataOrInt(
"stride",
N->getRawStride(),
2133 AsmWriterContext &WriterCtx) {
2134 Out <<
"!DIGenericSubrange(";
2135 MDFieldPrinter
Printer(Out, WriterCtx);
2137 auto GetConstant = [&](
Metadata *Bound) -> std::optional<int64_t> {
2140 return std::nullopt;
2141 if (BE->isConstant() &&
2143 *BE->isConstant()) {
2144 return static_cast<int64_t
>(BE->getElement(1));
2146 return std::nullopt;
2149 auto *
Count =
N->getRawCountNode();
2150 if (
auto ConstantCount = GetConstant(
Count))
2151 Printer.printInt(
"count", *ConstantCount,
2156 auto *LBound =
N->getRawLowerBound();
2157 if (
auto ConstantLBound = GetConstant(LBound))
2158 Printer.printInt(
"lowerBound", *ConstantLBound,
2161 Printer.printMetadata(
"lowerBound", LBound,
true);
2163 auto *UBound =
N->getRawUpperBound();
2164 if (
auto ConstantUBound = GetConstant(UBound))
2165 Printer.printInt(
"upperBound", *ConstantUBound,
2168 Printer.printMetadata(
"upperBound", UBound,
true);
2170 auto *Stride =
N->getRawStride();
2171 if (
auto ConstantStride = GetConstant(Stride))
2172 Printer.printInt(
"stride", *ConstantStride,
2175 Printer.printMetadata(
"stride", Stride,
true);
2181 AsmWriterContext &) {
2182 Out <<
"!DIEnumerator(";
2184 Printer.printString(
"name",
N->getName(),
false);
2185 Printer.printAPInt(
"value",
N->getValue(),
N->isUnsigned(),
2187 if (
N->isUnsigned())
2188 Printer.printBool(
"isUnsigned",
true);
2193 AsmWriterContext &WriterCtx) {
2194 Out <<
"!DIBasicType(";
2195 MDFieldPrinter
Printer(Out, WriterCtx);
2196 if (
N->getTag() != dwarf::DW_TAG_base_type)
2198 Printer.printString(
"name",
N->getName());
2199 Printer.printMetadataOrInt(
"size",
N->getRawSizeInBits(),
true);
2200 Printer.printInt(
"align",
N->getAlignInBits());
2201 Printer.printInt(
"dataSize",
N->getDataSizeInBits());
2202 Printer.printDwarfEnum(
"encoding",
N->getEncoding(),
2204 Printer.printInt(
"num_extra_inhabitants",
N->getNumExtraInhabitants());
2205 Printer.printDIFlags(
"flags",
N->getFlags());
2210 AsmWriterContext &WriterCtx) {
2211 Out <<
"!DIFixedPointType(";
2212 MDFieldPrinter
Printer(Out, WriterCtx);
2213 if (
N->getTag() != dwarf::DW_TAG_base_type)
2215 Printer.printString(
"name",
N->getName());
2216 Printer.printMetadataOrInt(
"size",
N->getRawSizeInBits(),
true);
2217 Printer.printInt(
"align",
N->getAlignInBits());
2218 Printer.printDwarfEnum(
"encoding",
N->getEncoding(),
2220 Printer.printDIFlags(
"flags",
N->getFlags());
2221 Printer.printFixedPointKind(
"kind",
N->getKind());
2222 if (
N->isRational()) {
2223 bool IsUnsigned = !
N->isSigned();
2224 Printer.printAPInt(
"numerator",
N->getNumerator(), IsUnsigned,
false);
2225 Printer.printAPInt(
"denominator",
N->getDenominator(), IsUnsigned,
false);
2227 Printer.printInt(
"factor",
N->getFactor());
2233 AsmWriterContext &WriterCtx) {
2234 Out <<
"!DIStringType(";
2235 MDFieldPrinter
Printer(Out, WriterCtx);
2236 if (
N->getTag() != dwarf::DW_TAG_string_type)
2238 Printer.printString(
"name",
N->getName());
2239 Printer.printMetadata(
"stringLength",
N->getRawStringLength());
2240 Printer.printMetadata(
"stringLengthExpression",
N->getRawStringLengthExp());
2241 Printer.printMetadata(
"stringLocationExpression",
2242 N->getRawStringLocationExp());
2243 Printer.printMetadataOrInt(
"size",
N->getRawSizeInBits(),
true);
2244 Printer.printInt(
"align",
N->getAlignInBits());
2245 Printer.printDwarfEnum(
"encoding",
N->getEncoding(),
2251 AsmWriterContext &WriterCtx) {
2252 Out <<
"!DIDerivedType(";
2253 MDFieldPrinter
Printer(Out, WriterCtx);
2255 Printer.printString(
"name",
N->getName());
2256 Printer.printMetadata(
"scope",
N->getRawScope());
2257 Printer.printMetadata(
"file",
N->getRawFile());
2258 Printer.printInt(
"line",
N->getLine());
2259 Printer.printMetadata(
"baseType",
N->getRawBaseType(),
2261 Printer.printMetadataOrInt(
"size",
N->getRawSizeInBits(),
true);
2262 Printer.printInt(
"align",
N->getAlignInBits());
2263 Printer.printMetadataOrInt(
"offset",
N->getRawOffsetInBits(),
true);
2264 Printer.printDIFlags(
"flags",
N->getFlags());
2265 Printer.printMetadata(
"extraData",
N->getRawExtraData());
2266 if (
const auto &DWARFAddressSpace =
N->getDWARFAddressSpace())
2267 Printer.printInt(
"dwarfAddressSpace", *DWARFAddressSpace,
2269 Printer.printMetadata(
"annotations",
N->getRawAnnotations());
2270 if (
auto PtrAuthData =
N->getPtrAuthData()) {
2271 Printer.printInt(
"ptrAuthKey", PtrAuthData->key());
2272 Printer.printBool(
"ptrAuthIsAddressDiscriminated",
2273 PtrAuthData->isAddressDiscriminated());
2274 Printer.printInt(
"ptrAuthExtraDiscriminator",
2275 PtrAuthData->extraDiscriminator());
2276 Printer.printBool(
"ptrAuthIsaPointer", PtrAuthData->isaPointer());
2277 Printer.printBool(
"ptrAuthAuthenticatesNullValues",
2278 PtrAuthData->authenticatesNullValues());
2284 AsmWriterContext &WriterCtx) {
2285 Out <<
"!DISubrangeType(";
2286 MDFieldPrinter
Printer(Out, WriterCtx);
2287 Printer.printString(
"name",
N->getName());
2288 Printer.printMetadata(
"scope",
N->getRawScope());
2289 Printer.printMetadata(
"file",
N->getRawFile());
2290 Printer.printInt(
"line",
N->getLine());
2291 Printer.printMetadataOrInt(
"size",
N->getRawSizeInBits(),
true);
2292 Printer.printInt(
"align",
N->getAlignInBits());
2293 Printer.printDIFlags(
"flags",
N->getFlags());
2294 Printer.printMetadata(
"baseType",
N->getRawBaseType(),
2296 Printer.printMetadata(
"lowerBound",
N->getRawLowerBound());
2297 Printer.printMetadata(
"upperBound",
N->getRawUpperBound());
2298 Printer.printMetadata(
"stride",
N->getRawStride());
2299 Printer.printMetadata(
"bias",
N->getRawBias());
2304 AsmWriterContext &WriterCtx) {
2305 Out <<
"!DICompositeType(";
2306 MDFieldPrinter
Printer(Out, WriterCtx);
2308 Printer.printString(
"name",
N->getName());
2309 Printer.printMetadata(
"scope",
N->getRawScope());
2310 Printer.printMetadata(
"file",
N->getRawFile());
2311 Printer.printInt(
"line",
N->getLine());
2312 Printer.printMetadata(
"baseType",
N->getRawBaseType());
2313 Printer.printMetadataOrInt(
"size",
N->getRawSizeInBits(),
true);
2314 Printer.printInt(
"align",
N->getAlignInBits());
2315 Printer.printMetadataOrInt(
"offset",
N->getRawOffsetInBits(),
true);
2316 Printer.printInt(
"num_extra_inhabitants",
N->getNumExtraInhabitants());
2317 Printer.printDIFlags(
"flags",
N->getFlags());
2318 Printer.printMetadata(
"elements",
N->getRawElements());
2319 Printer.printDwarfEnum(
"runtimeLang",
N->getRuntimeLang(),
2321 Printer.printMetadata(
"vtableHolder",
N->getRawVTableHolder());
2322 Printer.printMetadata(
"templateParams",
N->getRawTemplateParams());
2323 Printer.printString(
"identifier",
N->getIdentifier());
2324 Printer.printMetadata(
"discriminator",
N->getRawDiscriminator());
2325 Printer.printMetadata(
"dataLocation",
N->getRawDataLocation());
2326 Printer.printMetadata(
"associated",
N->getRawAssociated());
2327 Printer.printMetadata(
"allocated",
N->getRawAllocated());
2328 if (
auto *RankConst =
N->getRankConst())
2329 Printer.printInt(
"rank", RankConst->getSExtValue(),
2332 Printer.printMetadata(
"rank",
N->getRawRank(),
true);
2333 Printer.printMetadata(
"annotations",
N->getRawAnnotations());
2334 if (
auto *Specification =
N->getRawSpecification())
2335 Printer.printMetadata(
"specification", Specification);
2337 if (
auto EnumKind =
N->getEnumKind())
2341 Printer.printMetadata(
"bitStride",
N->getRawBitStride());
2346 AsmWriterContext &WriterCtx) {
2347 Out <<
"!DISubroutineType(";
2348 MDFieldPrinter
Printer(Out, WriterCtx);
2349 Printer.printDIFlags(
"flags",
N->getFlags());
2351 Printer.printMetadata(
"types",
N->getRawTypeArray(),
2359 Printer.printString(
"filename",
N->getFilename(),
2361 Printer.printString(
"directory",
N->getDirectory(),
2364 if (
N->getChecksum())
2365 Printer.printChecksum(*
N->getChecksum());
2367 Printer.printString(
"source", *
N->getSource(),
2373 AsmWriterContext &WriterCtx) {
2374 Out <<
"!DICompileUnit(";
2375 MDFieldPrinter
Printer(Out, WriterCtx);
2381 "sourceLanguageName",
2393 Printer.printMetadata(
"file",
N->getRawFile(),
false);
2394 Printer.printString(
"producer",
N->getProducer());
2395 Printer.printBool(
"isOptimized",
N->isOptimized());
2396 Printer.printString(
"flags",
N->getFlags());
2397 Printer.printInt(
"runtimeVersion",
N->getRuntimeVersion(),
2399 Printer.printString(
"splitDebugFilename",
N->getSplitDebugFilename());
2400 Printer.printEmissionKind(
"emissionKind",
N->getEmissionKind());
2401 Printer.printMetadata(
"enums",
N->getRawEnumTypes());
2402 Printer.printMetadata(
"retainedTypes",
N->getRawRetainedTypes());
2403 Printer.printMetadata(
"globals",
N->getRawGlobalVariables());
2404 Printer.printMetadata(
"imports",
N->getRawImportedEntities());
2405 Printer.printMetadata(
"macros",
N->getRawMacros());
2406 Printer.printInt(
"dwoId",
N->getDWOId());
2407 Printer.printBool(
"splitDebugInlining",
N->getSplitDebugInlining(),
true);
2408 Printer.printBool(
"debugInfoForProfiling",
N->getDebugInfoForProfiling(),
2410 Printer.printNameTableKind(
"nameTableKind",
N->getNameTableKind());
2411 Printer.printBool(
"rangesBaseAddress",
N->getRangesBaseAddress(),
false);
2412 Printer.printString(
"sysroot",
N->getSysRoot());
2413 Printer.printString(
"sdk",
N->getSDK());
2418 AsmWriterContext &WriterCtx) {
2419 Out <<
"!DISubprogram(";
2420 MDFieldPrinter
Printer(Out, WriterCtx);
2421 Printer.printString(
"name",
N->getName());
2422 Printer.printString(
"linkageName",
N->getLinkageName());
2423 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2424 Printer.printMetadata(
"file",
N->getRawFile());
2425 Printer.printInt(
"line",
N->getLine());
2426 Printer.printMetadata(
"type",
N->getRawType());
2427 Printer.printInt(
"scopeLine",
N->getScopeLine());
2428 Printer.printMetadata(
"containingType",
N->getRawContainingType());
2429 if (
N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2430 N->getVirtualIndex() != 0)
2431 Printer.printInt(
"virtualIndex",
N->getVirtualIndex(),
false);
2432 Printer.printInt(
"thisAdjustment",
N->getThisAdjustment());
2433 Printer.printDIFlags(
"flags",
N->getFlags());
2434 Printer.printDISPFlags(
"spFlags",
N->getSPFlags());
2435 Printer.printMetadata(
"unit",
N->getRawUnit());
2436 Printer.printMetadata(
"templateParams",
N->getRawTemplateParams());
2437 Printer.printMetadata(
"declaration",
N->getRawDeclaration());
2438 Printer.printMetadata(
"retainedNodes",
N->getRawRetainedNodes());
2439 Printer.printMetadata(
"thrownTypes",
N->getRawThrownTypes());
2440 Printer.printMetadata(
"annotations",
N->getRawAnnotations());
2441 Printer.printString(
"targetFuncName",
N->getTargetFuncName());
2442 Printer.printBool(
"keyInstructions",
N->getKeyInstructionsEnabled(),
false);
2447 AsmWriterContext &WriterCtx) {
2448 Out <<
"!DILexicalBlock(";
2449 MDFieldPrinter
Printer(Out, WriterCtx);
2450 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2451 Printer.printMetadata(
"file",
N->getRawFile());
2452 Printer.printInt(
"line",
N->getLine());
2453 Printer.printInt(
"column",
N->getColumn());
2459 AsmWriterContext &WriterCtx) {
2460 Out <<
"!DILexicalBlockFile(";
2461 MDFieldPrinter
Printer(Out, WriterCtx);
2462 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2463 Printer.printMetadata(
"file",
N->getRawFile());
2464 Printer.printInt(
"discriminator",
N->getDiscriminator(),
2470 AsmWriterContext &WriterCtx) {
2471 Out <<
"!DINamespace(";
2472 MDFieldPrinter
Printer(Out, WriterCtx);
2473 Printer.printString(
"name",
N->getName());
2474 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2475 Printer.printBool(
"exportSymbols",
N->getExportSymbols(),
false);
2480 AsmWriterContext &WriterCtx) {
2481 Out <<
"!DICommonBlock(";
2482 MDFieldPrinter
Printer(Out, WriterCtx);
2483 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2484 Printer.printMetadata(
"declaration",
N->getRawDecl(),
false);
2485 Printer.printString(
"name",
N->getName());
2486 Printer.printMetadata(
"file",
N->getRawFile());
2487 Printer.printInt(
"line",
N->getLineNo());
2492 AsmWriterContext &WriterCtx) {
2494 MDFieldPrinter
Printer(Out, WriterCtx);
2496 Printer.printInt(
"line",
N->getLine());
2497 Printer.printString(
"name",
N->getName());
2498 Printer.printString(
"value",
N->getValue());
2503 AsmWriterContext &WriterCtx) {
2504 Out <<
"!DIMacroFile(";
2505 MDFieldPrinter
Printer(Out, WriterCtx);
2506 Printer.printInt(
"line",
N->getLine());
2507 Printer.printMetadata(
"file",
N->getRawFile(),
false);
2508 Printer.printMetadata(
"nodes",
N->getRawElements());
2513 AsmWriterContext &WriterCtx) {
2514 Out <<
"!DIModule(";
2515 MDFieldPrinter
Printer(Out, WriterCtx);
2516 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2517 Printer.printString(
"name",
N->getName());
2518 Printer.printString(
"configMacros",
N->getConfigurationMacros());
2519 Printer.printString(
"includePath",
N->getIncludePath());
2520 Printer.printString(
"apinotes",
N->getAPINotesFile());
2521 Printer.printMetadata(
"file",
N->getRawFile());
2522 Printer.printInt(
"line",
N->getLineNo());
2523 Printer.printBool(
"isDecl",
N->getIsDecl(),
false);
2529 AsmWriterContext &WriterCtx) {
2530 Out <<
"!DITemplateTypeParameter(";
2531 MDFieldPrinter
Printer(Out, WriterCtx);
2532 Printer.printString(
"name",
N->getName());
2533 Printer.printMetadata(
"type",
N->getRawType(),
false);
2534 Printer.printBool(
"defaulted",
N->isDefault(),
false);
2540 AsmWriterContext &WriterCtx) {
2541 Out <<
"!DITemplateValueParameter(";
2542 MDFieldPrinter
Printer(Out, WriterCtx);
2543 if (
N->getTag() != dwarf::DW_TAG_template_value_parameter)
2545 Printer.printString(
"name",
N->getName());
2546 Printer.printMetadata(
"type",
N->getRawType());
2547 Printer.printBool(
"defaulted",
N->isDefault(),
false);
2548 Printer.printMetadata(
"value",
N->getValue(),
false);
2553 AsmWriterContext &WriterCtx) {
2554 Out <<
"!DIGlobalVariable(";
2555 MDFieldPrinter
Printer(Out, WriterCtx);
2556 Printer.printString(
"name",
N->getName());
2557 Printer.printString(
"linkageName",
N->getLinkageName());
2558 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2559 Printer.printMetadata(
"file",
N->getRawFile());
2560 Printer.printInt(
"line",
N->getLine());
2561 Printer.printMetadata(
"type",
N->getRawType());
2562 Printer.printBool(
"isLocal",
N->isLocalToUnit());
2563 Printer.printBool(
"isDefinition",
N->isDefinition());
2564 Printer.printMetadata(
"declaration",
N->getRawStaticDataMemberDeclaration());
2565 Printer.printMetadata(
"templateParams",
N->getRawTemplateParams());
2566 Printer.printInt(
"align",
N->getAlignInBits());
2567 Printer.printMetadata(
"annotations",
N->getRawAnnotations());
2572 AsmWriterContext &WriterCtx) {
2573 Out <<
"!DILocalVariable(";
2574 MDFieldPrinter
Printer(Out, WriterCtx);
2575 Printer.printString(
"name",
N->getName());
2576 Printer.printInt(
"arg",
N->getArg());
2577 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2578 Printer.printMetadata(
"file",
N->getRawFile());
2579 Printer.printInt(
"line",
N->getLine());
2580 Printer.printMetadata(
"type",
N->getRawType());
2581 Printer.printDIFlags(
"flags",
N->getFlags());
2582 Printer.printInt(
"align",
N->getAlignInBits());
2583 Printer.printMetadata(
"annotations",
N->getRawAnnotations());
2588 AsmWriterContext &WriterCtx) {
2590 MDFieldPrinter
Printer(Out, WriterCtx);
2591 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2592 Printer.printString(
"name",
N->getName());
2593 Printer.printMetadata(
"file",
N->getRawFile());
2594 Printer.printInt(
"line",
N->getLine());
2595 Printer.printInt(
"column",
N->getColumn());
2596 Printer.printBool(
"isArtificial",
N->isArtificial(),
false);
2597 if (
N->getCoroSuspendIdx())
2598 Printer.printInt(
"coroSuspendIdx", *
N->getCoroSuspendIdx(),
2604 AsmWriterContext &WriterCtx) {
2605 Out <<
"!DIExpression(";
2610 assert(!OpStr.empty() &&
"Expected valid opcode");
2614 Out << FS <<
Op.getArg(0);
2617 for (
unsigned A = 0, AE =
Op.getNumArgs();
A != AE; ++
A)
2618 Out << FS <<
Op.getArg(
A);
2622 for (
const auto &
I :
N->getElements())
2629 AsmWriterContext &WriterCtx,
2630 bool FromValue =
false) {
2632 "Unexpected DIArgList metadata outside of value argument");
2633 Out <<
"!DIArgList(";
2635 MDFieldPrinter
Printer(Out, WriterCtx);
2636 for (
const Metadata *Arg :
N->getArgs()) {
2645 AsmWriterContext &WriterCtx) {
2646 Out <<
"!DIGlobalVariableExpression(";
2647 MDFieldPrinter
Printer(Out, WriterCtx);
2648 Printer.printMetadata(
"var",
N->getVariable());
2649 Printer.printMetadata(
"expr",
N->getExpression());
2654 AsmWriterContext &WriterCtx) {
2655 Out <<
"!DIObjCProperty(";
2656 MDFieldPrinter
Printer(Out, WriterCtx);
2657 Printer.printString(
"name",
N->getName());
2658 Printer.printMetadata(
"file",
N->getRawFile());
2659 Printer.printInt(
"line",
N->getLine());
2660 Printer.printString(
"setter",
N->getSetterName());
2661 Printer.printString(
"getter",
N->getGetterName());
2662 Printer.printInt(
"attributes",
N->getAttributes());
2663 Printer.printMetadata(
"type",
N->getRawType());
2668 AsmWriterContext &WriterCtx) {
2669 Out <<
"!DIImportedEntity(";
2670 MDFieldPrinter
Printer(Out, WriterCtx);
2672 Printer.printString(
"name",
N->getName());
2673 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2674 Printer.printMetadata(
"entity",
N->getRawEntity());
2675 Printer.printMetadata(
"file",
N->getRawFile());
2676 Printer.printInt(
"line",
N->getLine());
2677 Printer.printMetadata(
"elements",
N->getRawElements());
2682 AsmWriterContext &Ctx) {
2683 if (
Node->isDistinct())
2685 else if (
Node->isTemporary())
2686 Out <<
"<temporary!> ";
2688 switch (
Node->getMetadataID()) {
2691#define HANDLE_MDNODE_LEAF(CLASS) \
2692 case Metadata::CLASS##Kind: \
2693 write##CLASS(Out, cast<CLASS>(Node), Ctx); \
2695#include "llvm/IR/Metadata.def"
2702 AsmWriterContext &WriterCtx,
2705 WriterCtx.TypePrinter->print(V->getType(), Out);
2716 assert(WriterCtx.TypePrinter &&
"Constants require TypePrinting!");
2723 if (IA->hasSideEffects())
2724 Out <<
"sideeffect ";
2725 if (IA->isAlignStack())
2726 Out <<
"alignstack ";
2729 Out <<
"inteldialect ";
2748 auto *
Machine = WriterCtx.Machine;
2752 Slot =
Machine->getGlobalSlot(GV);
2755 Slot =
Machine->getLocalSlot(V);
2762 Slot =
Machine->getLocalSlot(V);
2769 Slot =
Machine->getGlobalSlot(GV);
2772 Slot =
Machine->getLocalSlot(V);
2781 Out << Prefix << Slot;
2787 AsmWriterContext &WriterCtx,
2801 std::unique_ptr<SlotTracker> MachineStorage;
2803 if (!WriterCtx.Machine) {
2804 MachineStorage = std::make_unique<SlotTracker>(WriterCtx.Context);
2805 WriterCtx.Machine = MachineStorage.get();
2815 Out <<
"<" <<
N <<
">";
2829 assert(WriterCtx.TypePrinter &&
"TypePrinter required for metadata values");
2831 "Unexpected function-local metadata outside of value argument");
2838class AssemblyWriter {
2839 formatted_raw_ostream &Out;
2840 const Module *TheModule =
nullptr;
2841 const ModuleSummaryIndex *TheIndex =
nullptr;
2842 std::unique_ptr<SlotTracker> SlotTrackerStorage;
2844 TypePrinting TypePrinter;
2845 AssemblyAnnotationWriter *AnnotationWriter =
nullptr;
2846 SetVector<const Comdat *> Comdats;
2848 bool ShouldPreserveUseListOrder;
2853 DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2857 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
const Module *M,
2858 AssemblyAnnotationWriter *AAW,
bool IsForDebug,
2859 bool ShouldPreserveUseListOrder =
false);
2861 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2862 const ModuleSummaryIndex *Index,
bool IsForDebug);
2865 return AsmWriterContext(&TypePrinter, &
Machine, TheModule);
2868 void printMDNodeBody(
const MDNode *MD);
2869 void printNamedMDNode(
const NamedMDNode *NMD);
2871 void printModule(
const Module *M);
2873 void writeOperand(
const Value *
Op,
bool PrintType);
2874 void writeParamOperand(
const Value *Operand, AttributeSet Attrs);
2875 void writeOperandBundles(
const CallBase *
Call);
2876 void writeSyncScope(
const LLVMContext &
Context,
2878 void writeAtomic(
const LLVMContext &
Context,
2881 void writeAtomicCmpXchg(
const LLVMContext &
Context,
2886 void writeAllMDNodes();
2887 void writeMDNode(
unsigned Slot,
const MDNode *Node);
2888 void writeAttribute(
const Attribute &Attr,
bool InAttrGroup =
false);
2889 void writeAttributeSet(
const AttributeSet &AttrSet,
bool InAttrGroup =
false);
2890 void writeAllAttributeGroups();
2892 void printTypeIdentities();
2893 void printGlobal(
const GlobalVariable *GV);
2894 void printAlias(
const GlobalAlias *GA);
2895 void printIFunc(
const GlobalIFunc *GI);
2896 void printComdat(
const Comdat *
C);
2897 void printFunction(
const Function *
F);
2898 void printArgument(
const Argument *FA, AttributeSet Attrs);
2900 void printInstructionLine(
const Instruction &
I);
2901 void printInstruction(
const Instruction &
I);
2902 void printDbgMarker(
const DbgMarker &DPI);
2903 void printDbgVariableRecord(
const DbgVariableRecord &DVR);
2904 void printDbgLabelRecord(
const DbgLabelRecord &DLR);
2905 void printDbgRecord(
const DbgRecord &DR);
2906 void printDbgRecordLine(
const DbgRecord &DR);
2908 void printUseListOrder(
const Value *V, ArrayRef<unsigned> Shuffle);
2909 void printUseLists(
const Function *
F);
2911 void printModuleSummaryIndex();
2912 void printSummaryInfo(
unsigned Slot,
const ValueInfo &VI);
2913 void printSummary(
const GlobalValueSummary &Summary);
2914 void printAliasSummary(
const AliasSummary *AS);
2915 void printGlobalVarSummary(
const GlobalVarSummary *GS);
2916 void printFunctionSummary(
const FunctionSummary *FS);
2917 void printTypeIdSummary(
const TypeIdSummary &TIS);
2919 void printTypeTestResolution(
const TypeTestResolution &TTRes);
2920 void printArgs(ArrayRef<uint64_t> Args);
2921 void printWPDRes(
const WholeProgramDevirtResolution &WPDRes);
2922 void printTypeIdInfo(
const FunctionSummary::TypeIdInfo &TIDInfo);
2923 void printVFuncId(
const FunctionSummary::VFuncId VFId);
2931 void printMetadataAttachments(
2932 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2933 StringRef Separator);
2937 void printInfoComment(
const Value &V,
bool isMaterializable =
false);
2941 void printGCRelocateComment(
const GCRelocateInst &Relocate);
2948 bool IsForDebug,
bool ShouldPreserveUseListOrder)
2949 : Out(
o), TheModule(
M),
Machine(Mac), TypePrinter(
M), AnnotationWriter(AAW),
2950 IsForDebug(IsForDebug),
2951 ShouldPreserveUseListOrder(
2954 : ShouldPreserveUseListOrder) {
2957 for (
const GlobalObject &GO : TheModule->global_objects())
2964 : Out(
o), TheIndex(Index),
Machine(Mac), TypePrinter(nullptr),
2965 IsForDebug(IsForDebug),
2968void AssemblyWriter::writeOperand(
const Value *Operand,
bool PrintType) {
2970 Out <<
"<null operand!>";
2977void AssemblyWriter::writeSyncScope(
const LLVMContext &
Context,
2985 Context.getSyncScopeNames(SSNs);
2987 Out <<
" syncscope(\"";
2995void AssemblyWriter::writeAtomic(
const LLVMContext &
Context,
2998 if (Ordering == AtomicOrdering::NotAtomic)
3001 writeSyncScope(
Context, SSID);
3005void AssemblyWriter::writeAtomicCmpXchg(
const LLVMContext &
Context,
3009 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
3010 FailureOrdering != AtomicOrdering::NotAtomic);
3012 writeSyncScope(
Context, SSID);
3017void AssemblyWriter::writeParamOperand(
const Value *Operand,
3018 AttributeSet Attrs) {
3020 Out <<
"<null operand!>";
3025 TypePrinter.print(Operand->
getType(), Out);
3027 if (
Attrs.hasAttributes()) {
3029 writeAttributeSet(Attrs);
3037void AssemblyWriter::writeOperandBundles(
const CallBase *
Call) {
3053 ListSeparator InnerLS;
3055 for (
const auto &Input : BU.
Inputs) {
3057 if (Input ==
nullptr)
3058 Out <<
"<null operand bundle!>";
3069void AssemblyWriter::printModule(
const Module *M) {
3072 if (ShouldPreserveUseListOrder)
3075 if (!
M->getModuleIdentifier().empty() &&
3078 M->getModuleIdentifier().find(
'\n') == std::string::npos)
3079 Out <<
"; ModuleID = '" <<
M->getModuleIdentifier() <<
"'\n";
3081 if (!
M->getSourceFileName().empty()) {
3082 Out <<
"source_filename = \"";
3087 const std::string &
DL =
M->getDataLayoutStr();
3089 Out <<
"target datalayout = \"" <<
DL <<
"\"\n";
3090 if (!
M->getTargetTriple().empty())
3091 Out <<
"target triple = \"" <<
M->getTargetTriple().str() <<
"\"\n";
3093 if (!
M->getModuleInlineAsm().empty()) {
3097 StringRef
Asm =
M->getModuleInlineAsm();
3100 std::tie(Front, Asm) =
Asm.split(
'\n');
3104 Out <<
"module asm \"";
3107 }
while (!
Asm.empty());
3110 printTypeIdentities();
3113 if (!Comdats.empty())
3115 for (
const Comdat *
C : Comdats) {
3117 if (
C != Comdats.back())
3122 if (!
M->global_empty()) Out <<
'\n';
3123 for (
const GlobalVariable &GV :
M->globals()) {
3124 printGlobal(&GV); Out <<
'\n';
3128 if (!
M->alias_empty()) Out <<
"\n";
3129 for (
const GlobalAlias &GA :
M->aliases())
3133 if (!
M->ifunc_empty()) Out <<
"\n";
3134 for (
const GlobalIFunc &GI :
M->ifuncs())
3138 for (
const Function &
F : *M) {
3144 printUseLists(
nullptr);
3149 writeAllAttributeGroups();
3153 if (!
M->named_metadata_empty()) Out <<
'\n';
3155 for (
const NamedMDNode &Node :
M->named_metadata())
3156 printNamedMDNode(&Node);
3165void AssemblyWriter::printModuleSummaryIndex() {
3167 int NumSlots =
Machine.initializeIndexIfNeeded();
3173 std::vector<std::pair<std::string, ModuleHash>> moduleVec;
3174 std::string RegularLTOModuleName =
3176 moduleVec.resize(TheIndex->modulePaths().size());
3177 for (
auto &[ModPath, ModHash] : TheIndex->modulePaths())
3178 moduleVec[
Machine.getModulePathSlot(ModPath)] = std::make_pair(
3181 ModPath.empty() ? RegularLTOModuleName : std::string(ModPath), ModHash);
3184 for (
auto &ModPair : moduleVec) {
3185 Out <<
"^" << i++ <<
" = module: (";
3188 Out <<
"\", hash: (";
3190 for (
auto Hash : ModPair.second)
3197 for (
auto &GlobalList : *TheIndex) {
3198 auto GUID = GlobalList.first;
3199 for (
auto &Summary : GlobalList.second.getSummaryList())
3204 for (
auto &GlobalList : *TheIndex) {
3205 auto GUID = GlobalList.first;
3206 auto VI = TheIndex->getValueInfo(GlobalList);
3207 printSummaryInfo(
Machine.getGUIDSlot(GUID), VI);
3211 for (
const auto &TID : TheIndex->typeIds()) {
3212 Out <<
"^" <<
Machine.getTypeIdSlot(TID.second.first)
3213 <<
" = typeid: (name: \"" << TID.second.first <<
"\"";
3214 printTypeIdSummary(TID.second.second);
3215 Out <<
") ; guid = " << TID.first <<
"\n";
3219 for (
auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
3221 Out <<
"^" <<
Machine.getTypeIdCompatibleVtableSlot(TId.first)
3222 <<
" = typeidCompatibleVTable: (name: \"" << TId.first <<
"\"";
3223 printTypeIdCompatibleVtableSummary(TId.second);
3224 Out <<
") ; guid = " <<
GUID <<
"\n";
3228 if (TheIndex->getFlags()) {
3229 Out <<
"^" << NumSlots <<
" = flags: " << TheIndex->getFlags() <<
"\n";
3233 Out <<
"^" << NumSlots <<
" = blockcount: " << TheIndex->getBlockCount()
3243 return "singleImpl";
3245 return "branchFunnel";
3256 return "uniformRetVal";
3258 return "uniqueRetVal";
3260 return "virtualConstProp";
3283void AssemblyWriter::printTypeTestResolution(
const TypeTestResolution &TTRes) {
3290 Out <<
", alignLog2: " << TTRes.
AlignLog2;
3292 Out <<
", sizeM1: " << TTRes.
SizeM1;
3295 Out <<
", bitMask: " << (unsigned)TTRes.
BitMask;
3302void AssemblyWriter::printTypeIdSummary(
const TypeIdSummary &TIS) {
3303 Out <<
", summary: (";
3304 printTypeTestResolution(TIS.
TTRes);
3305 if (!TIS.
WPDRes.empty()) {
3306 Out <<
", wpdResolutions: (";
3308 for (
auto &WPDRes : TIS.
WPDRes) {
3310 Out <<
"(offset: " << WPDRes.first <<
", ";
3311 printWPDRes(WPDRes.second);
3319void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3321 Out <<
", summary: (";
3323 for (
auto &
P : TI) {
3325 Out <<
"(offset: " <<
P.AddressPointOffset <<
", ";
3326 Out <<
"^" <<
Machine.getGUIDSlot(
P.VTableVI.getGUID());
3332void AssemblyWriter::printArgs(ArrayRef<uint64_t> Args) {
3336void AssemblyWriter::printWPDRes(
const WholeProgramDevirtResolution &WPDRes) {
3337 Out <<
"wpdRes: (kind: ";
3344 Out <<
", resByArg: (";
3346 for (
auto &ResByArg : WPDRes.
ResByArg) {
3348 printArgs(ResByArg.first);
3349 Out <<
", byArg: (kind: ";
3351 if (ResByArg.second.TheKind ==
3353 ResByArg.second.TheKind ==
3355 Out <<
", info: " << ResByArg.second.Info;
3359 if (ResByArg.second.Byte || ResByArg.second.Bit)
3360 Out <<
", byte: " << ResByArg.second.Byte
3361 <<
", bit: " << ResByArg.second.Bit;
3382void AssemblyWriter::printAliasSummary(
const AliasSummary *AS) {
3383 Out <<
", aliasee: ";
3393void AssemblyWriter::printGlobalVarSummary(
const GlobalVarSummary *GS) {
3394 auto VTableFuncs =
GS->vTableFuncs();
3395 Out <<
", varFlags: (readonly: " <<
GS->VarFlags.MaybeReadOnly <<
", "
3396 <<
"writeonly: " <<
GS->VarFlags.MaybeWriteOnly <<
", "
3397 <<
"constant: " <<
GS->VarFlags.Constant;
3398 if (!VTableFuncs.empty())
3400 <<
"vcall_visibility: " <<
GS->VarFlags.VCallVisibility;
3403 if (!VTableFuncs.empty()) {
3404 Out <<
", vTableFuncs: (";
3406 for (
auto &
P : VTableFuncs) {
3408 Out <<
"(virtFunc: ^" <<
Machine.getGUIDSlot(
P.FuncVI.getGUID())
3409 <<
", offset: " <<
P.VTableOffset;
3427 return "linkonce_odr";
3437 return "extern_weak";
3439 return "available_externally";
3468 return "definition";
3470 return "declaration";
3475void AssemblyWriter::printFunctionSummary(
const FunctionSummary *FS) {
3476 Out <<
", insts: " <<
FS->instCount();
3477 if (
FS->fflags().anyFlagSet())
3478 Out <<
", " <<
FS->fflags();
3480 if (!
FS->calls().empty()) {
3481 Out <<
", calls: (";
3483 for (
auto &
Call :
FS->calls()) {
3485 Out <<
"(callee: ^" <<
Machine.getGUIDSlot(
Call.first.getGUID());
3486 if (
Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3488 else if (
Call.second.RelBlockFreq)
3489 Out <<
", relbf: " <<
Call.second.RelBlockFreq;
3492 if (
Call.second.HasTailCall)
3499 if (
const auto *TIdInfo =
FS->getTypeIdInfo())
3500 printTypeIdInfo(*TIdInfo);
3504 auto AllocTypeName = [](uint8_t
Type) ->
const char * {
3506 case (uint8_t)AllocationType::None:
3508 case (uint8_t)AllocationType::NotCold:
3510 case (uint8_t)AllocationType::Cold:
3512 case (uint8_t)AllocationType::Hot:
3518 if (!
FS->allocs().empty()) {
3519 Out <<
", allocs: (";
3521 for (
auto &AI :
FS->allocs()) {
3523 Out <<
"(versions: (";
3525 for (
auto V : AI.Versions) {
3527 Out << AllocTypeName(V);
3529 Out <<
"), memProf: (";
3530 ListSeparator MIBFS;
3531 for (
auto &MIB : AI.MIBs) {
3533 Out <<
"(type: " << AllocTypeName((uint8_t)MIB.AllocType);
3534 Out <<
", stackIds: (";
3535 ListSeparator SIDFS;
3536 for (
auto Id : MIB.StackIdIndices) {
3538 Out << TheIndex->getStackIdAtIndex(Id);
3547 if (!
FS->callsites().empty()) {
3548 Out <<
", callsites: (";
3550 for (
auto &CI :
FS->callsites()) {
3553 Out <<
"(callee: ^" <<
Machine.getGUIDSlot(CI.Callee.getGUID());
3555 Out <<
"(callee: null";
3556 Out <<
", clones: (";
3558 for (
auto V : CI.Clones) {
3562 Out <<
"), stackIds: (";
3563 ListSeparator SIDFS;
3564 for (
auto Id : CI.StackIdIndices) {
3566 Out << TheIndex->getStackIdAtIndex(Id);
3573 auto PrintRange = [&](
const ConstantRange &
Range) {
3577 if (!
FS->paramAccesses().empty()) {
3578 Out <<
", params: (";
3580 for (
auto &PS :
FS->paramAccesses()) {
3582 Out <<
"(param: " << PS.ParamNo;
3583 Out <<
", offset: ";
3585 if (!PS.Calls.empty()) {
3586 Out <<
", calls: (";
3588 for (
auto &
Call : PS.Calls) {
3590 Out <<
"(callee: ^" <<
Machine.getGUIDSlot(
Call.Callee.getGUID());
3591 Out <<
", param: " <<
Call.ParamNo;
3592 Out <<
", offset: ";
3593 PrintRange(
Call.Offsets);
3604void AssemblyWriter::printTypeIdInfo(
3605 const FunctionSummary::TypeIdInfo &TIDInfo) {
3606 Out <<
", typeIdInfo: (";
3607 ListSeparator TIDFS;
3610 Out <<
"typeTests: (";
3613 auto TidIter = TheIndex->typeIds().equal_range(GUID);
3614 if (TidIter.first == TidIter.second) {
3620 for (
const auto &[GUID, TypeIdPair] :
make_range(TidIter)) {
3622 auto Slot =
Machine.getTypeIdSlot(TypeIdPair.first);
3640 "typeTestAssumeConstVCalls");
3645 "typeCheckedLoadConstVCalls");
3650void AssemblyWriter::printVFuncId(
const FunctionSummary::VFuncId VFId) {
3651 auto TidIter = TheIndex->typeIds().equal_range(VFId.
GUID);
3652 if (TidIter.first == TidIter.second) {
3653 Out <<
"vFuncId: (";
3654 Out <<
"guid: " << VFId.
GUID;
3655 Out <<
", offset: " << VFId.
Offset;
3661 for (
const auto &[GUID, TypeIdPair] :
make_range(TidIter)) {
3663 Out <<
"vFuncId: (";
3664 auto Slot =
Machine.getTypeIdSlot(TypeIdPair.first);
3667 Out <<
", offset: " << VFId.
Offset;
3672void AssemblyWriter::printNonConstVCalls(
3674 Out <<
Tag <<
": (";
3676 for (
auto &VFuncId : VCallList) {
3678 printVFuncId(VFuncId);
3683void AssemblyWriter::printConstVCalls(
3685 Out <<
Tag <<
": (";
3687 for (
auto &ConstVCall : VCallList) {
3690 printVFuncId(ConstVCall.VFunc);
3691 if (!ConstVCall.Args.empty()) {
3693 printArgs(ConstVCall.Args);
3700void AssemblyWriter::printSummary(
const GlobalValueSummary &Summary) {
3701 GlobalValueSummary::GVFlags GVFlags =
Summary.flags();
3704 Out <<
"(module: ^" <<
Machine.getModulePathSlot(
Summary.modulePath())
3707 Out <<
", visibility: "
3710 Out <<
", live: " << GVFlags.
Live;
3711 Out <<
", dsoLocal: " << GVFlags.
DSOLocal;
3713 Out <<
", importType: "
3724 auto RefList =
Summary.refs();
3725 if (!RefList.empty()) {
3728 for (
auto &
Ref : RefList) {
3730 if (
Ref.isReadOnly())
3732 else if (
Ref.isWriteOnly())
3733 Out <<
"writeonly ";
3734 Out <<
"^" <<
Machine.getGUIDSlot(
Ref.getGUID());
3742void AssemblyWriter::printSummaryInfo(
unsigned Slot,
const ValueInfo &VI) {
3743 Out <<
"^" <<
Slot <<
" = gv: (";
3744 if (
VI.hasName() && !
VI.name().empty())
3745 Out <<
"name: \"" <<
VI.name() <<
"\"";
3747 Out <<
"guid: " <<
VI.getGUID();
3748 if (!
VI.getSummaryList().empty()) {
3749 Out <<
", summaries: (";
3751 for (
auto &Summary :
VI.getSummaryList()) {
3753 printSummary(*Summary);
3758 if (
VI.hasName() && !
VI.name().empty())
3759 Out <<
" ; guid = " <<
VI.getGUID();
3766 Out <<
"<empty name> ";
3768 unsigned char FirstC =
static_cast<unsigned char>(Name[0]);
3769 if (isalpha(FirstC) || FirstC ==
'-' || FirstC ==
'$' || FirstC ==
'.' ||
3774 for (
unsigned i = 1, e = Name.size(); i != e; ++i) {
3775 unsigned char C = Name[i];
3776 if (isalnum(
C) ||
C ==
'-' ||
C ==
'$' ||
C ==
'.' ||
C ==
'_')
3784void AssemblyWriter::printNamedMDNode(
const NamedMDNode *NMD) {
3819 Out <<
"dso_local ";
3837 Out <<
"thread_local ";
3840 Out <<
"thread_local(localdynamic) ";
3843 Out <<
"thread_local(initialexec) ";
3846 Out <<
"thread_local(localexec) ";
3856 return "local_unnamed_addr";
3858 return "unnamed_addr";
3881void AssemblyWriter::printGlobal(
const GlobalVariable *GV) {
3883 Out <<
"; Materializable\n";
3904 Out << (GV->
isConstant() ?
"constant " :
"global ");
3913 Out <<
", section \"";
3918 Out <<
", partition \"";
3923 Out <<
", code_model \"";
3948 Out <<
", no_sanitize_address";
3950 Out <<
", no_sanitize_hwaddress";
3952 Out <<
", sanitize_memtag";
3954 Out <<
", sanitize_address_dyninit";
3959 Out <<
", align " <<
A->value();
3963 printMetadataAttachments(MDs,
", ");
3966 if (
Attrs.hasAttributes())
3967 Out <<
" #" <<
Machine.getAttributeGroupSlot(Attrs);
3972void AssemblyWriter::printAlias(
const GlobalAlias *GA) {
3974 Out <<
"; Materializable\n";
3994 if (
const Constant *Aliasee = GA->
getAliasee()) {
3997 TypePrinter.print(GA->
getType(), Out);
3998 Out <<
" <<NULL ALIASEE>>";
4002 Out <<
", partition \"";
4011void AssemblyWriter::printIFunc(
const GlobalIFunc *GI) {
4013 Out <<
"; Materializable\n";
4028 if (
const Constant *Resolver = GI->
getResolver()) {
4031 TypePrinter.print(GI->
getType(), Out);
4032 Out <<
" <<NULL RESOLVER>>";
4036 Out <<
", partition \"";
4043 printMetadataAttachments(MDs,
", ");
4050void AssemblyWriter::printComdat(
const Comdat *
C) {
4054void AssemblyWriter::printTypeIdentities() {
4055 if (TypePrinter.empty())
4061 auto &NumberedTypes = TypePrinter.getNumberedTypes();
4062 for (
unsigned I = 0,
E = NumberedTypes.size();
I !=
E; ++
I) {
4063 Out <<
'%' <<
I <<
" = type ";
4067 TypePrinter.printStructBody(NumberedTypes[
I], Out);
4071 auto &NamedTypes = TypePrinter.getNamedTypes();
4072 for (StructType *NamedType : NamedTypes) {
4078 TypePrinter.printStructBody(NamedType, Out);
4084void AssemblyWriter::printFunction(
const Function *
F) {
4085 if (
F->isMaterializable())
4086 Out <<
"; Materializable\n";
4087 else if (AnnotationWriter)
4090 const AttributeList &
Attrs =
F->getAttributes();
4091 if (
Attrs.hasFnAttrs()) {
4092 AttributeSet AS =
Attrs.getFnAttrs();
4093 std::string AttrStr;
4096 if (!Attr.isStringAttribute()) {
4097 if (!AttrStr.empty()) AttrStr +=
' ';
4098 AttrStr += Attr.getAsString();
4102 if (!AttrStr.empty())
4103 Out <<
"; Function Attrs: " << AttrStr <<
'\n';
4107 Out <<
"; Unknown intrinsic\n";
4111 if (
F->isDeclaration()) {
4114 F->getAllMetadata(MDs);
4115 printMetadataAttachments(MDs,
" ");
4126 if (
F->getCallingConv() != CallingConv::C) {
4131 FunctionType *FT =
F->getFunctionType();
4132 if (
Attrs.hasRetAttrs())
4133 Out <<
Attrs.getAsString(AttributeList::ReturnIndex) <<
' ';
4134 TypePrinter.print(
F->getReturnType(), Out);
4141 if (
F->isDeclaration() && !IsForDebug) {
4144 for (
unsigned I = 0,
E = FT->getNumParams();
I !=
E; ++
I) {
4147 TypePrinter.print(FT->getParamType(
I), Out);
4149 AttributeSet ArgAttrs =
Attrs.getParamAttrs(
I);
4152 writeAttributeSet(ArgAttrs);
4158 for (
const Argument &Arg :
F->args()) {
4160 printArgument(&Arg,
Attrs.getParamAttrs(Arg.getArgNo()));
4165 if (FT->isVarArg()) {
4166 if (FT->getNumParams()) Out <<
", ";
4177 if (
F->getAddressSpace() != 0 || !
Mod ||
4178 Mod->getDataLayout().getProgramAddressSpace() != 0)
4179 Out <<
" addrspace(" <<
F->getAddressSpace() <<
")";
4180 if (
Attrs.hasFnAttrs())
4181 Out <<
" #" <<
Machine.getAttributeGroupSlot(
Attrs.getFnAttrs());
4182 if (
F->hasSection()) {
4183 Out <<
" section \"";
4187 if (
F->hasPartition()) {
4188 Out <<
" partition \"";
4193 if (MaybeAlign
A =
F->getAlign())
4194 Out <<
" align " <<
A->value();
4196 Out <<
" gc \"" <<
F->getGC() <<
'"';
4197 if (
F->hasPrefixData()) {
4199 writeOperand(
F->getPrefixData(),
true);
4201 if (
F->hasPrologueData()) {
4202 Out <<
" prologue ";
4203 writeOperand(
F->getPrologueData(),
true);
4205 if (
F->hasPersonalityFn()) {
4206 Out <<
" personality ";
4207 writeOperand(
F->getPersonalityFn(),
true);
4211 if (
auto *MDProf =
F->getMetadata(LLVMContext::MD_prof)) {
4213 MDProf->print(Out, TheModule,
true);
4217 if (
F->isDeclaration()) {
4221 F->getAllMetadata(MDs);
4222 printMetadataAttachments(MDs,
" ");
4226 for (
const BasicBlock &BB : *
F)
4240void AssemblyWriter::printArgument(
const Argument *Arg, AttributeSet Attrs) {
4242 TypePrinter.print(Arg->
getType(), Out);
4245 if (
Attrs.hasAttributes()) {
4247 writeAttributeSet(Attrs);
4256 assert(Slot != -1 &&
"expect argument in function here");
4257 Out <<
" %" <<
Slot;
4268 }
else if (!IsEntryBlock) {
4270 int Slot =
Machine.getLocalSlot(BB);
4277 if (!IsEntryBlock) {
4282 Out <<
" No predecessors!";
4288 writeOperand(Pred,
false);
4299 for (
const DbgRecord &DR :
I.getDbgRecordRange())
4300 printDbgRecordLine(DR);
4301 printInstructionLine(
I);
4308void AssemblyWriter::printInstructionLine(
const Instruction &
I) {
4309 printInstruction(
I);
4315void AssemblyWriter::printGCRelocateComment(
const GCRelocateInst &Relocate) {
4325void AssemblyWriter::printInfoComment(
const Value &V,
bool isMaterializable) {
4327 printGCRelocateComment(*Relocate);
4329 if (AnnotationWriter && !isMaterializable)
4334 if (
I->getDebugLoc()) {
4336 I->getDebugLoc().print(Out);
4342 if (
auto *MD =
I->getMetadata(LLVMContext::MD_prof)) {
4344 MD->print(Out, TheModule,
true);
4356 if (Operand ==
nullptr) {
4357 Out <<
" <cannot get addrspace!>";
4361 bool PrintAddrSpace = CallAddrSpace != 0;
4362 if (!PrintAddrSpace) {
4367 if (!
Mod ||
Mod->getDataLayout().getProgramAddressSpace() != 0)
4368 PrintAddrSpace =
true;
4371 Out <<
" addrspace(" << CallAddrSpace <<
")";
4375void AssemblyWriter::printInstruction(
const Instruction &
I) {
4385 }
else if (!
I.getType()->isVoidTy()) {
4387 int SlotNum =
Machine.getLocalSlot(&
I);
4389 Out <<
"<badref> = ";
4391 Out <<
'%' << SlotNum <<
" = ";
4395 if (CI->isMustTailCall())
4397 else if (CI->isTailCall())
4399 else if (CI->isNoTailCall())
4404 Out <<
I.getOpcodeName();
4426 Out <<
' ' << CI->getPredicate();
4433 const Value *Operand =
I.getNumOperands() ?
I.getOperand(0) :
nullptr;
4439 writeOperand(BI.getCondition(),
true);
4441 writeOperand(BI.getSuccessor(0),
true);
4443 writeOperand(BI.getSuccessor(1),
true);
4449 writeOperand(
SI.getCondition(),
true);
4451 writeOperand(
SI.getDefaultDest(),
true);
4453 for (
auto Case :
SI.cases()) {
4455 writeOperand(Case.getCaseValue(),
true);
4457 writeOperand(Case.getCaseSuccessor(),
true);
4463 writeOperand(Operand,
true);
4467 for (
unsigned i = 1, e =
I.getNumOperands(); i != e; ++i) {
4469 writeOperand(
I.getOperand(i),
true);
4474 TypePrinter.print(
I.getType(), Out);
4478 for (
const auto &[V,
Block] :
4479 zip_equal(PN->incoming_values(), PN->blocks())) {
4481 writeOperand(V,
false);
4483 writeOperand(
Block,
false);
4488 writeOperand(
I.getOperand(0),
true);
4493 writeOperand(
I.getOperand(0),
true); Out <<
", ";
4494 writeOperand(
I.getOperand(1),
true);
4499 TypePrinter.print(
I.getType(), Out);
4500 if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4503 if (LPI->isCleanup())
4506 for (
unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4507 if (i != 0 || LPI->isCleanup()) Out <<
"\n";
4508 if (LPI->isCatch(i))
4513 writeOperand(LPI->getClause(i),
true);
4517 writeOperand(CatchSwitch->getParentPad(),
false);
4520 for (
const BasicBlock *PadBB : CatchSwitch->handlers()) {
4522 writeOperand(PadBB,
true);
4525 if (
const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4526 writeOperand(UnwindDest,
true);
4531 writeOperand(FPI->getParentPad(),
false);
4534 for (
const Value *
Op : FPI->arg_operands()) {
4536 writeOperand(
Op,
true);
4543 writeOperand(CRI->getOperand(0),
false);
4546 writeOperand(CRI->getOperand(1),
true);
4549 writeOperand(CRI->getOperand(0),
false);
4552 if (CRI->hasUnwindDest())
4553 writeOperand(CRI->getOperand(1),
true);
4558 if (CI->getCallingConv() != CallingConv::C) {
4563 Operand = CI->getCalledOperand();
4564 FunctionType *FTy = CI->getFunctionType();
4565 Type *RetTy = FTy->getReturnType();
4566 const AttributeList &PAL = CI->getAttributes();
4568 if (PAL.hasRetAttrs())
4569 Out <<
' ' << PAL.getAsString(AttributeList::ReturnIndex);
4578 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4580 writeOperand(Operand,
false);
4582 bool HasPrettyPrintedArgs =
4587 Function *CalledFunc = CI->getCalledFunction();
4588 auto PrintArgComment = [&](
unsigned ArgNo) {
4592 std::string ArgComment;
4593 raw_string_ostream ArgCommentStream(ArgComment);
4596 if (ArgComment.empty())
4598 Out <<
"/* " << ArgComment <<
" */ ";
4600 if (HasPrettyPrintedArgs) {
4601 for (
unsigned ArgNo = 0, NumArgs = CI->arg_size(); ArgNo < NumArgs;
4604 PrintArgComment(ArgNo);
4605 writeParamOperand(CI->getArgOperand(ArgNo), PAL.getParamAttrs(ArgNo));
4608 for (
unsigned ArgNo = 0, NumArgs = CI->arg_size(); ArgNo < NumArgs;
4611 writeParamOperand(CI->getArgOperand(ArgNo), PAL.getParamAttrs(ArgNo));
4616 if (CI->isMustTailCall() && CI->getParent() &&
4617 CI->getParent()->getParent() &&
4618 CI->getParent()->getParent()->isVarArg()) {
4619 if (CI->arg_size() > 0)
4625 if (PAL.hasFnAttrs())
4626 Out <<
" #" <<
Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4628 writeOperandBundles(CI);
4630 Operand =
II->getCalledOperand();
4631 FunctionType *FTy =
II->getFunctionType();
4632 Type *RetTy = FTy->getReturnType();
4633 const AttributeList &PAL =
II->getAttributes();
4636 if (
II->getCallingConv() != CallingConv::C) {
4641 if (PAL.hasRetAttrs())
4642 Out <<
' ' << PAL.getAsString(AttributeList::ReturnIndex);
4652 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4654 writeOperand(Operand,
false);
4657 for (
unsigned op = 0, Eop =
II->arg_size();
op < Eop; ++
op) {
4659 writeParamOperand(
II->getArgOperand(
op), PAL.getParamAttrs(
op));
4663 if (PAL.hasFnAttrs())
4664 Out <<
" #" <<
Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4666 writeOperandBundles(
II);
4669 writeOperand(
II->getNormalDest(),
true);
4671 writeOperand(
II->getUnwindDest(),
true);
4673 Operand = CBI->getCalledOperand();
4674 FunctionType *FTy = CBI->getFunctionType();
4675 Type *RetTy = FTy->getReturnType();
4676 const AttributeList &PAL = CBI->getAttributes();
4679 if (CBI->getCallingConv() != CallingConv::C) {
4684 if (PAL.hasRetAttrs())
4685 Out <<
' ' << PAL.getAsString(AttributeList::ReturnIndex);
4692 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4694 writeOperand(Operand,
false);
4696 ListSeparator ArgLS;
4697 for (
unsigned op = 0, Eop = CBI->arg_size();
op < Eop; ++
op) {
4699 writeParamOperand(CBI->getArgOperand(
op), PAL.getParamAttrs(
op));
4703 if (PAL.hasFnAttrs())
4704 Out <<
" #" <<
Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4706 writeOperandBundles(CBI);
4709 writeOperand(CBI->getDefaultDest(),
true);
4711 ListSeparator DestLS;
4712 for (
const BasicBlock *Dest : CBI->getIndirectDests()) {
4714 writeOperand(Dest,
true);
4719 if (AI->isUsedWithInAlloca())
4721 if (AI->isSwiftError())
4722 Out <<
"swifterror ";
4723 TypePrinter.print(AI->getAllocatedType(), Out);
4729 if (!AI->getArraySize() || AI->isArrayAllocation() ||
4730 !AI->getArraySize()->getType()->isIntegerTy(32)) {
4732 writeOperand(AI->getArraySize(),
true);
4734 if (MaybeAlign
A = AI->getAlign()) {
4735 Out <<
", align " <<
A->value();
4738 unsigned AddrSpace = AI->getAddressSpace();
4740 Out <<
", addrspace(" << AddrSpace <<
')';
4744 writeOperand(Operand,
true);
4747 TypePrinter.print(
I.getType(), Out);
4751 writeOperand(Operand,
true);
4754 TypePrinter.print(
I.getType(), Out);
4755 }
else if (Operand) {
4758 TypePrinter.print(
GEP->getSourceElementType(), Out);
4762 TypePrinter.print(LI->getType(), Out);
4769 bool PrintAllTypes =
false;
4777 PrintAllTypes =
true;
4779 for (
unsigned i = 1,
E =
I.getNumOperands(); i !=
E; ++i) {
4780 Operand =
I.getOperand(i);
4783 if (Operand && Operand->
getType() != TheType) {
4784 PrintAllTypes =
true;
4790 if (!PrintAllTypes) {
4792 TypePrinter.print(TheType, Out);
4797 for (
const Value *
Op :
I.operands()) {
4799 writeOperand(
Op, PrintAllTypes);
4806 writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4807 if (MaybeAlign
A = LI->getAlign())
4808 Out <<
", align " <<
A->value();
4811 writeAtomic(
SI->getContext(),
SI->getOrdering(),
SI->getSyncScopeID());
4812 if (MaybeAlign
A =
SI->getAlign())
4813 Out <<
", align " <<
A->value();
4815 writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4816 CXI->getFailureOrdering(), CXI->getSyncScopeID());
4817 Out <<
", align " << CXI->getAlign().value();
4819 writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4820 RMWI->getSyncScopeID());
4821 Out <<
", align " << RMWI->getAlign().value();
4823 writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4831 printMetadataAttachments(InstMD,
", ");
4834 printInfoComment(
I);
4837void AssemblyWriter::printDbgMarker(
const DbgMarker &Marker) {
4841 printDbgRecord(DPR);
4845 Out <<
" DbgMarker -> { ";
4850void AssemblyWriter::printDbgRecord(
const DbgRecord &DR) {
4852 printDbgVariableRecord(*DVR);
4854 printDbgLabelRecord(*DLR);
4859void AssemblyWriter::printDbgVariableRecord(
const DbgVariableRecord &DVR) {
4863 case DbgVariableRecord::LocationType::Value:
4866 case DbgVariableRecord::LocationType::Declare:
4869 case DbgVariableRecord::LocationType::DeclareValue:
4870 Out <<
"declare_value";
4872 case DbgVariableRecord::LocationType::Assign:
4877 "Tried to print a DbgVariableRecord with an invalid LocationType!");
4908void AssemblyWriter::printDbgRecordLine(
const DbgRecord &DR) {
4915void AssemblyWriter::printDbgLabelRecord(
const DbgLabelRecord &Label) {
4917 Out <<
"#dbg_label(";
4924void AssemblyWriter::printMetadataAttachments(
4925 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4926 StringRef Separator) {
4930 if (MDNames.empty())
4931 MDs[0].second->getContext().getMDKindNames(MDNames);
4934 for (
const auto &
I : MDs) {
4935 unsigned Kind =
I.first;
4937 if (Kind < MDNames.size()) {
4941 Out <<
"!<unknown kind #" <<
Kind <<
">";
4947void AssemblyWriter::writeMDNode(
unsigned Slot,
const MDNode *Node) {
4948 Out <<
'!' <<
Slot <<
" = ";
4949 printMDNodeBody(Node);
4953void AssemblyWriter::writeAllMDNodes() {
4959 for (
unsigned i = 0, e = Nodes.
size(); i != e; ++i) {
4960 writeMDNode(i, Nodes[i]);
4964void AssemblyWriter::printMDNodeBody(
const MDNode *Node) {
4969void AssemblyWriter::writeAttribute(
const Attribute &Attr,
bool InAttrGroup) {
4975 Out << Attribute::getNameFromAttrKind(Attr.
getKindAsEnum());
4978 TypePrinter.print(Ty, Out);
4983void AssemblyWriter::writeAttributeSet(
const AttributeSet &AttrSet,
4985 ListSeparator
LS(
" ");
4986 for (
const auto &Attr : AttrSet) {
4988 writeAttribute(Attr, InAttrGroup);
4992void AssemblyWriter::writeAllAttributeGroups() {
4993 std::vector<std::pair<AttributeSet, unsigned>> asVec;
4994 asVec.resize(
Machine.as_size());
4997 asVec[
I.second] =
I;
4999 for (
const auto &
I : asVec)
5000 Out <<
"attributes #" <<
I.second <<
" = { "
5001 <<
I.first.getAsString(
true) <<
" }\n";
5004void AssemblyWriter::printUseListOrder(
const Value *V,
5005 ArrayRef<unsigned> Shuffle) {
5010 Out <<
"uselistorder";
5013 writeOperand(BB->getParent(),
false);
5015 writeOperand(BB,
false);
5018 writeOperand(V,
true);
5021 assert(Shuffle.
size() >= 2 &&
"Shuffle too small");
5025void AssemblyWriter::printUseLists(
const Function *
F) {
5026 auto It = UseListOrders.find(
F);
5027 if (It == UseListOrders.end())
5030 Out <<
"\n; uselistorder directives\n";
5031 for (
const auto &Pair : It->second)
5032 printUseListOrder(Pair.first, Pair.second);
5040 bool ShouldPreserveUseListOrder,
bool IsForDebug)
const {
5043 AssemblyWriter W(OS, SlotTable, this->
getParent(), AAW, IsForDebug,
5044 ShouldPreserveUseListOrder);
5045 W.printFunction(
this);
5049 bool ShouldPreserveUseListOrder,
5050 bool IsForDebug)
const {
5053 AssemblyWriter W(OS, SlotTable, this->
getModule(), AAW,
5055 ShouldPreserveUseListOrder);
5056 W.printBasicBlock(
this);
5060 bool ShouldPreserveUseListOrder,
bool IsForDebug)
const {
5063 AssemblyWriter W(OS, SlotTable,
this, AAW, IsForDebug,
5064 ShouldPreserveUseListOrder);
5065 W.printModule(
this);
5071 AssemblyWriter W(OS, SlotTable,
getParent(),
nullptr, IsForDebug);
5072 W.printNamedMDNode(
this);
5076 bool IsForDebug)
const {
5077 std::optional<SlotTracker> LocalST;
5083 SlotTable = &*LocalST;
5087 AssemblyWriter W(OS, *SlotTable,
getParent(),
nullptr, IsForDebug);
5088 W.printNamedMDNode(
this);
5093 ROS <<
" = comdat ";
5100 ROS <<
"exactmatch";
5106 ROS <<
"nodeduplicate";
5118 TP.print(
const_cast<Type*
>(
this), OS);
5127 TP.printStructBody(STy, OS);
5133 if (
Function *
F = CI->getCalledFunction())
5134 if (
F->isIntrinsic())
5135 for (
auto &
Op :
I.operands())
5145 print(ROS, MST, IsForDebug);
5151 print(ROS, MST, IsForDebug);
5155 bool IsForDebug)
const {
5163 AssemblyWriter W(OS, SlotTable,
getModuleFromDPI(
this),
nullptr, IsForDebug);
5164 W.printDbgMarker(*
this);
5170 print(ROS, MST, IsForDebug);
5174 bool IsForDebug)
const {
5180 ?
Marker->getParent()->getParent()
5184 AssemblyWriter W(OS, SlotTable,
getModuleFromDPI(
this),
nullptr, IsForDebug);
5185 W.printDbgVariableRecord(*
this);
5189 bool IsForDebug)
const {
5195 Marker->getParent() ?
Marker->getParent()->getParent() :
nullptr;
5199 AssemblyWriter W(OS, SlotTable,
getModuleFromDPI(
this),
nullptr, IsForDebug);
5200 W.printDbgLabelRecord(*
this);
5204 bool ShouldInitializeAllMetadata =
false;
5208 ShouldInitializeAllMetadata =
true;
5211 print(ROS, MST, IsForDebug);
5215 bool IsForDebug)
const {
5220 auto IncorporateFunction = [&](
const Function *
F) {
5226 IncorporateFunction(
I->getParent() ?
I->getParent()->getParent() :
nullptr);
5228 W.printInstruction(*
I);
5230 IncorporateFunction(BB->getParent());
5231 AssemblyWriter W(OS, SlotTable,
getModuleFromVal(BB),
nullptr, IsForDebug);
5232 W.printBasicBlock(BB);
5234 AssemblyWriter W(OS, SlotTable, GV->
getParent(),
nullptr, IsForDebug);
5248 TypePrinting TypePrinter;
5249 TypePrinter.print(
C->getType(), OS);
5251 AsmWriterContext WriterCtx(&TypePrinter, MST.
getMachine());
5267 AsmWriterContext WriterCtx(
nullptr,
Machine, M);
5276 TypePrinting TypePrinter(MST.
getModule());
5307 AsmWriterContext &WriterCtx) {
5320struct MDTreeAsmWriterContext :
public AsmWriterContext {
5323 using EntryTy = std::pair<unsigned, std::string>;
5327 SmallPtrSet<const Metadata *, 4> Visited;
5329 raw_ostream &MainOS;
5331 MDTreeAsmWriterContext(TypePrinting *TP, SlotTracker *ST,
const Module *M,
5332 raw_ostream &OS,
const Metadata *InitMD)
5333 : AsmWriterContext(TP,
ST,
M),
Level(0
U), Visited({InitMD}), MainOS(OS) {}
5335 void onWriteMetadataAsOperand(
const Metadata *MD)
override {
5336 if (!Visited.
insert(MD).second)
5340 raw_string_ostream
SS(Str);
5345 unsigned InsertIdx = Buffer.
size() - 1;
5348 Buffer[InsertIdx].second = std::move(
SS.str());
5352 ~MDTreeAsmWriterContext()
override {
5353 for (
const auto &Entry : Buffer) {
5355 unsigned NumIndent =
Entry.first * 2U;
5364 bool OnlyAsOperand,
bool PrintAsTree =
false) {
5367 TypePrinting TypePrinter(M);
5369 std::unique_ptr<AsmWriterContext> WriterCtx;
5370 if (PrintAsTree && !OnlyAsOperand)
5371 WriterCtx = std::make_unique<MDTreeAsmWriterContext>(
5375 std::make_unique<AsmWriterContext>(&TypePrinter, MST.
getMachine(), M);
5404 const Module *M,
bool )
const {
5423 AssemblyWriter W(OS, SlotTable,
this, IsForDebug);
5424 W.printModuleSummaryIndex();
5428 unsigned UB)
const {
5434 if (
I.second >= LB &&
I.second < UB)
5435 L.push_back(std::make_pair(
I.second,
I.first));
5438#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
static void writeDIMacro(raw_ostream &Out, const DIMacro *N, AsmWriterContext &WriterCtx)
static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD, AsmWriterContext &WriterCtx)
static void writeDIGlobalVariableExpression(raw_ostream &Out, const DIGlobalVariableExpression *N, AsmWriterContext &WriterCtx)
static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N, AsmWriterContext &WriterCtx)
static void writeDIFixedPointType(raw_ostream &Out, const DIFixedPointType *N, AsmWriterContext &WriterCtx)
static void printDSOLocation(const GlobalValue &GV, formatted_raw_ostream &Out)
static const char * getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K)
static void writeDISubrangeType(raw_ostream &Out, const DISubrangeType *N, AsmWriterContext &WriterCtx)
static void writeAPFloatInternal(raw_ostream &Out, const APFloat &APF)
static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD, ModuleSlotTracker &MST, const Module *M, bool OnlyAsOperand, bool PrintAsTree=false)
static void writeDIStringType(raw_ostream &Out, const DIStringType *N, AsmWriterContext &WriterCtx)
static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT)
static cl::opt< bool > PreserveAssemblyUseListOrder("preserve-ll-uselistorder", cl::Hidden, cl::init(false), cl::desc("Preserve use-list order when writing LLVM assembly."))
static std::vector< unsigned > predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM)
static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N, AsmWriterContext &WriterCtx)
static void orderValue(const Value *V, OrderMap &OM)
static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N, AsmWriterContext &WriterCtx)
static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA)
static const char * getWholeProgDevirtResByArgKindName(WholeProgramDevirtResolution::ByArg::Kind K)
static void writeMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, AsmWriterContext &Ctx)
static void writeDIModule(raw_ostream &Out, const DIModule *N, AsmWriterContext &WriterCtx)
static void writeDIFile(raw_ostream &Out, const DIFile *N, AsmWriterContext &)
static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N, AsmWriterContext &WriterCtx)
static void writeOptimizationInfo(raw_ostream &Out, const User *U)
static bool isReferencingMDNode(const Instruction &I)
#define CC_VLS_CASE(ABI_VLEN)
static void writeDILabel(raw_ostream &Out, const DILabel *N, AsmWriterContext &WriterCtx)
static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N, AsmWriterContext &WriterCtx)
static void printMetadataIdentifier(StringRef Name, formatted_raw_ostream &Out)
static void printShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef< int > Mask)
static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N, AsmWriterContext &WriterCtx)
static const Module * getModuleFromDPI(const DbgMarker *Marker)
static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType, ModuleSlotTracker &MST)
static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N, AsmWriterContext &WriterCtx)
static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N, AsmWriterContext &WriterCtx)
static const char * getSummaryKindName(GlobalValueSummary::SummaryKind SK)
static OrderMap orderModule(const Module *M)
static const char * getVisibilityName(GlobalValue::VisibilityTypes Vis)
static void printCallingConv(unsigned cc, raw_ostream &Out)
static cl::opt< bool > PrintInstDebugLocs("print-inst-debug-locs", cl::Hidden, cl::desc("Pretty print debug locations of instructions when dumping"))
static void printMetadataImplRec(raw_ostream &ROS, const Metadata &MD, AsmWriterContext &WriterCtx)
Recursive version of printMetadataImpl.
static SlotTracker * createSlotTracker(const Value *V)
static void writeDILocation(raw_ostream &Out, const DILocation *DL, AsmWriterContext &WriterCtx)
static void writeDINamespace(raw_ostream &Out, const DINamespace *N, AsmWriterContext &WriterCtx)
DenseMap< const Function *, MapVector< const Value *, std::vector< unsigned > > > UseListOrderMap
static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N, AsmWriterContext &WriterCtx)
static UseListOrderMap predictUseListOrder(const Module *M)
static void printThreadLocalModel(GlobalVariable::ThreadLocalMode TLM, formatted_raw_ostream &Out)
static std::string getLinkageName(GlobalValue::LinkageTypes LT)
static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N, AsmWriterContext &WriterCtx)
static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N, AsmWriterContext &WriterCtx)
static const char * getTTResKindName(TypeTestResolution::Kind K)
static void writeDITemplateTypeParameter(raw_ostream &Out, const DITemplateTypeParameter *N, AsmWriterContext &WriterCtx)
static const char * getImportTypeName(GlobalValueSummary::ImportKind IK)
static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N, AsmWriterContext &WriterCtx)
static const Module * getModuleFromVal(const Value *V)
static void printLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix)
Turn the specified name into an 'LLVM name', which is either prefixed with % (if the string only cont...
static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I, raw_ostream &Out)
static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N, AsmWriterContext &WriterCtx)
static void writeDISubrange(raw_ostream &Out, const DISubrange *N, AsmWriterContext &WriterCtx)
static void writeDILexicalBlockFile(raw_ostream &Out, const DILexicalBlockFile *N, AsmWriterContext &WriterCtx)
static void writeConstantInternal(raw_ostream &Out, const Constant *CV, AsmWriterContext &WriterCtx)
static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N, AsmWriterContext &)
static void writeAsOperandInternal(raw_ostream &Out, const Value *V, AsmWriterContext &WriterCtx, bool PrintType=false)
static void printVisibility(GlobalValue::VisibilityTypes Vis, formatted_raw_ostream &Out)
static cl::opt< bool > PrintProfData("print-prof-data", cl::Hidden, cl::desc("Pretty print perf data (branch weights, etc) when dumping"))
static void writeMDTuple(raw_ostream &Out, const MDTuple *Node, AsmWriterContext &WriterCtx)
static void writeDIExpression(raw_ostream &Out, const DIExpression *N, AsmWriterContext &WriterCtx)
static cl::opt< bool > PrintInstAddrs("print-inst-addrs", cl::Hidden, cl::desc("Print addresses of instructions when dumping"))
static void writeDIAssignID(raw_ostream &Out, const DIAssignID *DL, AsmWriterContext &WriterCtx)
static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N, AsmWriterContext &WriterCtx)
static void maybePrintComdat(formatted_raw_ostream &Out, const GlobalObject &GO)
static void printDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT, formatted_raw_ostream &Out)
static bool printWithoutType(const Value &V, raw_ostream &O, SlotTracker *Machine, const Module *M)
Print without a type, skipping the TypePrinting object.
static void writeDIArgList(raw_ostream &Out, const DIArgList *N, AsmWriterContext &WriterCtx, bool FromValue=false)
static void writeDITemplateValueParameter(raw_ostream &Out, const DITemplateValueParameter *N, AsmWriterContext &WriterCtx)
static const Value * skipMetadataWrapper(const Value *V)
Look for a value that might be wrapped as metadata, e.g.
static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N, AsmWriterContext &WriterCtx)
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
dxil pretty DXIL Metadata Pretty Printer
This file defines the DenseMap class.
This file contains constants used for implementing Dwarf debug support.
This file contains the declaration of the GlobalIFunc class, which represents a single indirect funct...
GlobalValue::SanitizerMetadata SanitizerMetadata
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This file contains an interface for creating legacy passes to print out IR in various granularities.
Module.h This file contains the declarations for the Module class.
This defines the Use class.
Machine Check Debug Module
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
ModuleSummaryIndex.h This file contains the declarations the classes that hold the module index and s...
static bool processFunction(Function &F, NVPTXTargetMachine &TM)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
Function const char TargetMachine * Machine
if(auto Err=PB.parsePassPipeline(MPM, Passes)) return wrap(std MPM run * Mod
static StringRef getName(Value *V)
This file provides utility classes that use RAII to save and restore values.
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallString class.
This file defines the SmallVector class.
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
static UseListOrderStack predictUseListOrder(const Module &M)
static const fltSemantics & IEEEsingle()
static const fltSemantics & BFloat()
static const fltSemantics & IEEEquad()
static const fltSemantics & IEEEdouble()
static const fltSemantics & x87DoubleExtended()
static constexpr roundingMode rmNearestTiesToEven
static const fltSemantics & IEEEhalf()
static const fltSemantics & PPCDoubleDouble()
static APFloat getSNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for SNaN values.
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
void toString(SmallVectorImpl< char > &Str, unsigned FormatPrecision=0, unsigned FormatMaxPadding=3, bool TruncateZero=true) const
const fltSemantics & getSemantics() const
APInt bitcastToAPInt() const
Class for arbitrary precision integers.
LLVM_ABI APInt getLoBits(unsigned numBits) const
Compute an APInt containing numBits lowbits from this APInt.
uint64_t getZExtValue() const
Get zero extended value.
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
Abstract interface of slot tracker storage.
virtual ~AbstractSlotTrackerStorage()
const GlobalValueSummary & getAliasee() const
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
virtual void emitBasicBlockStartAnnot(const BasicBlock *, formatted_raw_ostream &)
emitBasicBlockStartAnnot - This may be implemented to emit a string right after the basic block label...
virtual void emitBasicBlockEndAnnot(const BasicBlock *, formatted_raw_ostream &)
emitBasicBlockEndAnnot - This may be implemented to emit a string right after the basic block.
virtual void emitFunctionAnnot(const Function *, formatted_raw_ostream &)
emitFunctionAnnot - This may be implemented to emit a string right before the start of a function.
virtual void emitInstructionAnnot(const Instruction *, formatted_raw_ostream &)
emitInstructionAnnot - This may be implemented to emit a string right before an instruction is emitte...
virtual void printInfoComment(const Value &, formatted_raw_ostream &)
printInfoComment - This may be implemented to emit a comment to the right of an instruction or global...
virtual ~AssemblyAnnotationWriter()
static LLVM_ABI StringRef getOperationName(BinOp Op)
This class holds the attributes for a particular argument, parameter, function, or return value.
bool hasAttributes() const
Return true if attributes exists in this set.
LLVM_ABI std::string getAsString(bool InAttrGrp=false) const
The Attribute is converted to a string of equivalent mnemonic.
LLVM_ABI Attribute::AttrKind getKindAsEnum() const
Return the attribute's kind as an enum (Attribute::AttrKind).
LLVM_ABI bool isTypeAttribute() const
Return true if the attribute is a type attribute.
LLVM_ABI Type * getValueAsType() const
Return the attribute's value as a Type.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the basic block to an output stream with an optional AssemblyAnnotationWriter.
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI const Module * getModule() const
Return the module owning the function this basic block belongs to, or nullptr if the function does no...
OperandBundleUse getOperandBundleAt(unsigned Index) const
Return the operand bundle at a specific index.
unsigned getNumOperandBundles() const
Return the number of operand bundles associated with this User.
AttributeList getAttributes() const
Return the attributes for this call.
bool hasOperandBundles() const
Return true if this User has any operand bundles.
LLVM_ABI void print(raw_ostream &OS, bool IsForDebug=false) const
LLVM_ABI void dump() const
@ Largest
The linker will choose the largest COMDAT.
@ SameSize
The data referenced by the COMDAT must be the same size.
@ Any
The linker may choose any COMDAT.
@ NoDeduplicate
No deduplication is performed.
@ ExactMatch
The data referenced by the COMDAT must be the same.
SelectionKind getSelectionKind() const
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
List of ValueAsMetadata, to be used as an argument to a dbg.value intrinsic.
Basic type, like 'int' or 'float'.
static LLVM_ABI const char * nameTableKindString(DebugNameTableKind PK)
static LLVM_ABI const char * emissionKindString(DebugEmissionKind EK)
A lightweight wrapper around an expression operand.
static LLVM_ABI const char * fixedPointKindString(FixedPointKind)
A pair of DIGlobalVariable and DIExpression.
An imported module (C++ using directive or similar).
Macro Info DWARF-like metadata node.
Represents a module in the programming language, for example, a Clang module, or a Fortran module.
Tagged DWARF-like metadata node.
static LLVM_ABI DIFlags splitFlags(DIFlags Flags, SmallVectorImpl< DIFlags > &SplitFlags)
Split up a flags bitfield.
static LLVM_ABI StringRef getFlagString(DIFlags Flag)
Wrapper structure that holds a language name and its version.
uint32_t getVersion() const
Returns language version. Only valid for versioned language names.
bool hasVersionedName() const
uint16_t getName() const
Returns a versioned or unversioned language name.
String type, Fortran CHARACTER(n)
Subprogram description. Uses SubclassData1.
static LLVM_ABI DISPFlags splitFlags(DISPFlags Flags, SmallVectorImpl< DISPFlags > &SplitFlags)
Split up a flags bitfield for easier printing.
static LLVM_ABI StringRef getFlagString(DISPFlags Flag)
DISPFlags
Debug info subprogram flags.
Type array for a subprogram.
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false) const
Per-instruction record of debug-info.
LLVM_ABI void dump() const
Instruction * MarkedInstr
Link back to the Instruction that owns this marker.
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false) const
Implement operator<< on DbgMarker.
LLVM_ABI const BasicBlock * getParent() const
simple_ilist< DbgRecord > StoredDbgRecords
List of DbgRecords, the non-instruction equivalent of llvm.dbg.
Base class for non-instruction debug metadata records that have positions within IR.
DebugLoc getDebugLoc() const
LLVM_ABI void dump() const
DbgMarker * Marker
Marker that this DbgRecord is linked into.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LocationType getType() const
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false) const
MDNode * getRawExpression() const
MDNode * getRawAddressExpression() const
Metadata * getRawAssignID() const
MDNode * getRawVariable() const
Metadata * getRawLocation() const
Returns the metadata operand for the first location description.
Metadata * getRawAddress() const
MDNode * getAsMDNode() const
Return this as a bar MDNode.
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT > iterator
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the function to an output stream with an optional AssemblyAnnotationWriter.
const Function & getFunction() const
const Argument * const_arg_iterator
LLVM_ABI Value * getBasePtr() const
LLVM_ABI Value * getDerivedPtr() const
Generic tagged DWARF-like metadata node.
const Constant * getAliasee() const
const Constant * getResolver() const
StringRef getSection() const
Get the custom section of this global if it has one.
LLVM_ABI void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
Appends all metadata attached to this value to MDs, sorting by KindID.
const Comdat * getComdat() const
bool hasSection() const
Check if this global has a custom object file section.
SummaryKind
Sububclass discriminator (for dyn_cast<> et al.)
bool hasPartition() const
static LLVM_ABI GUID getGUIDAssumingExternalLinkage(StringRef GlobalName)
Return a 64-bit global unique ID constructed from the name of a global symbol.
LLVM_ABI const SanitizerMetadata & getSanitizerMetadata() const
bool hasExternalLinkage() const
VisibilityTypes getVisibility() const
bool isImplicitDSOLocal() const
LinkageTypes getLinkage() const
uint64_t GUID
Declare a type to represent a global unique identifier for a global value.
ThreadLocalMode getThreadLocalMode() const
DLLStorageClassTypes
Storage classes of global values for PE targets.
@ DLLExportStorageClass
Function to be accessible from DLL.
@ DLLImportStorageClass
Function to be imported from DLL.
bool hasSanitizerMetadata() const
LLVM_ABI StringRef getPartition() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
VisibilityTypes
An enumeration for the kinds of visibility of global values.
@ DefaultVisibility
The GV is visible.
@ HiddenVisibility
The GV is hidden.
@ ProtectedVisibility
The GV is protected.
LLVM_ABI bool isMaterializable() const
If this function's Module is being lazily streamed in functions from disk or some other source,...
UnnamedAddr getUnnamedAddr() const
LinkageTypes
An enumeration for the kinds of linkage for global values.
@ PrivateLinkage
Like Internal, but omit from symbol table.
@ CommonLinkage
Tentative definitions.
@ InternalLinkage
Rename collisions when linking (static functions).
@ LinkOnceAnyLinkage
Keep one copy of function when linking (inline)
@ WeakODRLinkage
Same, but only replaced by something equivalent.
@ ExternalLinkage
Externally visible function.
@ WeakAnyLinkage
Keep one copy of named function when linking (weak)
@ AppendingLinkage
Special purpose, only applies to global arrays.
@ AvailableExternallyLinkage
Available for inspection, not emission.
@ ExternalWeakLinkage
ExternalWeak linkage description.
@ LinkOnceODRLinkage
Same, but only replaced by something equivalent.
DLLStorageClassTypes getDLLStorageClass() const
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isExternallyInitialized() const
bool hasInitializer() const
Definitions have initializers, declarations don't.
AttributeSet getAttributes() const
Return the attribute set for this global.
std::optional< CodeModel::Model > getCodeModel() const
Get the custom code model of this global if it has one.
MaybeAlign getAlign() const
Returns the alignment of the given variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
A helper class to return the specified delimiter string after the first invocation of operator String...
LLVM_ABI void printTree(raw_ostream &OS, const Module *M=nullptr) const
Print in tree shape.
LLVM_ABI void dumpTree() const
User-friendly dump in tree shape.
This class implements a map that also provides access to all stored values in a deterministic order.
Manage lifetime of a slot tracker for printing IR.
const Module * getModule() const
ModuleSlotTracker(SlotTracker &Machine, const Module *M, const Function *F=nullptr)
Wrap a preinitialized SlotTracker.
virtual ~ModuleSlotTracker()
Destructor to clean up storage.
std::vector< std::pair< unsigned, const MDNode * > > MachineMDNodeListType
int getLocalSlot(const Value *V)
Return the slot number of the specified local value.
void collectMDNodes(MachineMDNodeListType &L, unsigned LB, unsigned UB) const
SlotTracker * getMachine()
Lazily creates a slot tracker.
void setProcessHook(std::function< void(AbstractSlotTrackerStorage *, const Module *, bool)>)
void incorporateFunction(const Function &F)
Incorporate the given function.
Class to hold module path string table and global value map, and encapsulate methods for operating on...
static constexpr const char * getRegularLTOModuleName()
LLVM_ABI void dump() const
Dump to stderr (for debugging).
LLVM_ABI void print(raw_ostream &OS, bool IsForDebug=false) const
Print to an output stream.
A Module instance is used to store all the information related to an LLVM module.
iterator_range< alias_iterator > aliases()
iterator_range< global_iterator > globals()
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the module to an output stream with an optional AssemblyAnnotationWriter.
void dump() const
Dump the module to stderr (for debugging).
LLVM_ABI void dump() const
LLVM_ABI StringRef getName() const
LLVM_ABI void print(raw_ostream &ROS, bool IsForDebug=false) const
iterator_range< op_iterator > operands()
unsigned getAddressSpace() const
Return the address space of the Pointer type.
This class provides computation of slot numbers for LLVM Assembly writing.
DenseMap< const Value *, unsigned > ValueMap
ValueMap - A mapping of Values to slot numbers.
int getMetadataSlot(const MDNode *N) override
getMetadataSlot - Get the slot number of a MDNode.
~SlotTracker() override=default
int getTypeIdCompatibleVtableSlot(StringRef Id)
int getModulePathSlot(StringRef Path)
unsigned mdn_size() const
SlotTracker(const SlotTracker &)=delete
void purgeFunction()
After calling incorporateFunction, use this method to remove the most recently incorporated function ...
int getTypeIdSlot(StringRef Id)
void initializeIfNeeded()
These functions do the actual initialization.
int getGlobalSlot(const GlobalValue *V)
getGlobalSlot - Get the slot number of a global value.
const Function * getFunction() const
unsigned getNextMetadataSlot() override
DenseMap< GlobalValue::GUID, unsigned >::iterator guid_iterator
GUID map iterators.
void incorporateFunction(const Function *F)
If you'd like to deal with a function instead of just a module, use this method to get its data into ...
int getLocalSlot(const Value *V)
Return the slot number of the specified value in it's type plane.
int getAttributeGroupSlot(AttributeSet AS)
SlotTracker(const Module *M, bool ShouldInitializeAllMetadata=false)
Construct from a module.
void createMetadataSlot(const MDNode *N) override
getMetadataSlot - Get the slot number of a MDNode.
void setProcessHook(std::function< void(AbstractSlotTrackerStorage *, const Module *, bool)>)
DenseMap< const MDNode *, unsigned >::iterator mdn_iterator
MDNode map iterators.
SlotTracker & operator=(const SlotTracker &)=delete
int getGUIDSlot(GlobalValue::GUID GUID)
int initializeIndexIfNeeded()
DenseMap< AttributeSet, unsigned >::iterator as_iterator
AttributeSet map iterators.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringMap - This is an unconventional map that is specialized for handling keys that are "strings",...
StringRef - Represent a constant reference to a string, i.e.
constexpr bool empty() const
empty - Check if the string is empty.
ArrayRef< Type * > elements() const
unsigned getNumElements() const
Random access to the elements.
bool isLiteral() const
Return true if this type is uniqued by structural equivalence, false if it is a struct definition.
bool isOpaque() const
Return true if this is a type with an identity that has no body specified yet.
LLVM_ABI StringRef getName() const
Return the name for this struct type if it has an identity.
ArrayRef< Type * > type_params() const
Return the type parameters for this particular target extension type.
ArrayRef< unsigned > int_params() const
Return the integer parameters for this particular target extension type.
TypeFinder - Walk over a module, identifying all of the types that are used by the module.
void run(const Module &M, bool onlyNamed)
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
LLVM_ABI StringRef getTargetExtName() const
Type(LLVMContext &C, TypeID tid)
LLVM_ABI void dump() const
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false, bool NoDetails=false) const
Print the current type.
TypeID getTypeID() const
Return the type id for the type.
Type * getElementType() const
unsigned getAddressSpace() const
Return the address space of the Pointer type.
A Use represents the edge between a Value definition and its users.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false) const
Implement operator<< on Value.
LLVM_ABI void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
Appends all metadata attached to this value to MDs, sorting by KindID.
iterator_range< user_iterator > users()
LLVM_ABI void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
iterator_range< use_iterator > uses()
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void dump() const
Support for debugging, callable in GDB: V->dump()
This class implements an extremely fast bulk output stream that can only output to a stream.
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
LLVM_ABI StringRef SourceLanguageNameString(SourceLanguageName Lang)
LLVM_ABI StringRef EnumKindString(unsigned EnumKind)
LLVM_ABI StringRef LanguageString(unsigned Language)
LLVM_ABI StringRef AttributeEncodingString(unsigned Encoding)
LLVM_ABI StringRef ConventionString(unsigned Convention)
LLVM_ABI StringRef MacinfoString(unsigned Encoding)
LLVM_ABI StringRef OperationEncodingString(unsigned Encoding)
LLVM_ABI StringRef TagString(unsigned Tag)
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
This file contains the declaration of the Comdat class, which represents a single COMDAT in LLVM.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ AArch64_VectorCall
Used between AArch64 Advanced SIMD functions.
@ X86_64_SysV
The C convention as specified in the x86-64 supplement to the System V ABI, used on most non-Windows ...
@ RISCV_VectorCall
Calling convention used for RISC-V V-extension.
@ AMDGPU_CS
Used for Mesa/AMDPAL compute shaders.
@ AMDGPU_VS
Used for Mesa vertex shaders, or AMDPAL last shader stage before rasterization (vertex shader if tess...
@ AVR_SIGNAL
Used for AVR signal routines.
@ Swift
Calling convention for Swift.
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
@ AArch64_SVE_VectorCall
Used between AArch64 SVE functions.
@ ARM_APCS
ARM Procedure Calling Standard (obsolete, but still used on some targets).
@ CHERIoT_CompartmentCall
Calling convention used for CHERIoT when crossing a protection boundary.
@ CFGuard_Check
Special calling convention on Windows for calling the Control Guard Check ICall funtion.
@ AVR_INTR
Used for AVR interrupt routines.
@ PreserveMost
Used for runtime calls that preserves most registers.
@ AnyReg
OBSOLETED - Used for stack based JavaScript calls.
@ AMDGPU_Gfx
Used for AMD graphics targets.
@ DUMMY_HHVM
Placeholders for HHVM calling conventions (deprecated, removed).
@ AMDGPU_CS_ChainPreserve
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_HS
Used for Mesa/AMDPAL hull shaders (= tessellation control shaders).
@ ARM_AAPCS
ARM Architecture Procedure Calling Standard calling convention (aka EABI).
@ CHERIoT_CompartmentCallee
Calling convention used for the callee of CHERIoT_CompartmentCall.
@ AMDGPU_GS
Used for Mesa/AMDPAL geometry shaders.
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2
Preserve X2-X15, X19-X29, SP, Z0-Z31, P0-P15.
@ CHERIoT_LibraryCall
Calling convention used for CHERIoT for cross-library calls to a stateless compartment.
@ CXX_FAST_TLS
Used for access functions.
@ X86_INTR
x86 hardware interrupt context.
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0
Preserve X0-X13, X19-X29, SP, Z0-Z31, P0-P15.
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
@ AMDGPU_PS
Used for Mesa/AMDPAL pixel shaders.
@ Cold
Attempts to make code in the caller as efficient as possible under the assumption that the call is no...
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1
Preserve X1-X15, X19-X29, SP, Z0-Z31, P0-P15.
@ X86_ThisCall
Similar to X86_StdCall.
@ PTX_Device
Call to a PTX device function.
@ SPIR_KERNEL
Used for SPIR kernel functions.
@ PreserveAll
Used for runtime calls that preserves (almost) all registers.
@ X86_StdCall
stdcall is mostly used by the Win32 API.
@ SPIR_FUNC
Used for SPIR non-kernel device functions.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ MSP430_INTR
Used for MSP430 interrupt routines.
@ X86_VectorCall
MSVC calling convention that passes vectors and vector aggregates in SSE registers.
@ Intel_OCL_BI
Used for Intel OpenCL built-ins.
@ PreserveNone
Used for runtime calls that preserves none general registers.
@ AMDGPU_ES
Used for AMDPAL shader stage before geometry shader if geometry is in use.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ Win64
The C convention as implemented on Windows/x86-64 and AArch64.
@ PTX_Kernel
Call to a PTX kernel. Passes all arguments in parameter space.
@ SwiftTail
This follows the Swift calling convention in how arguments are passed but guarantees tail calls will ...
@ GRAAL
Used by GraalVM. Two additional registers are reserved.
@ AMDGPU_LS
Used for AMDPAL vertex shader if tessellation is in use.
@ ARM_AAPCS_VFP
Same as ARM_AAPCS, but uses hard floating point ABI.
@ X86_RegCall
Register calling convention used for parameters transfer optimization.
@ M68k_RTD
Used for M68k rtd-based CC (similar to X86's stdcall).
@ C
The default llvm calling convention, compatible with C.
@ X86_FastCall
'fast' analog of X86_StdCall.
LLVM_ABI void printImmArg(ID IID, unsigned ArgIdx, raw_ostream &OS, const Constant *ImmArgVal)
Print the argument info for the arguments with ArgInfo.
LLVM_ABI bool hasPrettyPrintedArgs(ID id)
Returns true if the intrinsic has pretty printed immediate arguments.
@ System
Synchronized with respect to all concurrently executing threads.
initializer< Ty > init(const Ty &Val)
@ DW_OP_LLVM_convert
Only used in LLVM metadata.
Context & getContext() const
This is an optimization pass for GlobalISel generic memory operations.
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST=nullptr, unsigned DynamicVGPRBlockSize=0)
detail::zippy< detail::zip_first, T, U, Args... > zip_equal(T &&t, U &&u, Args &&...args)
zip iterator that assumes that all iteratees have the same length.
InterleavedRange< Range > interleaved(const Range &R, StringRef Separator=", ", StringRef Prefix="", StringRef Suffix="")
Output range R as a sequence of interleaved elements.
const char * getHotnessName(CalleeInfo::HotnessType HT)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI void printEscapedString(StringRef Name, raw_ostream &Out)
Print each character of the specified string, escaping it if it is not printable or if it is an escap...
const char * toIRString(AtomicOrdering ao)
String used by LLVM IR to represent atomic ordering.
auto dyn_cast_or_null(const Y &Val)
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
char hexdigit(unsigned X, bool LowerCase=false)
hexdigit - Return the hexadecimal character for the given number X (which should be less than 16).
bool isDigit(char C)
Checks if character C is one of the 10 decimal digits.
FunctionAddr VTableAddr Count
bool is_sorted(R &&Range, Compare C)
Wrapper function around std::is_sorted to check if elements in a range R are sorted with respect to a...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
FormattedNumber format_hex(uint64_t N, unsigned Width, bool Upper=false)
format_hex - Output N as a fixed width hexadecimal.
FormattedNumber format_hex_no_prefix(uint64_t N, unsigned Width, bool Upper=false)
format_hex_no_prefix - Output N as a fixed width hexadecimal.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
constexpr int PoisonMaskElem
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ Ref
The access may reference the value stored in memory.
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
std::string toString(const APInt &I, unsigned Radix, bool Signed, bool formatAsCLiteral=false, bool UpperCase=true, bool InsertSeparators=false)
LLVM_ABI Printable printBasicBlock(const BasicBlock *BB)
Print BasicBlock BB as an operand or print "<nullptr>" if BB is a nullptr.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
auto predecessors(const MachineBasicBlock *BB)
bool pred_empty(const BasicBlock *BB)
std::vector< TypeIdOffsetVtableInfo > TypeIdCompatibleVtableInfo
List of vtable definitions decorated by a particular type identifier, and their corresponding offsets...
@ Default
The result values are uniform if and only if all operands are uniform.
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI void printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name)
Print out a name of an LLVM value without any prefixes.
A single checksum, represented by a Kind and a Value (a string).
T Value
The string value of the checksum.
StringRef getKindAsString() const
std::vector< ConstVCall > TypeCheckedLoadConstVCalls
std::vector< VFuncId > TypeCheckedLoadVCalls
std::vector< ConstVCall > TypeTestAssumeConstVCalls
List of virtual calls made by this function using (respectively) llvm.assume(llvm....
std::vector< GlobalValue::GUID > TypeTests
List of type identifiers used by this function in llvm.type.test intrinsics referenced by something o...
std::vector< VFuncId > TypeTestAssumeVCalls
List of virtual calls made by this function using (respectively) llvm.assume(llvm....
unsigned DSOLocal
Indicates that the linker resolved the symbol to a definition from within the same linkage unit.
unsigned CanAutoHide
In the per-module summary, indicates that the global value is linkonce_odr and global unnamed addr (s...
unsigned ImportType
This field is written by the ThinLTO indexing step to postlink combined summary.
unsigned NotEligibleToImport
Indicate if the global value cannot be imported (e.g.
unsigned Linkage
The linkage type of the associated global value.
unsigned Visibility
Indicates the visibility.
unsigned Live
In per-module summary, indicate that the global value must be considered a live root for index-based ...
StringRef getTagName() const
Return the tag of this operand bundle as a string.
A utility class that uses RAII to save and restore the value of a variable.
std::map< uint64_t, WholeProgramDevirtResolution > WPDRes
Mapping from byte offset to whole-program devirt resolution for that (typeid, byte offset) pair.
Kind
Specifies which kind of type check we should emit for this byte array.
@ Unknown
Unknown (analysis not performed, don't lower)
@ Single
Single element (last example in "Short Inline Bit Vectors")
@ Inline
Inlined bit vector ("Short Inline Bit Vectors")
@ Unsat
Unsatisfiable type (i.e. no global has this type metadata)
@ AllOnes
All-ones bit vector ("Eliminating Bit Vector Checks for All-Ones Bit Vectors")
@ ByteArray
Test a byte array (first example)
unsigned SizeM1BitWidth
Range of size-1 expressed as a bit width.
enum llvm::TypeTestResolution::Kind TheKind
@ UniformRetVal
Uniform return value optimization.
@ VirtualConstProp
Virtual constant propagation.
@ UniqueRetVal
Unique return value optimization.
@ Indir
Just do a regular virtual call.
enum llvm::WholeProgramDevirtResolution::Kind TheKind
std::map< std::vector< uint64_t >, ByArg > ResByArg
Resolutions for calls with all constant integer arguments (excluding the first argument,...
std::string SingleImplName
@ SingleImpl
Single implementation devirtualization.
@ Indir
Just do a regular virtual call.
@ BranchFunnel
When retpoline mitigation is enabled, use a branch funnel that is defined in the merged module.
Function object to check whether the second component of a container supported by std::get (like std:...