LLVM 22.0.0git
BasicBlockUtils.cpp
Go to the documentation of this file.
1//===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This family of functions perform manipulations on basic blocks, and
10// instructions contained within basic blocks.
11//
12//===----------------------------------------------------------------------===//
13
15#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/Twine.h"
19#include "llvm/Analysis/CFG.h"
24#include "llvm/IR/BasicBlock.h"
25#include "llvm/IR/CFG.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DebugInfo.h"
29#include "llvm/IR/Dominators.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/IRBuilder.h"
32#include "llvm/IR/InstrTypes.h"
33#include "llvm/IR/Instruction.h"
35#include "llvm/IR/LLVMContext.h"
36#include "llvm/IR/Type.h"
37#include "llvm/IR/User.h"
38#include "llvm/IR/Value.h"
39#include "llvm/IR/ValueHandle.h"
42#include "llvm/Support/Debug.h"
45#include <cassert>
46#include <cstdint>
47#include <string>
48#include <utility>
49#include <vector>
50
51using namespace llvm;
52
53#define DEBUG_TYPE "basicblock-utils"
54
56 "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden,
57 cl::desc("Set the maximum path length when checking whether a basic block "
58 "is followed by a block that either has a terminating "
59 "deoptimizing call or is terminated with an unreachable"));
60
61/// Zap all the instructions in the block and replace them with an unreachable
62/// instruction and notify the basic block's successors that one of their
63/// predecessors is going away.
64static void
67 bool KeepOneInputPHIs) {
68 // Loop through all of our successors and make sure they know that one
69 // of their predecessors is going away.
70 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
71 for (BasicBlock *Succ : successors(BB)) {
72 Succ->removePredecessor(BB, KeepOneInputPHIs);
73 if (Updates && UniqueSuccessors.insert(Succ).second)
74 Updates->push_back({DominatorTree::Delete, BB, Succ});
75 }
76
77 // Zap all the instructions in the block.
78 while (!BB->empty()) {
79 Instruction &I = BB->back();
80 // If this instruction is used, replace uses with an arbitrary value.
81 // Because control flow can't get here, we don't care what we replace the
82 // value with. Note that since this block is unreachable, and all values
83 // contained within it must dominate their uses, that all uses will
84 // eventually be removed (they are themselves dead).
85 if (!I.use_empty())
86 I.replaceAllUsesWith(PoisonValue::get(I.getType()));
87 BB->back().eraseFromParent();
88 }
89 new UnreachableInst(BB->getContext(), BB);
90 assert(BB->size() == 1 && isa<UnreachableInst>(BB->getTerminator()) &&
91 "The successor list of BB isn't empty before "
92 "applying corresponding DTU updates.");
93}
94
96 for (const Instruction &I : *BB) {
98 if (CCI && (CCI->isLoop() || CCI->isEntry()))
99 return true;
100 }
101 return false;
102}
103
106 bool KeepOneInputPHIs) {
107 SmallPtrSet<BasicBlock *, 4> UniqueEHRetBlocksToDelete;
108 for (auto *BB : BBs) {
109 auto NonFirstPhiIt = BB->getFirstNonPHIIt();
110 if (NonFirstPhiIt != BB->end()) {
111 Instruction &I = *NonFirstPhiIt;
112 // Exception handling funclets need to be explicitly addressed.
113 // These funclets must begin with cleanuppad or catchpad and end with
114 // cleanupred or catchret. The return instructions can be in different
115 // basic blocks than the pad instruction. If we would only delete the
116 // first block, the we would have possible cleanupret and catchret
117 // instructions with poison arguments, which wouldn't be valid.
118 if (isa<FuncletPadInst>(I)) {
119 UniqueEHRetBlocksToDelete.clear();
120
121 for (User *User : I.users()) {
122 Instruction *ReturnInstr = dyn_cast<Instruction>(User);
123 // If we have a cleanupret or catchret block, replace it with just an
124 // unreachable. The other alternative, that may use a catchpad is a
125 // catchswitch. That does not need special handling for now.
126 if (isa<CatchReturnInst>(ReturnInstr) ||
127 isa<CleanupReturnInst>(ReturnInstr)) {
128 BasicBlock *ReturnInstrBB = ReturnInstr->getParent();
129 UniqueEHRetBlocksToDelete.insert(ReturnInstrBB);
130 }
131 }
132
133 for (BasicBlock *EHRetBB : UniqueEHRetBlocksToDelete)
134 emptyAndDetachBlock(EHRetBB, Updates, KeepOneInputPHIs);
135 }
136 }
137
138 UniqueEHRetBlocksToDelete.clear();
139
140 // Detaching and emptying the current basic block.
141 emptyAndDetachBlock(BB, Updates, KeepOneInputPHIs);
142 }
143}
144
146 bool KeepOneInputPHIs) {
147 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
148}
149
151 bool KeepOneInputPHIs) {
152#ifndef NDEBUG
153 // Make sure that all predecessors of each dead block is also dead.
155 assert(Dead.size() == BBs.size() && "Duplicating blocks?");
156 for (auto *BB : Dead)
157 for (BasicBlock *Pred : predecessors(BB))
158 assert(Dead.count(Pred) && "All predecessors must be dead!");
159#endif
160
162 detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
163
164 if (DTU)
165 DTU->applyUpdates(Updates);
166
167 for (BasicBlock *BB : BBs)
168 if (DTU)
169 DTU->deleteBB(BB);
170 else
171 BB->eraseFromParent();
172}
173
175 bool KeepOneInputPHIs) {
177
178 // Mark all reachable blocks.
179 for (BasicBlock *BB : depth_first_ext(&F, Reachable))
180 (void)BB/* Mark all reachable blocks */;
181
182 // Collect all dead blocks.
183 std::vector<BasicBlock*> DeadBlocks;
184 for (BasicBlock &BB : F)
185 if (!Reachable.count(&BB))
186 DeadBlocks.push_back(&BB);
187
188 // Delete the dead blocks.
189 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
190
191 return !DeadBlocks.empty();
192}
193
195 MemoryDependenceResults *MemDep) {
196 if (!isa<PHINode>(BB->begin()))
197 return false;
198
199 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
200 if (PN->getIncomingValue(0) != PN)
201 PN->replaceAllUsesWith(PN->getIncomingValue(0));
202 else
203 PN->replaceAllUsesWith(PoisonValue::get(PN->getType()));
204
205 if (MemDep)
206 MemDep->removeInstruction(PN); // Memdep updates AA itself.
207
208 PN->eraseFromParent();
209 }
210 return true;
211}
212
214 MemorySSAUpdater *MSSAU) {
215 // Recursively deleting a PHI may cause multiple PHIs to be deleted
216 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
218
219 bool Changed = false;
220 for (const auto &PHI : PHIs)
221 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHI.operator Value *()))
222 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
223
224 return Changed;
225}
226
228 LoopInfo *LI, MemorySSAUpdater *MSSAU,
230 bool PredecessorWithTwoSuccessors,
231 DominatorTree *DT) {
232 if (BB->hasAddressTaken())
233 return false;
234
235 // Can't merge if there are multiple predecessors, or no predecessors.
236 BasicBlock *PredBB = BB->getUniquePredecessor();
237 if (!PredBB) return false;
238
239 // Don't break self-loops.
240 if (PredBB == BB) return false;
241
242 // Don't break unwinding instructions or terminators with other side-effects.
243 Instruction *PTI = PredBB->getTerminator();
244 if (PTI->isSpecialTerminator() || PTI->mayHaveSideEffects())
245 return false;
246
247 // Can't merge if there are multiple distinct successors.
248 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
249 return false;
250
251 // Currently only allow PredBB to have two predecessors, one being BB.
252 // Update BI to branch to BB's only successor instead of BB.
253 BranchInst *PredBB_BI;
254 BasicBlock *NewSucc = nullptr;
255 unsigned FallThruPath;
256 if (PredecessorWithTwoSuccessors) {
257 if (!(PredBB_BI = dyn_cast<BranchInst>(PTI)))
258 return false;
260 if (!BB_JmpI || !BB_JmpI->isUnconditional())
261 return false;
262 NewSucc = BB_JmpI->getSuccessor(0);
263 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
264 }
265
266 // Can't merge if there is PHI loop.
267 for (PHINode &PN : BB->phis())
268 if (llvm::is_contained(PN.incoming_values(), &PN))
269 return false;
270
271 // Don't break if both the basic block and the predecessor contain loop or
272 // entry convergent intrinsics, since there may only be one convergence token
273 // per block.
276 return false;
277
278 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
279 << PredBB->getName() << "\n");
280
281 // Begin by getting rid of unneeded PHIs.
282 SmallVector<AssertingVH<Value>, 4> IncomingValues;
283 if (isa<PHINode>(BB->front())) {
284 for (PHINode &PN : BB->phis())
285 if (!isa<PHINode>(PN.getIncomingValue(0)) ||
286 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
287 IncomingValues.push_back(PN.getIncomingValue(0));
288 FoldSingleEntryPHINodes(BB, MemDep);
289 }
290
291 if (DT) {
292 assert(!DTU && "cannot use both DT and DTU for updates");
293 DomTreeNode *PredNode = DT->getNode(PredBB);
294 DomTreeNode *BBNode = DT->getNode(BB);
295 if (PredNode) {
296 assert(BBNode && "PredNode unreachable but BBNode reachable?");
297 for (DomTreeNode *C : to_vector(BBNode->children()))
298 C->setIDom(PredNode);
299 }
300 }
301 // DTU update: Collect all the edges that exit BB.
302 // These dominator edges will be redirected from Pred.
303 std::vector<DominatorTree::UpdateType> Updates;
304 if (DTU) {
305 assert(!DT && "cannot use both DT and DTU for updates");
306 // To avoid processing the same predecessor more than once.
309 successors(PredBB));
310 Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1);
311 // Add insert edges first. Experimentally, for the particular case of two
312 // blocks that can be merged, with a single successor and single predecessor
313 // respectively, it is beneficial to have all insert updates first. Deleting
314 // edges first may lead to unreachable blocks, followed by inserting edges
315 // making the blocks reachable again. Such DT updates lead to high compile
316 // times. We add inserts before deletes here to reduce compile time.
317 for (BasicBlock *SuccOfBB : successors(BB))
318 // This successor of BB may already be a PredBB's successor.
319 if (!SuccsOfPredBB.contains(SuccOfBB))
320 if (SeenSuccs.insert(SuccOfBB).second)
321 Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB});
322 SeenSuccs.clear();
323 for (BasicBlock *SuccOfBB : successors(BB))
324 if (SeenSuccs.insert(SuccOfBB).second)
325 Updates.push_back({DominatorTree::Delete, BB, SuccOfBB});
326 Updates.push_back({DominatorTree::Delete, PredBB, BB});
327 }
328
329 Instruction *STI = BB->getTerminator();
330 Instruction *Start = &*BB->begin();
331 // If there's nothing to move, mark the starting instruction as the last
332 // instruction in the block. Terminator instruction is handled separately.
333 if (Start == STI)
334 Start = PTI;
335
336 // Move all definitions in the successor to the predecessor...
337 PredBB->splice(PTI->getIterator(), BB, BB->begin(), STI->getIterator());
338
339 if (MSSAU)
340 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
341
342 // Make all PHI nodes that referred to BB now refer to Pred as their
343 // source...
344 BB->replaceAllUsesWith(PredBB);
345
346 if (PredecessorWithTwoSuccessors) {
347 // Delete the unconditional branch from BB.
348 BB->back().eraseFromParent();
349
350 // Update branch in the predecessor.
351 PredBB_BI->setSuccessor(FallThruPath, NewSucc);
352 } else {
353 // Delete the unconditional branch from the predecessor.
354 PredBB->back().eraseFromParent();
355
356 // Move terminator instruction.
357 BB->back().moveBeforePreserving(*PredBB, PredBB->end());
358
359 // Terminator may be a memory accessing instruction too.
360 if (MSSAU)
362 MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
363 MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
364 }
365 // Add unreachable to now empty BB.
366 new UnreachableInst(BB->getContext(), BB);
367
368 // Inherit predecessors name if it exists.
369 if (!PredBB->hasName())
370 PredBB->takeName(BB);
371
372 if (LI)
373 LI->removeBlock(BB);
374
375 if (MemDep)
377
378 if (DTU)
379 DTU->applyUpdates(Updates);
380
381 if (DT) {
382 assert(succ_empty(BB) &&
383 "successors should have been transferred to PredBB");
384 DT->eraseNode(BB);
385 }
386
387 // Finally, erase the old block and update dominator info.
388 DeleteDeadBlock(BB, DTU);
389
390 return true;
391}
392
395 LoopInfo *LI) {
396 assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
397
398 bool BlocksHaveBeenMerged = false;
399 while (!MergeBlocks.empty()) {
400 BasicBlock *BB = *MergeBlocks.begin();
401 BasicBlock *Dest = BB->getSingleSuccessor();
402 if (Dest && (!L || L->contains(Dest))) {
403 BasicBlock *Fold = Dest->getUniquePredecessor();
404 (void)Fold;
405 if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
406 assert(Fold == BB &&
407 "Expecting BB to be unique predecessor of the Dest block");
408 MergeBlocks.erase(Dest);
409 BlocksHaveBeenMerged = true;
410 } else
411 MergeBlocks.erase(BB);
412 } else
413 MergeBlocks.erase(BB);
414 }
415 return BlocksHaveBeenMerged;
416}
417
418/// Remove redundant instructions within sequences of consecutive dbg.value
419/// instructions. This is done using a backward scan to keep the last dbg.value
420/// describing a specific variable/fragment.
421///
422/// BackwardScan strategy:
423/// ----------------------
424/// Given a sequence of consecutive DbgValueInst like this
425///
426/// dbg.value ..., "x", FragmentX1 (*)
427/// dbg.value ..., "y", FragmentY1
428/// dbg.value ..., "x", FragmentX2
429/// dbg.value ..., "x", FragmentX1 (**)
430///
431/// then the instruction marked with (*) can be removed (it is guaranteed to be
432/// obsoleted by the instruction marked with (**) as the latter instruction is
433/// describing the same variable using the same fragment info).
434///
435/// Possible improvements:
436/// - Check fully overlapping fragments and not only identical fragments.
440 for (auto &I : reverse(*BB)) {
441 for (DbgVariableRecord &DVR :
442 reverse(filterDbgVars(I.getDbgRecordRange()))) {
443 DebugVariable Key(DVR.getVariable(), DVR.getExpression(),
444 DVR.getDebugLoc()->getInlinedAt());
445 auto R = VariableSet.insert(Key);
446 // If the same variable fragment is described more than once it is enough
447 // to keep the last one (i.e. the first found since we for reverse
448 // iteration).
449 if (R.second)
450 continue;
451
452 if (DVR.isDbgAssign()) {
453 // Don't delete dbg.assign intrinsics that are linked to instructions.
454 if (!at::getAssignmentInsts(&DVR).empty())
455 continue;
456 // Unlinked dbg.assign intrinsics can be treated like dbg.values.
457 }
458
459 ToBeRemoved.push_back(&DVR);
460 }
461 // Sequence with consecutive dbg.value instrs ended. Clear the map to
462 // restart identifying redundant instructions if case we find another
463 // dbg.value sequence.
464 VariableSet.clear();
465 }
466
467 for (auto &DVR : ToBeRemoved)
468 DVR->eraseFromParent();
469
470 return !ToBeRemoved.empty();
471}
472
473/// Remove redundant dbg.value instructions using a forward scan. This can
474/// remove a dbg.value instruction that is redundant due to indicating that a
475/// variable has the same value as already being indicated by an earlier
476/// dbg.value.
477///
478/// ForwardScan strategy:
479/// ---------------------
480/// Given two identical dbg.value instructions, separated by a block of
481/// instructions that isn't describing the same variable, like this
482///
483/// dbg.value X1, "x", FragmentX1 (**)
484/// <block of instructions, none being "dbg.value ..., "x", ...">
485/// dbg.value X1, "x", FragmentX1 (*)
486///
487/// then the instruction marked with (*) can be removed. Variable "x" is already
488/// described as being mapped to the SSA value X1.
489///
490/// Possible improvements:
491/// - Keep track of non-overlapping fragments.
493 bool RemovedAny = false;
495 std::pair<SmallVector<Value *, 4>, DIExpression *>, 4>
496 VariableMap;
497 for (auto &I : *BB) {
498 for (DbgVariableRecord &DVR :
499 make_early_inc_range(filterDbgVars(I.getDbgRecordRange()))) {
500 if (DVR.getType() == DbgVariableRecord::LocationType::Declare)
501 continue;
502 DebugVariable Key(DVR.getVariable(), std::nullopt,
503 DVR.getDebugLoc()->getInlinedAt());
504 auto [VMI, Inserted] = VariableMap.try_emplace(Key);
505 // A dbg.assign with no linked instructions can be treated like a
506 // dbg.value (i.e. can be deleted).
507 bool IsDbgValueKind =
508 (!DVR.isDbgAssign() || at::getAssignmentInsts(&DVR).empty());
509
510 // Update the map if we found a new value/expression describing the
511 // variable, or if the variable wasn't mapped already.
512 SmallVector<Value *, 4> Values(DVR.location_ops());
513 if (Inserted || VMI->second.first != Values ||
514 VMI->second.second != DVR.getExpression()) {
515 if (IsDbgValueKind)
516 VMI->second = {Values, DVR.getExpression()};
517 else
518 VMI->second = {Values, nullptr};
519 continue;
520 }
521 // Don't delete dbg.assign intrinsics that are linked to instructions.
522 if (!IsDbgValueKind)
523 continue;
524 // Found an identical mapping. Remember the instruction for later removal.
525 DVR.eraseFromParent();
526 RemovedAny = true;
527 }
528 }
529
530 return RemovedAny;
531}
532
533/// Remove redundant undef dbg.assign intrinsic from an entry block using a
534/// forward scan.
535/// Strategy:
536/// ---------------------
537/// Scanning forward, delete dbg.assign intrinsics iff they are undef, not
538/// linked to an intrinsic, and don't share an aggregate variable with a debug
539/// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns
540/// that come before non-undef debug intrinsics for the variable are
541/// deleted. Given:
542///
543/// dbg.assign undef, "x", FragmentX1 (*)
544/// <block of instructions, none being "dbg.value ..., "x", ...">
545/// dbg.value %V, "x", FragmentX2
546/// <block of instructions, none being "dbg.value ..., "x", ...">
547/// dbg.assign undef, "x", FragmentX1
548///
549/// then (only) the instruction marked with (*) can be removed.
550/// Possible improvements:
551/// - Keep track of non-overlapping fragments.
553 assert(BB->isEntryBlock() && "expected entry block");
554 bool RemovedAny = false;
555 DenseSet<DebugVariableAggregate> SeenDefForAggregate;
556
557 // Remove undef dbg.assign intrinsics that are encountered before
558 // any non-undef intrinsics from the entry block.
559 for (auto &I : *BB) {
560 for (DbgVariableRecord &DVR :
561 make_early_inc_range(filterDbgVars(I.getDbgRecordRange()))) {
562 if (!DVR.isDbgValue() && !DVR.isDbgAssign())
563 continue;
564 bool IsDbgValueKind =
565 (DVR.isDbgValue() || at::getAssignmentInsts(&DVR).empty());
566
567 DebugVariableAggregate Aggregate(&DVR);
568 if (!SeenDefForAggregate.contains(Aggregate)) {
569 bool IsKill = DVR.isKillLocation() && IsDbgValueKind;
570 if (!IsKill) {
571 SeenDefForAggregate.insert(Aggregate);
572 } else if (DVR.isDbgAssign()) {
573 DVR.eraseFromParent();
574 RemovedAny = true;
575 }
576 }
577 }
578 }
579
580 return RemovedAny;
581}
582
584 bool MadeChanges = false;
585 // By using the "backward scan" strategy before the "forward scan" strategy we
586 // can remove both dbg.value (2) and (3) in a situation like this:
587 //
588 // (1) dbg.value V1, "x", DIExpression()
589 // ...
590 // (2) dbg.value V2, "x", DIExpression()
591 // (3) dbg.value V1, "x", DIExpression()
592 //
593 // The backward scan will remove (2), it is made obsolete by (3). After
594 // getting (2) out of the way, the foward scan will remove (3) since "x"
595 // already is described as having the value V1 at (1).
597 if (BB->isEntryBlock() &&
599 MadeChanges |= removeUndefDbgAssignsFromEntryBlock(BB);
601
602 if (MadeChanges)
603 LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
604 << BB->getName() << "\n");
605 return MadeChanges;
606}
607
609 Instruction &I = *BI;
610 // Replaces all of the uses of the instruction with uses of the value
611 I.replaceAllUsesWith(V);
612
613 // Make sure to propagate a name if there is one already.
614 if (I.hasName() && !V->hasName())
615 V->takeName(&I);
616
617 // Delete the unnecessary instruction now...
618 BI = BI->eraseFromParent();
619}
620
622 Instruction *I) {
623 assert(I->getParent() == nullptr &&
624 "ReplaceInstWithInst: Instruction already inserted into basic block!");
625
626 // Copy debug location to newly added instruction, if it wasn't already set
627 // by the caller.
628 if (!I->getDebugLoc())
629 I->setDebugLoc(BI->getDebugLoc());
630
631 // Insert the new instruction into the basic block...
632 BasicBlock::iterator New = I->insertInto(BB, BI);
633
634 // Replace all uses of the old instruction, and delete it.
636
637 // Move BI back to point to the newly inserted instruction
638 BI = New;
639}
640
642 // Remember visited blocks to avoid infinite loop
644 unsigned Depth = 0;
646 VisitedBlocks.insert(BB).second) {
649 return true;
650 BB = BB->getUniqueSuccessor();
651 }
652 return false;
653}
654
656 BasicBlock::iterator BI(From);
657 ReplaceInstWithInst(From->getParent(), BI, To);
658}
659
661 LoopInfo *LI, MemorySSAUpdater *MSSAU,
662 const Twine &BBName) {
663 unsigned SuccNum = GetSuccessorNumber(BB, Succ);
664
665 Instruction *LatchTerm = BB->getTerminator();
666
669
670 if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) {
671 // If this is a critical edge, let SplitKnownCriticalEdge do it.
672 return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName);
673 }
674
675 // If the edge isn't critical, then BB has a single successor or Succ has a
676 // single pred. Split the block.
677 if (BasicBlock *SP = Succ->getSinglePredecessor()) {
678 // If the successor only has a single pred, split the top of the successor
679 // block.
680 assert(SP == BB && "CFG broken");
681 (void)SP;
682 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
683 /*Before=*/true);
684 }
685
686 // Otherwise, if BB has a single successor, split it at the bottom of the
687 // block.
688 assert(BB->getTerminator()->getNumSuccessors() == 1 &&
689 "Should have a single succ!");
690 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
691}
692
693/// Helper function to update the cycle or loop information after inserting a
694/// new block between a callbr instruction and one of its target blocks. Adds
695/// the new block to the innermost cycle or loop that the callbr instruction and
696/// the original target block share.
697/// \p LCI cycle or loop information to update
698/// \p CallBrBlock block containing the callbr instruction
699/// \p CallBrTarget new target block of the callbr instruction
700/// \p Succ original target block of the callbr instruction
701template <typename TI, typename T>
702static bool updateCycleLoopInfo(TI *LCI, BasicBlock *CallBrBlock,
703 BasicBlock *CallBrTarget, BasicBlock *Succ) {
704 static_assert(std::is_same_v<TI, CycleInfo> || std::is_same_v<TI, LoopInfo>,
705 "type must be CycleInfo or LoopInfo");
706 if (!LCI)
707 return false;
708
709 T *LC;
710 if constexpr (std::is_same_v<TI, CycleInfo>)
711 LC = LCI->getSmallestCommonCycle(CallBrBlock, Succ);
712 else
713 LC = LCI->getSmallestCommonLoop(CallBrBlock, Succ);
714 if (!LC)
715 return false;
716
717 if constexpr (std::is_same_v<TI, CycleInfo>)
718 LCI->addBlockToCycle(CallBrTarget, LC);
719 else
720 LC->addBasicBlockToLoop(CallBrTarget, *LCI);
721
722 return true;
723}
724
726 unsigned SuccIdx, DomTreeUpdater *DTU,
727 CycleInfo *CI, LoopInfo *LI,
728 bool *UpdatedLI) {
729 CallBrInst *CallBr = dyn_cast<CallBrInst>(CallBrBlock->getTerminator());
730 assert(CallBr && "expected callbr terminator");
731 assert(SuccIdx < CallBr->getNumSuccessors() &&
732 Succ == CallBr->getSuccessor(SuccIdx) && "invalid successor index");
733
734 // Create a new block between callbr and the specified successor.
735 // splitBlockBefore cannot be re-used here since it cannot split if the split
736 // point is a PHI node (because BasicBlock::splitBasicBlockBefore cannot
737 // handle that). But we don't need to rewire every part of a potential PHI
738 // node. We only care about the edge between CallBrBlock and the original
739 // successor.
740 BasicBlock *CallBrTarget =
741 BasicBlock::Create(CallBrBlock->getContext(),
742 CallBrBlock->getName() + ".target." + Succ->getName(),
743 CallBrBlock->getParent());
744 // Rewire control flow from the new target block to the original successor.
745 Succ->replacePhiUsesWith(CallBrBlock, CallBrTarget);
746 // Rewire control flow from callbr to the new target block.
747 CallBr->setSuccessor(SuccIdx, CallBrTarget);
748 // Jump from the new target block to the original successor.
749 BranchInst::Create(Succ, CallBrTarget);
750
751 bool Updated =
752 updateCycleLoopInfo<LoopInfo, Loop>(LI, CallBrBlock, CallBrTarget, Succ);
753 if (UpdatedLI)
754 *UpdatedLI = Updated;
755 updateCycleLoopInfo<CycleInfo, Cycle>(CI, CallBrBlock, CallBrTarget, Succ);
756 if (DTU) {
757 DTU->applyUpdates({{DominatorTree::Insert, CallBrBlock, CallBrTarget}});
758 if (DTU->getDomTree().dominates(CallBrBlock, Succ))
759 DTU->applyUpdates({{DominatorTree::Delete, CallBrBlock, Succ},
760 {DominatorTree::Insert, CallBrTarget, Succ}});
761 }
762
763 return CallBrTarget;
764}
765
767 if (auto *II = dyn_cast<InvokeInst>(TI))
768 II->setUnwindDest(Succ);
769 else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
770 CS->setUnwindDest(Succ);
771 else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
772 CR->setUnwindDest(Succ);
773 else
774 llvm_unreachable("unexpected terminator instruction");
775}
776
778 BasicBlock *NewPred, PHINode *Until) {
779 int BBIdx = 0;
780 for (PHINode &PN : DestBB->phis()) {
781 // We manually update the LandingPadReplacement PHINode and it is the last
782 // PHI Node. So, if we find it, we are done.
783 if (Until == &PN)
784 break;
785
786 // Reuse the previous value of BBIdx if it lines up. In cases where we
787 // have multiple phi nodes with *lots* of predecessors, this is a speed
788 // win because we don't have to scan the PHI looking for TIBB. This
789 // happens because the BB list of PHI nodes are usually in the same
790 // order.
791 if (PN.getIncomingBlock(BBIdx) != OldPred)
792 BBIdx = PN.getBasicBlockIndex(OldPred);
793
794 assert(BBIdx != -1 && "Invalid PHI Index!");
795 PN.setIncomingBlock(BBIdx, NewPred);
796 }
797}
798
800 LandingPadInst *OriginalPad,
801 PHINode *LandingPadReplacement,
803 const Twine &BBName) {
804
805 auto PadInst = Succ->getFirstNonPHIIt();
806 if (!LandingPadReplacement && !PadInst->isEHPad())
807 return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName);
808
809 auto *LI = Options.LI;
811 // Check if extra modifications will be required to preserve loop-simplify
812 // form after splitting. If it would require splitting blocks with IndirectBr
813 // terminators, bail out if preserving loop-simplify form is requested.
814 if (Options.PreserveLoopSimplify && LI) {
815 if (Loop *BBLoop = LI->getLoopFor(BB)) {
816
817 // The only way that we can break LoopSimplify form by splitting a
818 // critical edge is when there exists some edge from BBLoop to Succ *and*
819 // the only edge into Succ from outside of BBLoop is that of NewBB after
820 // the split. If the first isn't true, then LoopSimplify still holds,
821 // NewBB is the new exit block and it has no non-loop predecessors. If the
822 // second isn't true, then Succ was not in LoopSimplify form prior to
823 // the split as it had a non-loop predecessor. In both of these cases,
824 // the predecessor must be directly in BBLoop, not in a subloop, or again
825 // LoopSimplify doesn't hold.
826 for (BasicBlock *P : predecessors(Succ)) {
827 if (P == BB)
828 continue; // The new block is known.
829 if (LI->getLoopFor(P) != BBLoop) {
830 // Loop is not in LoopSimplify form, no need to re simplify after
831 // splitting edge.
832 LoopPreds.clear();
833 break;
834 }
835 LoopPreds.push_back(P);
836 }
837 // Loop-simplify form can be preserved, if we can split all in-loop
838 // predecessors.
839 if (any_of(LoopPreds, [](BasicBlock *Pred) {
840 return isa<IndirectBrInst>(Pred->getTerminator());
841 })) {
842 return nullptr;
843 }
844 }
845 }
846
847 auto *NewBB =
848 BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ);
849 setUnwindEdgeTo(BB->getTerminator(), NewBB);
850 updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
851
852 if (LandingPadReplacement) {
853 auto *NewLP = OriginalPad->clone();
854 auto *Terminator = BranchInst::Create(Succ, NewBB);
855 NewLP->insertBefore(Terminator->getIterator());
856 LandingPadReplacement->addIncoming(NewLP, NewBB);
857 } else {
858 Value *ParentPad = nullptr;
859 if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
860 ParentPad = FuncletPad->getParentPad();
861 else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
862 ParentPad = CatchSwitch->getParentPad();
863 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst))
864 ParentPad = CleanupPad->getParentPad();
865 else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst))
866 ParentPad = LandingPad->getParent();
867 else
868 llvm_unreachable("handling for other EHPads not implemented yet");
869
870 auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB);
871 CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
872 }
873
874 auto *DT = Options.DT;
875 auto *MSSAU = Options.MSSAU;
876 if (!DT && !LI)
877 return NewBB;
878
879 if (DT) {
880 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
882
883 Updates.push_back({DominatorTree::Insert, BB, NewBB});
884 Updates.push_back({DominatorTree::Insert, NewBB, Succ});
885 Updates.push_back({DominatorTree::Delete, BB, Succ});
886
887 DTU.applyUpdates(Updates);
888 DTU.flush();
889
890 if (MSSAU) {
891 MSSAU->applyUpdates(Updates, *DT);
892 if (VerifyMemorySSA)
893 MSSAU->getMemorySSA()->verifyMemorySSA();
894 }
895 }
896
897 if (LI) {
898 if (Loop *BBLoop = LI->getLoopFor(BB)) {
899 // If one or the other blocks were not in a loop, the new block is not
900 // either, and thus LI doesn't need to be updated.
901 if (Loop *SuccLoop = LI->getLoopFor(Succ)) {
902 if (BBLoop == SuccLoop) {
903 // Both in the same loop, the NewBB joins loop.
904 SuccLoop->addBasicBlockToLoop(NewBB, *LI);
905 } else if (BBLoop->contains(SuccLoop)) {
906 // Edge from an outer loop to an inner loop. Add to the outer loop.
907 BBLoop->addBasicBlockToLoop(NewBB, *LI);
908 } else if (SuccLoop->contains(BBLoop)) {
909 // Edge from an inner loop to an outer loop. Add to the outer loop.
910 SuccLoop->addBasicBlockToLoop(NewBB, *LI);
911 } else {
912 // Edge from two loops with no containment relation. Because these
913 // are natural loops, we know that the destination block must be the
914 // header of its loop (adding a branch into a loop elsewhere would
915 // create an irreducible loop).
916 assert(SuccLoop->getHeader() == Succ &&
917 "Should not create irreducible loops!");
918 if (Loop *P = SuccLoop->getParentLoop())
919 P->addBasicBlockToLoop(NewBB, *LI);
920 }
921 }
922
923 // If BB is in a loop and Succ is outside of that loop, we may need to
924 // update LoopSimplify form and LCSSA form.
925 if (!BBLoop->contains(Succ)) {
926 assert(!BBLoop->contains(NewBB) &&
927 "Split point for loop exit is contained in loop!");
928
929 // Update LCSSA form in the newly created exit block.
930 if (Options.PreserveLCSSA) {
931 createPHIsForSplitLoopExit(BB, NewBB, Succ);
932 }
933
934 if (!LoopPreds.empty()) {
936 Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
937 if (Options.PreserveLCSSA)
938 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ);
939 }
940 }
941 }
942 }
943
944 return NewBB;
945}
946
948 BasicBlock *SplitBB, BasicBlock *DestBB) {
949 // SplitBB shouldn't have anything non-trivial in it yet.
950 assert((&*SplitBB->getFirstNonPHIIt() == SplitBB->getTerminator() ||
951 SplitBB->isLandingPad()) &&
952 "SplitBB has non-PHI nodes!");
953
954 // For each PHI in the destination block.
955 for (PHINode &PN : DestBB->phis()) {
956 int Idx = PN.getBasicBlockIndex(SplitBB);
957 assert(Idx >= 0 && "Invalid Block Index");
958 Value *V = PN.getIncomingValue(Idx);
959
960 // If the input is a PHI which already satisfies LCSSA, don't create
961 // a new one.
962 if (const PHINode *VP = dyn_cast<PHINode>(V))
963 if (VP->getParent() == SplitBB)
964 continue;
965
966 // Otherwise a new PHI is needed. Create one and populate it.
967 PHINode *NewPN = PHINode::Create(PN.getType(), Preds.size(), "split");
968 BasicBlock::iterator InsertPos =
969 SplitBB->isLandingPad() ? SplitBB->begin()
970 : SplitBB->getTerminator()->getIterator();
971 NewPN->insertBefore(InsertPos);
972 for (BasicBlock *BB : Preds)
973 NewPN->addIncoming(V, BB);
974
975 // Update the original PHI.
976 PN.setIncomingValue(Idx, NewPN);
977 }
978}
979
980unsigned
983 unsigned NumBroken = 0;
984 for (BasicBlock &BB : F) {
985 Instruction *TI = BB.getTerminator();
986 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
987 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
988 if (SplitCriticalEdge(TI, i, Options))
989 ++NumBroken;
990 }
991 return NumBroken;
992}
993
996 LoopInfo *LI, MemorySSAUpdater *MSSAU,
997 const Twine &BBName, bool Before) {
998 if (Before) {
999 DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
1000 return splitBlockBefore(Old, SplitPt,
1001 DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
1002 BBName);
1003 }
1004 BasicBlock::iterator SplitIt = SplitPt;
1005 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) {
1006 ++SplitIt;
1007 assert(SplitIt != SplitPt->getParent()->end());
1008 }
1009 std::string Name = BBName.str();
1010 BasicBlock *New = Old->splitBasicBlock(
1011 SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
1012
1013 // The new block lives in whichever loop the old one did. This preserves
1014 // LCSSA as well, because we force the split point to be after any PHI nodes.
1015 if (LI)
1016 if (Loop *L = LI->getLoopFor(Old))
1017 L->addBasicBlockToLoop(New, *LI);
1018
1019 if (DTU) {
1021 // Old dominates New. New node dominates all other nodes dominated by Old.
1022 SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld;
1023 Updates.push_back({DominatorTree::Insert, Old, New});
1024 Updates.reserve(Updates.size() + 2 * succ_size(New));
1025 for (BasicBlock *SuccessorOfOld : successors(New))
1026 if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) {
1027 Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld});
1028 Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld});
1029 }
1030
1031 DTU->applyUpdates(Updates);
1032 } else if (DT)
1033 // Old dominates New. New node dominates all other nodes dominated by Old.
1034 if (DomTreeNode *OldNode = DT->getNode(Old)) {
1035 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1036
1037 DomTreeNode *NewNode = DT->addNewBlock(New, Old);
1038 for (DomTreeNode *I : Children)
1039 DT->changeImmediateDominator(I, NewNode);
1040 }
1041
1042 // Move MemoryAccesses still tracked in Old, but part of New now.
1043 // Update accesses in successor blocks accordingly.
1044 if (MSSAU)
1045 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
1046
1047 return New;
1048}
1049
1051 DominatorTree *DT, LoopInfo *LI,
1052 MemorySSAUpdater *MSSAU, const Twine &BBName,
1053 bool Before) {
1054 return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
1055 Before);
1056}
1058 DomTreeUpdater *DTU, LoopInfo *LI,
1059 MemorySSAUpdater *MSSAU, const Twine &BBName,
1060 bool Before) {
1061 return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
1062 Before);
1063}
1064
1066 DomTreeUpdater *DTU, LoopInfo *LI,
1067 MemorySSAUpdater *MSSAU,
1068 const Twine &BBName) {
1069
1070 BasicBlock::iterator SplitIt = SplitPt;
1071 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
1072 ++SplitIt;
1073 std::string Name = BBName.str();
1074 BasicBlock *New = Old->splitBasicBlock(
1075 SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
1076 /* Before=*/true);
1077
1078 // The new block lives in whichever loop the old one did. This preserves
1079 // LCSSA as well, because we force the split point to be after any PHI nodes.
1080 if (LI)
1081 if (Loop *L = LI->getLoopFor(Old))
1082 L->addBasicBlockToLoop(New, *LI);
1083
1084 if (DTU) {
1086 // New dominates Old. The predecessor nodes of the Old node dominate
1087 // New node.
1088 SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld;
1089 DTUpdates.push_back({DominatorTree::Insert, New, Old});
1090 DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New));
1091 for (BasicBlock *PredecessorOfOld : predecessors(New))
1092 if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) {
1093 DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New});
1094 DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old});
1095 }
1096
1097 DTU->applyUpdates(DTUpdates);
1098
1099 // Move MemoryAccesses still tracked in Old, but part of New now.
1100 // Update accesses in successor blocks accordingly.
1101 if (MSSAU) {
1102 MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
1103 if (VerifyMemorySSA)
1104 MSSAU->getMemorySSA()->verifyMemorySSA();
1105 }
1106 }
1107 return New;
1108}
1109
1110/// Update DominatorTree, LoopInfo, and LCCSA analysis information.
1111/// Invalidates DFS Numbering when DTU or DT is provided.
1114 DomTreeUpdater *DTU, DominatorTree *DT,
1115 LoopInfo *LI, MemorySSAUpdater *MSSAU,
1116 bool PreserveLCSSA, bool &HasLoopExit) {
1117 // Update dominator tree if available.
1118 if (DTU) {
1119 // Recalculation of DomTree is needed when updating a forward DomTree and
1120 // the Entry BB is replaced.
1121 if (NewBB->isEntryBlock() && DTU->hasDomTree()) {
1122 // The entry block was removed and there is no external interface for
1123 // the dominator tree to be notified of this change. In this corner-case
1124 // we recalculate the entire tree.
1125 DTU->recalculate(*NewBB->getParent());
1126 } else {
1127 // Split block expects NewBB to have a non-empty set of predecessors.
1129 SmallPtrSet<BasicBlock *, 8> UniquePreds;
1130 Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
1131 Updates.reserve(Updates.size() + 2 * Preds.size());
1132 for (auto *Pred : Preds)
1133 if (UniquePreds.insert(Pred).second) {
1134 Updates.push_back({DominatorTree::Insert, Pred, NewBB});
1135 Updates.push_back({DominatorTree::Delete, Pred, OldBB});
1136 }
1137 DTU->applyUpdates(Updates);
1138 }
1139 } else if (DT) {
1140 if (OldBB == DT->getRootNode()->getBlock()) {
1141 assert(NewBB->isEntryBlock());
1142 DT->setNewRoot(NewBB);
1143 } else {
1144 // Split block expects NewBB to have a non-empty set of predecessors.
1145 DT->splitBlock(NewBB);
1146 }
1147 }
1148
1149 // Update MemoryPhis after split if MemorySSA is available
1150 if (MSSAU)
1151 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
1152
1153 // The rest of the logic is only relevant for updating the loop structures.
1154 if (!LI)
1155 return;
1156
1157 if (DTU && DTU->hasDomTree())
1158 DT = &DTU->getDomTree();
1159 assert(DT && "DT should be available to update LoopInfo!");
1160 Loop *L = LI->getLoopFor(OldBB);
1161
1162 // If we need to preserve loop analyses, collect some information about how
1163 // this split will affect loops.
1164 bool IsLoopEntry = !!L;
1165 bool SplitMakesNewLoopHeader = false;
1166 for (BasicBlock *Pred : Preds) {
1167 // Preds that are not reachable from entry should not be used to identify if
1168 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
1169 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
1170 // as true and make the NewBB the header of some loop. This breaks LI.
1171 if (!DT->isReachableFromEntry(Pred))
1172 continue;
1173 // If we need to preserve LCSSA, determine if any of the preds is a loop
1174 // exit.
1175 if (PreserveLCSSA)
1176 if (Loop *PL = LI->getLoopFor(Pred))
1177 if (!PL->contains(OldBB))
1178 HasLoopExit = true;
1179
1180 // If we need to preserve LoopInfo, note whether any of the preds crosses
1181 // an interesting loop boundary.
1182 if (!L)
1183 continue;
1184 if (L->contains(Pred))
1185 IsLoopEntry = false;
1186 else
1187 SplitMakesNewLoopHeader = true;
1188 }
1189
1190 // Unless we have a loop for OldBB, nothing else to do here.
1191 if (!L)
1192 return;
1193
1194 if (IsLoopEntry) {
1195 // Add the new block to the nearest enclosing loop (and not an adjacent
1196 // loop). To find this, examine each of the predecessors and determine which
1197 // loops enclose them, and select the most-nested loop which contains the
1198 // loop containing the block being split.
1199 Loop *InnermostPredLoop = nullptr;
1200 for (BasicBlock *Pred : Preds) {
1201 if (Loop *PredLoop = LI->getLoopFor(Pred)) {
1202 // Seek a loop which actually contains the block being split (to avoid
1203 // adjacent loops).
1204 while (PredLoop && !PredLoop->contains(OldBB))
1205 PredLoop = PredLoop->getParentLoop();
1206
1207 // Select the most-nested of these loops which contains the block.
1208 if (PredLoop && PredLoop->contains(OldBB) &&
1209 (!InnermostPredLoop ||
1210 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
1211 InnermostPredLoop = PredLoop;
1212 }
1213 }
1214
1215 if (InnermostPredLoop)
1216 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
1217 } else {
1218 L->addBasicBlockToLoop(NewBB, *LI);
1219 if (SplitMakesNewLoopHeader)
1220 L->moveToHeader(NewBB);
1221 }
1222}
1223
1224/// Update the PHI nodes in OrigBB to include the values coming from NewBB.
1225/// This also updates AliasAnalysis, if available.
1226static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
1228 bool HasLoopExit) {
1229 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
1231 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
1232 PHINode *PN = cast<PHINode>(I++);
1233
1234 // Check to see if all of the values coming in are the same. If so, we
1235 // don't need to create a new PHI node, unless it's needed for LCSSA.
1236 Value *InVal = nullptr;
1237 if (!HasLoopExit) {
1238 InVal = PN->getIncomingValueForBlock(Preds[0]);
1239 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1240 if (!PredSet.count(PN->getIncomingBlock(i)))
1241 continue;
1242 if (!InVal)
1243 InVal = PN->getIncomingValue(i);
1244 else if (InVal != PN->getIncomingValue(i)) {
1245 InVal = nullptr;
1246 break;
1247 }
1248 }
1249 }
1250
1251 if (InVal) {
1252 // If all incoming values for the new PHI would be the same, just don't
1253 // make a new PHI. Instead, just remove the incoming values from the old
1254 // PHI.
1256 [&](unsigned Idx) {
1257 return PredSet.contains(PN->getIncomingBlock(Idx));
1258 },
1259 /* DeletePHIIfEmpty */ false);
1260
1261 // Add an incoming value to the PHI node in the loop for the preheader
1262 // edge.
1263 PN->addIncoming(InVal, NewBB);
1264 continue;
1265 }
1266
1267 // If the values coming into the block are not the same, we need a new
1268 // PHI.
1269 // Create the new PHI node, insert it into NewBB at the end of the block
1270 PHINode *NewPHI =
1271 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI->getIterator());
1272
1273 // NOTE! This loop walks backwards for a reason! First off, this minimizes
1274 // the cost of removal if we end up removing a large number of values, and
1275 // second off, this ensures that the indices for the incoming values aren't
1276 // invalidated when we remove one.
1277 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
1278 BasicBlock *IncomingBB = PN->getIncomingBlock(i);
1279 if (PredSet.count(IncomingBB)) {
1280 Value *V = PN->removeIncomingValue(i, false);
1281 NewPHI->addIncoming(V, IncomingBB);
1282 }
1283 }
1284
1285 PN->addIncoming(NewPHI, NewBB);
1286 }
1287}
1288
1290 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1291 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1292 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1293 MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
1294
1295static BasicBlock *
1297 const char *Suffix, DomTreeUpdater *DTU,
1298 DominatorTree *DT, LoopInfo *LI,
1299 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1300 // Do not attempt to split that which cannot be split.
1301 if (!BB->canSplitPredecessors())
1302 return nullptr;
1303
1304 // For the landingpads we need to act a bit differently.
1305 // Delegate this work to the SplitLandingPadPredecessors.
1306 if (BB->isLandingPad()) {
1308 std::string NewName = std::string(Suffix) + ".split-lp";
1309
1310 SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
1311 DTU, DT, LI, MSSAU, PreserveLCSSA);
1312 return NewBBs[0];
1313 }
1314
1315 // Create new basic block, insert right before the original block.
1317 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
1318
1319 // The new block unconditionally branches to the old block.
1320 BranchInst *BI = BranchInst::Create(BB, NewBB);
1321
1322 Loop *L = nullptr;
1323 BasicBlock *OldLatch = nullptr;
1324 // Splitting the predecessors of a loop header creates a preheader block.
1325 if (LI && LI->isLoopHeader(BB)) {
1326 L = LI->getLoopFor(BB);
1327 // Using the loop start line number prevents debuggers stepping into the
1328 // loop body for this instruction.
1329 BI->setDebugLoc(L->getStartLoc());
1330
1331 // If BB is the header of the Loop, it is possible that the loop is
1332 // modified, such that the current latch does not remain the latch of the
1333 // loop. If that is the case, the loop metadata from the current latch needs
1334 // to be applied to the new latch.
1335 OldLatch = L->getLoopLatch();
1336 } else
1337 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
1338
1339 // Move the edges from Preds to point to NewBB instead of BB.
1340 for (BasicBlock *Pred : Preds) {
1341 // This is slightly more strict than necessary; the minimum requirement
1342 // is that there be no more than one indirectbr branching to BB. And
1343 // all BlockAddress uses would need to be updated.
1344 assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1345 "Cannot split an edge from an IndirectBrInst");
1346 Pred->getTerminator()->replaceSuccessorWith(BB, NewBB);
1347 }
1348
1349 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
1350 // node becomes an incoming value for BB's phi node. However, if the Preds
1351 // list is empty, we need to insert dummy entries into the PHI nodes in BB to
1352 // account for the newly created predecessor.
1353 if (Preds.empty()) {
1354 // Insert dummy values as the incoming value.
1355 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
1356 cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB);
1357 }
1358
1359 // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1360 bool HasLoopExit = false;
1361 UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
1362 HasLoopExit);
1363
1364 if (!Preds.empty()) {
1365 // Update the PHI nodes in BB with the values coming from NewBB.
1366 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
1367 }
1368
1369 if (OldLatch) {
1370 BasicBlock *NewLatch = L->getLoopLatch();
1371 if (NewLatch != OldLatch) {
1372 MDNode *MD = OldLatch->getTerminator()->getMetadata(LLVMContext::MD_loop);
1373 NewLatch->getTerminator()->setMetadata(LLVMContext::MD_loop, MD);
1374 // It's still possible that OldLatch is the latch of another inner loop,
1375 // in which case we do not remove the metadata.
1376 Loop *IL = LI->getLoopFor(OldLatch);
1377 if (IL && IL->getLoopLatch() != OldLatch)
1378 OldLatch->getTerminator()->setMetadata(LLVMContext::MD_loop, nullptr);
1379 }
1380 }
1381
1382 return NewBB;
1383}
1384
1387 const char *Suffix, DominatorTree *DT,
1388 LoopInfo *LI, MemorySSAUpdater *MSSAU,
1389 bool PreserveLCSSA) {
1390 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
1391 MSSAU, PreserveLCSSA);
1392}
1395 const char *Suffix,
1396 DomTreeUpdater *DTU, LoopInfo *LI,
1397 MemorySSAUpdater *MSSAU,
1398 bool PreserveLCSSA) {
1399 return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
1400 /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
1401}
1402
1404 BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1405 const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1406 DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1407 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1408 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
1409
1410 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
1411 // it right before the original block.
1412 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
1413 OrigBB->getName() + Suffix1,
1414 OrigBB->getParent(), OrigBB);
1415 NewBBs.push_back(NewBB1);
1416
1417 // The new block unconditionally branches to the old block.
1418 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
1419 BI1->setDebugLoc(OrigBB->getFirstNonPHIIt()->getDebugLoc());
1420
1421 // Move the edges from Preds to point to NewBB1 instead of OrigBB.
1422 for (BasicBlock *Pred : Preds) {
1423 // This is slightly more strict than necessary; the minimum requirement
1424 // is that there be no more than one indirectbr branching to BB. And
1425 // all BlockAddress uses would need to be updated.
1426 assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1427 "Cannot split an edge from an IndirectBrInst");
1428 Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
1429 }
1430
1431 bool HasLoopExit = false;
1432 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
1433 PreserveLCSSA, HasLoopExit);
1434
1435 // Update the PHI nodes in OrigBB with the values coming from NewBB1.
1436 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
1437
1438 // Move the remaining edges from OrigBB to point to NewBB2.
1439 SmallVector<BasicBlock*, 8> NewBB2Preds;
1440 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
1441 i != e; ) {
1442 BasicBlock *Pred = *i++;
1443 if (Pred == NewBB1) continue;
1444 assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1445 "Cannot split an edge from an IndirectBrInst");
1446 NewBB2Preds.push_back(Pred);
1447 e = pred_end(OrigBB);
1448 }
1449
1450 BasicBlock *NewBB2 = nullptr;
1451 if (!NewBB2Preds.empty()) {
1452 // Create another basic block for the rest of OrigBB's predecessors.
1453 NewBB2 = BasicBlock::Create(OrigBB->getContext(),
1454 OrigBB->getName() + Suffix2,
1455 OrigBB->getParent(), OrigBB);
1456 NewBBs.push_back(NewBB2);
1457
1458 // The new block unconditionally branches to the old block.
1459 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
1460 BI2->setDebugLoc(OrigBB->getFirstNonPHIIt()->getDebugLoc());
1461
1462 // Move the remaining edges from OrigBB to point to NewBB2.
1463 for (BasicBlock *NewBB2Pred : NewBB2Preds)
1464 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1465
1466 // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1467 HasLoopExit = false;
1468 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
1469 PreserveLCSSA, HasLoopExit);
1470
1471 // Update the PHI nodes in OrigBB with the values coming from NewBB2.
1472 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
1473 }
1474
1475 LandingPadInst *LPad = OrigBB->getLandingPadInst();
1476 Instruction *Clone1 = LPad->clone();
1477 Clone1->setName(Twine("lpad") + Suffix1);
1478 Clone1->insertInto(NewBB1, NewBB1->getFirstInsertionPt());
1479
1480 if (NewBB2) {
1481 Instruction *Clone2 = LPad->clone();
1482 Clone2->setName(Twine("lpad") + Suffix2);
1483 Clone2->insertInto(NewBB2, NewBB2->getFirstInsertionPt());
1484
1485 // Create a PHI node for the two cloned landingpad instructions only
1486 // if the original landingpad instruction has some uses.
1487 if (!LPad->use_empty()) {
1488 assert(!LPad->getType()->isTokenTy() &&
1489 "Split cannot be applied if LPad is token type. Otherwise an "
1490 "invalid PHINode of token type would be created.");
1491 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad->getIterator());
1492 PN->addIncoming(Clone1, NewBB1);
1493 PN->addIncoming(Clone2, NewBB2);
1494 LPad->replaceAllUsesWith(PN);
1495 }
1496 LPad->eraseFromParent();
1497 } else {
1498 // There is no second clone. Just replace the landing pad with the first
1499 // clone.
1500 LPad->replaceAllUsesWith(Clone1);
1501 LPad->eraseFromParent();
1502 }
1503}
1504
1507 const char *Suffix1, const char *Suffix2,
1509 DomTreeUpdater *DTU, LoopInfo *LI,
1510 MemorySSAUpdater *MSSAU,
1511 bool PreserveLCSSA) {
1512 return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1513 NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1514 PreserveLCSSA);
1515}
1516
1518 BasicBlock *Pred,
1519 DomTreeUpdater *DTU) {
1520 Instruction *UncondBranch = Pred->getTerminator();
1521 // Clone the return and add it to the end of the predecessor.
1522 Instruction *NewRet = RI->clone();
1523 NewRet->insertInto(Pred, Pred->end());
1524
1525 // If the return instruction returns a value, and if the value was a
1526 // PHI node in "BB", propagate the right value into the return.
1527 for (Use &Op : NewRet->operands()) {
1528 Value *V = Op;
1529 Instruction *NewBC = nullptr;
1530 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1531 // Return value might be bitcasted. Clone and insert it before the
1532 // return instruction.
1533 V = BCI->getOperand(0);
1534 NewBC = BCI->clone();
1535 NewBC->insertInto(Pred, NewRet->getIterator());
1536 Op = NewBC;
1537 }
1538
1539 Instruction *NewEV = nullptr;
1541 V = EVI->getOperand(0);
1542 NewEV = EVI->clone();
1543 if (NewBC) {
1544 NewBC->setOperand(0, NewEV);
1545 NewEV->insertInto(Pred, NewBC->getIterator());
1546 } else {
1547 NewEV->insertInto(Pred, NewRet->getIterator());
1548 Op = NewEV;
1549 }
1550 }
1551
1552 if (PHINode *PN = dyn_cast<PHINode>(V)) {
1553 if (PN->getParent() == BB) {
1554 if (NewEV) {
1555 NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1556 } else if (NewBC)
1557 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1558 else
1559 Op = PN->getIncomingValueForBlock(Pred);
1560 }
1561 }
1562 }
1563
1564 // Update any PHI nodes in the returning block to realize that we no
1565 // longer branch to them.
1566 BB->removePredecessor(Pred);
1567 UncondBranch->eraseFromParent();
1568
1569 if (DTU)
1570 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1571
1572 return cast<ReturnInst>(NewRet);
1573}
1574
1576 BasicBlock::iterator SplitBefore,
1577 bool Unreachable,
1578 MDNode *BranchWeights,
1579 DomTreeUpdater *DTU, LoopInfo *LI,
1580 BasicBlock *ThenBlock) {
1582 Cond, SplitBefore, &ThenBlock, /* ElseBlock */ nullptr,
1583 /* UnreachableThen */ Unreachable,
1584 /* UnreachableElse */ false, BranchWeights, DTU, LI);
1585 return ThenBlock->getTerminator();
1586}
1587
1589 BasicBlock::iterator SplitBefore,
1590 bool Unreachable,
1591 MDNode *BranchWeights,
1592 DomTreeUpdater *DTU, LoopInfo *LI,
1593 BasicBlock *ElseBlock) {
1595 Cond, SplitBefore, /* ThenBlock */ nullptr, &ElseBlock,
1596 /* UnreachableThen */ false,
1597 /* UnreachableElse */ Unreachable, BranchWeights, DTU, LI);
1598 return ElseBlock->getTerminator();
1599}
1600
1602 Instruction **ThenTerm,
1603 Instruction **ElseTerm,
1604 MDNode *BranchWeights,
1605 DomTreeUpdater *DTU, LoopInfo *LI) {
1606 BasicBlock *ThenBlock = nullptr;
1607 BasicBlock *ElseBlock = nullptr;
1609 Cond, SplitBefore, &ThenBlock, &ElseBlock, /* UnreachableThen */ false,
1610 /* UnreachableElse */ false, BranchWeights, DTU, LI);
1611
1612 *ThenTerm = ThenBlock->getTerminator();
1613 *ElseTerm = ElseBlock->getTerminator();
1614}
1615
1617 Value *Cond, BasicBlock::iterator SplitBefore, BasicBlock **ThenBlock,
1618 BasicBlock **ElseBlock, bool UnreachableThen, bool UnreachableElse,
1619 MDNode *BranchWeights, DomTreeUpdater *DTU, LoopInfo *LI) {
1620 assert((ThenBlock || ElseBlock) &&
1621 "At least one branch block must be created");
1622 assert((!UnreachableThen || !UnreachableElse) &&
1623 "Split block tail must be reachable");
1624
1626 SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors;
1627 BasicBlock *Head = SplitBefore->getParent();
1628 if (DTU) {
1629 UniqueOrigSuccessors.insert_range(successors(Head));
1630 Updates.reserve(4 + 2 * UniqueOrigSuccessors.size());
1631 }
1632
1633 LLVMContext &C = Head->getContext();
1634 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
1635 BasicBlock *TrueBlock = Tail;
1636 BasicBlock *FalseBlock = Tail;
1637 bool ThenToTailEdge = false;
1638 bool ElseToTailEdge = false;
1639
1640 // Encapsulate the logic around creation/insertion/etc of a new block.
1641 auto handleBlock = [&](BasicBlock **PBB, bool Unreachable, BasicBlock *&BB,
1642 bool &ToTailEdge) {
1643 if (PBB == nullptr)
1644 return; // Do not create/insert a block.
1645
1646 if (*PBB)
1647 BB = *PBB; // Caller supplied block, use it.
1648 else {
1649 // Create a new block.
1650 BB = BasicBlock::Create(C, "", Head->getParent(), Tail);
1651 if (Unreachable)
1652 (void)new UnreachableInst(C, BB);
1653 else {
1654 (void)BranchInst::Create(Tail, BB);
1655 ToTailEdge = true;
1656 }
1657 BB->getTerminator()->setDebugLoc(SplitBefore->getDebugLoc());
1658 // Pass the new block back to the caller.
1659 *PBB = BB;
1660 }
1661 };
1662
1663 handleBlock(ThenBlock, UnreachableThen, TrueBlock, ThenToTailEdge);
1664 handleBlock(ElseBlock, UnreachableElse, FalseBlock, ElseToTailEdge);
1665
1666 Instruction *HeadOldTerm = Head->getTerminator();
1667 BranchInst *HeadNewTerm =
1668 BranchInst::Create(/*ifTrue*/ TrueBlock, /*ifFalse*/ FalseBlock, Cond);
1669 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1670 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1671
1672 if (DTU) {
1673 Updates.emplace_back(DominatorTree::Insert, Head, TrueBlock);
1674 Updates.emplace_back(DominatorTree::Insert, Head, FalseBlock);
1675 if (ThenToTailEdge)
1676 Updates.emplace_back(DominatorTree::Insert, TrueBlock, Tail);
1677 if (ElseToTailEdge)
1678 Updates.emplace_back(DominatorTree::Insert, FalseBlock, Tail);
1679 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
1680 Updates.emplace_back(DominatorTree::Insert, Tail, UniqueOrigSuccessor);
1681 for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
1682 Updates.emplace_back(DominatorTree::Delete, Head, UniqueOrigSuccessor);
1683 DTU->applyUpdates(Updates);
1684 }
1685
1686 if (LI) {
1687 if (Loop *L = LI->getLoopFor(Head); L) {
1688 if (ThenToTailEdge)
1689 L->addBasicBlockToLoop(TrueBlock, *LI);
1690 if (ElseToTailEdge)
1691 L->addBasicBlockToLoop(FalseBlock, *LI);
1692 L->addBasicBlockToLoop(Tail, *LI);
1693 }
1694 }
1695}
1696
1697std::pair<Instruction *, Value *>
1699 BasicBlock::iterator SplitBefore) {
1700 BasicBlock *LoopPred = SplitBefore->getParent();
1701 BasicBlock *LoopBody = SplitBlock(SplitBefore->getParent(), SplitBefore);
1702 BasicBlock *LoopExit = SplitBlock(SplitBefore->getParent(), SplitBefore);
1703
1704 auto *Ty = End->getType();
1705 auto &DL = SplitBefore->getDataLayout();
1706 const unsigned Bitwidth = DL.getTypeSizeInBits(Ty);
1707
1708 IRBuilder<> Builder(LoopBody->getTerminator());
1709 auto *IV = Builder.CreatePHI(Ty, 2, "iv");
1710 auto *IVNext =
1711 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
1712 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
1713 auto *IVCheck = Builder.CreateICmpEQ(IVNext, End,
1714 IV->getName() + ".check");
1715 Builder.CreateCondBr(IVCheck, LoopExit, LoopBody);
1716 LoopBody->getTerminator()->eraseFromParent();
1717
1718 // Populate the IV PHI.
1719 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPred);
1720 IV->addIncoming(IVNext, LoopBody);
1721
1722 return std::make_pair(&*LoopBody->getFirstNonPHIIt(), IV);
1723}
1724
1726 ElementCount EC, Type *IndexTy, BasicBlock::iterator InsertBefore,
1727 std::function<void(IRBuilderBase &, Value *)> Func) {
1728
1729 IRBuilder<> IRB(InsertBefore->getParent(), InsertBefore);
1730
1731 if (EC.isScalable()) {
1732 Value *NumElements = IRB.CreateElementCount(IndexTy, EC);
1733
1734 auto [BodyIP, Index] =
1735 SplitBlockAndInsertSimpleForLoop(NumElements, InsertBefore);
1736
1737 IRB.SetInsertPoint(BodyIP);
1738 Func(IRB, Index);
1739 return;
1740 }
1741
1742 unsigned Num = EC.getFixedValue();
1743 for (unsigned Idx = 0; Idx < Num; ++Idx) {
1744 IRB.SetInsertPoint(InsertBefore);
1745 Func(IRB, ConstantInt::get(IndexTy, Idx));
1746 }
1747}
1748
1750 Value *EVL, BasicBlock::iterator InsertBefore,
1751 std::function<void(IRBuilderBase &, Value *)> Func) {
1752
1753 IRBuilder<> IRB(InsertBefore->getParent(), InsertBefore);
1754 Type *Ty = EVL->getType();
1755
1756 if (!isa<ConstantInt>(EVL)) {
1757 auto [BodyIP, Index] = SplitBlockAndInsertSimpleForLoop(EVL, InsertBefore);
1758 IRB.SetInsertPoint(BodyIP);
1759 Func(IRB, Index);
1760 return;
1761 }
1762
1763 unsigned Num = cast<ConstantInt>(EVL)->getZExtValue();
1764 for (unsigned Idx = 0; Idx < Num; ++Idx) {
1765 IRB.SetInsertPoint(InsertBefore);
1766 Func(IRB, ConstantInt::get(Ty, Idx));
1767 }
1768}
1769
1771 BasicBlock *&IfFalse) {
1772 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1773 BasicBlock *Pred1 = nullptr;
1774 BasicBlock *Pred2 = nullptr;
1775
1776 if (SomePHI) {
1777 if (SomePHI->getNumIncomingValues() != 2)
1778 return nullptr;
1779 Pred1 = SomePHI->getIncomingBlock(0);
1780 Pred2 = SomePHI->getIncomingBlock(1);
1781 } else {
1782 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1783 if (PI == PE) // No predecessor
1784 return nullptr;
1785 Pred1 = *PI++;
1786 if (PI == PE) // Only one predecessor
1787 return nullptr;
1788 Pred2 = *PI++;
1789 if (PI != PE) // More than two predecessors
1790 return nullptr;
1791 }
1792
1793 // We can only handle branches. Other control flow will be lowered to
1794 // branches if possible anyway.
1795 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1796 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1797 if (!Pred1Br || !Pred2Br)
1798 return nullptr;
1799
1800 // Eliminate code duplication by ensuring that Pred1Br is conditional if
1801 // either are.
1802 if (Pred2Br->isConditional()) {
1803 // If both branches are conditional, we don't have an "if statement". In
1804 // reality, we could transform this case, but since the condition will be
1805 // required anyway, we stand no chance of eliminating it, so the xform is
1806 // probably not profitable.
1807 if (Pred1Br->isConditional())
1808 return nullptr;
1809
1810 std::swap(Pred1, Pred2);
1811 std::swap(Pred1Br, Pred2Br);
1812 }
1813
1814 if (Pred1Br->isConditional()) {
1815 // The only thing we have to watch out for here is to make sure that Pred2
1816 // doesn't have incoming edges from other blocks. If it does, the condition
1817 // doesn't dominate BB.
1818 if (!Pred2->getSinglePredecessor())
1819 return nullptr;
1820
1821 // If we found a conditional branch predecessor, make sure that it branches
1822 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
1823 if (Pred1Br->getSuccessor(0) == BB &&
1824 Pred1Br->getSuccessor(1) == Pred2) {
1825 IfTrue = Pred1;
1826 IfFalse = Pred2;
1827 } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1828 Pred1Br->getSuccessor(1) == BB) {
1829 IfTrue = Pred2;
1830 IfFalse = Pred1;
1831 } else {
1832 // We know that one arm of the conditional goes to BB, so the other must
1833 // go somewhere unrelated, and this must not be an "if statement".
1834 return nullptr;
1835 }
1836
1837 return Pred1Br;
1838 }
1839
1840 // Ok, if we got here, both predecessors end with an unconditional branch to
1841 // BB. Don't panic! If both blocks only have a single (identical)
1842 // predecessor, and THAT is a conditional branch, then we're all ok!
1843 BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1844 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1845 return nullptr;
1846
1847 // Otherwise, if this is a conditional branch, then we can use it!
1848 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1849 if (!BI) return nullptr;
1850
1851 assert(BI->isConditional() && "Two successors but not conditional?");
1852 if (BI->getSuccessor(0) == Pred1) {
1853 IfTrue = Pred1;
1854 IfFalse = Pred2;
1855 } else {
1856 IfTrue = Pred2;
1857 IfFalse = Pred1;
1858 }
1859 return BI;
1860}
1861
1863 Value *NewCond = PBI->getCondition();
1864 // If this is a "cmp" instruction, only used for branching (and nowhere
1865 // else), then we can simply invert the predicate.
1866 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
1867 CmpInst *CI = cast<CmpInst>(NewCond);
1869 } else
1870 NewCond = Builder.CreateNot(NewCond, NewCond->getName() + ".not");
1871
1872 PBI->setCondition(NewCond);
1873 PBI->swapSuccessors();
1874}
1875
1877 for (auto &BB : F) {
1878 auto *Term = BB.getTerminator();
1879 if (!(isa<ReturnInst>(Term) || isa<UnreachableInst>(Term) ||
1880 isa<BranchInst>(Term)))
1881 return false;
1882 }
1883 return true;
1884}
1885
1887 return Printable([BB](raw_ostream &OS) {
1888 if (!BB) {
1889 OS << "<nullptr>";
1890 return;
1891 }
1892 BB->printAsOperand(OS);
1893 });
1894}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Rewrite undef for PHI
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static BasicBlock * SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef< BasicBlock * > Preds, const char *Suffix, DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB)
Remove redundant instructions within sequences of consecutive dbg.value instructions.
static BasicBlock * SplitBlockImpl(BasicBlock *Old, BasicBlock::iterator SplitPt, DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, const Twine &BBName, bool Before)
static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, ArrayRef< BasicBlock * > Preds, BranchInst *BI, bool HasLoopExit)
Update the PHI nodes in OrigBB to include the values coming from NewBB.
static bool removeUndefDbgAssignsFromEntryBlock(BasicBlock *BB)
Remove redundant undef dbg.assign intrinsic from an entry block using a forward scan.
static bool updateCycleLoopInfo(TI *LCI, BasicBlock *CallBrBlock, BasicBlock *CallBrTarget, BasicBlock *Succ)
Helper function to update the cycle or loop information after inserting a new block between a callbr ...
static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, ArrayRef< BasicBlock * > Preds, DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA, bool &HasLoopExit)
Update DominatorTree, LoopInfo, and LCCSA analysis information.
static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB)
Remove redundant dbg.value instructions using a forward scan.
static void SplitLandingPadPredecessorsImpl(BasicBlock *OrigBB, ArrayRef< BasicBlock * > Preds, const char *Suffix1, const char *Suffix2, SmallVectorImpl< BasicBlock * > &NewBBs, DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
static cl::opt< unsigned > MaxDeoptOrUnreachableSuccessorCheckDepth("max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden, cl::desc("Set the maximum path length when checking whether a basic block " "is followed by a block that either has a terminating " "deoptimizing call or is terminated with an unreachable"))
static void emptyAndDetachBlock(BasicBlock *BB, SmallVectorImpl< DominatorTree::UpdateType > *Updates, bool KeepOneInputPHIs)
Zap all the instructions in the block and replace them with an unreachable instruction and notify the...
This file contains the declarations for the subclasses of Constant, which represent the different fla...
SmallPtrSet< const BasicBlock *, 8 > VisitedBlocks
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
static LVOptions Options
Definition LVOptions.cpp:25
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
#define T
uint64_t IntrinsicInst * II
#define P(N)
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static const uint32_t IV[8]
Definition blake3_impl.h:83
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator end()
Definition BasicBlock.h:472
iterator begin()
Instruction iterator methods.
Definition BasicBlock.h:459
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition BasicBlock.h:528
LLVM_ABI const LandingPadInst * getLandingPadInst() const
Return the landingpad instruction associated with the landing pad.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
bool empty() const
Definition BasicBlock.h:481
const Instruction & back() const
Definition BasicBlock.h:484
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches,...
Definition BasicBlock.h:690
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition BasicBlock.h:206
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI InstListType::const_iterator getFirstNonPHIOrDbg(bool SkipPseudoOp=true) const
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic,...
LLVM_ABI BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="", bool Before=false)
Split the basic block into two basic blocks at the specified instruction.
LLVM_ABI const BasicBlock * getUniqueSuccessor() const
Return the successor of this block if it has a unique successor.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction & front() const
Definition BasicBlock.h:482
LLVM_ABI const CallInst * getTerminatingDeoptimizeCall() const
Returns the call instruction calling @llvm.experimental.deoptimize prior to the terminating return in...
LLVM_ABI void replacePhiUsesWith(BasicBlock *Old, BasicBlock *New)
Update all phi nodes in this basic block to refer to basic block New instead of basic block Old.
LLVM_ABI const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
size_t size() const
Definition BasicBlock.h:480
LLVM_ABI bool isLandingPad() const
Return true if this basic block is a landing pad.
LLVM_ABI bool canSplitPredecessors() const
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
void splice(BasicBlock::iterator ToIt, BasicBlock *FromBB)
Transfer all instructions from FromBB to this basic block at ToIt.
Definition BasicBlock.h:662
LLVM_ABI void removePredecessor(BasicBlock *Pred, bool KeepOneInputPHIs=false)
Update PHI nodes in this BasicBlock before removal of predecessor Pred.
This class represents a no-op cast from one type to another.
Conditional or Unconditional Branch instruction.
void setCondition(Value *V)
LLVM_ABI void swapSuccessors()
Swap the successors of this branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
Value * getCondition() const
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
void setSuccessor(unsigned i, BasicBlock *NewSucc)
BasicBlock * getSuccessor(unsigned i) const
static CleanupPadInst * Create(Value *ParentPad, ArrayRef< Value * > Args={}, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static CleanupReturnInst * Create(Value *CleanupPad, BasicBlock *UnwindBB=nullptr, InsertPosition InsertBefore=nullptr)
This class is the base class for the comparison instructions.
Definition InstrTypes.h:664
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
Definition InstrTypes.h:768
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:789
Represents calls to the llvm.experimintal.convergence.* intrinsics.
DWARF expression.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
Identifies a unique instance of a whole variable (discards/ignores fragment information).
Identifies a unique instance of a variable.
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition DenseMap.h:256
Implements a dense probed hash-table based set.
Definition DenseSet.h:279
iterator_range< iterator > children()
NodeT * getBlock() const
LLVM_ABI void deleteBB(BasicBlock *DelBB)
Delete DelBB.
DomTreeNodeBase< NodeT > * getRootNode()
getRootNode - This returns the entry node for the CFG of the function.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
void splitBlock(NodeT *NewBB)
splitBlock - BB is split and now it has one successor.
DomTreeNodeBase< NodeT > * setNewRoot(NodeT *BB)
Add a new node to the forward dominator tree and make it a new root.
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:164
LLVM_ABI bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction extracts a struct member or array element value from an aggregate value.
DomTreeT & getDomTree()
Flush DomTree updates and return DomTree.
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
void flush()
Apply all pending updates to available trees and flush all BasicBlocks awaiting deletion.
bool hasDomTree() const
Returns true if it holds a DomTreeT.
void recalculate(FuncT &F)
Notify DTU that the entry block was replaced.
Module * getParent()
Get the module that this global value is contained inside of...
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition IRBuilder.h:207
LLVM_ABI Value * CreateElementCount(Type *Ty, ElementCount EC)
Create an expression which evaluates to the number of elements in EC at runtime.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2788
LLVM_ABI Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
LLVM_ABI unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
LLVM_ABI void insertBefore(InstListType::iterator InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified position.
bool isEHPad() const
Return true if the instruction is a variety of EH-block.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
LLVM_ABI bool mayHaveSideEffects() const LLVM_READONLY
Return true if the instruction may have side effects.
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
LLVM_ABI void moveBeforePreserving(InstListType::iterator MovePos)
Perform a moveBefore operation, while signalling that the caller intends to preserve the original ord...
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
bool isSpecialTerminator() const
LLVM_ABI InstListType::iterator insertInto(BasicBlock *ParentBB, InstListType::iterator It)
Inserts an unlinked instruction into ParentBB at position It and returns the iterator of the inserted...
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
The landingpad instruction holds all of the information necessary to generate correct exception handl...
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
unsigned getLoopDepth() const
Return the nesting level of this loop.
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
bool isLoopHeader(const BlockT *BB) const
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
Metadata node.
Definition Metadata.h:1078
Provides a lazy, caching interface for making common memory aliasing information queries,...
void invalidateCachedPredecessors()
Clears the PredIteratorCache info.
void removeInstruction(Instruction *InstToRemove)
Removes an instruction from the dependence analysis, updating the dependence of instructions that pre...
MemorySSA * getMemorySSA() const
Get handle on MemorySSA.
LLVM_ABI void moveAllAfterSpliceBlocks(BasicBlock *From, BasicBlock *To, Instruction *Start)
From block was spliced into From and To.
LLVM_ABI void applyUpdates(ArrayRef< CFGUpdate > Updates, DominatorTree &DT, bool UpdateDTFirst=false)
Apply CFG updates, analogous with the DT edge updates.
LLVM_ABI void moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To, Instruction *Start)
From block was merged into To.
LLVM_ABI void moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, MemorySSA::InsertionPlace Where)
LLVM_ABI void wireOldPredecessorsToNewImmediatePredecessor(BasicBlock *Old, BasicBlock *New, ArrayRef< BasicBlock * > Preds, bool IdenticalEdgesWereMerged=true)
A new empty BasicBlock (New) now branches directly to Old.
LLVM_ABI void verifyMemorySSA(VerificationLevel=VerificationLevel::Fast) const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
MemoryUseOrDef * getMemoryAccess(const Instruction *I) const
Given a memory Mod/Ref'ing instruction, get the MemorySSA access associated with it.
Definition MemorySSA.h:720
Class that has the common methods + fields of memory uses/defs.
Definition MemorySSA.h:250
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
LLVM_ABI void removeIncomingValueIf(function_ref< bool(unsigned)> Predicate, bool DeletePHIIfEmpty=true)
Remove all incoming values for which the predicate returns true.
LLVM_ABI Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
Remove an incoming value.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Simple wrapper around std::function<void(raw_ostream&)>.
Definition Printable.h:38
Return a value (possibly void), from a function.
Implements a dense probed hash-table based set with some number of buckets stored inline.
Definition DenseSet.h:291
size_type size() const
Definition SmallPtrSet.h:99
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
void insert_range(Range &&R)
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
iterator begin() const
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
LLVM_ABI std::string str() const
Return the twine contents as a std::string.
Definition Twine.cpp:17
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isTokenTy() const
Return true if this is 'token'.
Definition Type.h:234
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
op_range operands()
Definition User.h:292
void setOperand(unsigned i, Value *Val)
Definition User.h:237
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:390
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:546
LLVM_ABI void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
bool use_empty() const
Definition Value.h:346
bool hasName() const
Definition Value.h:262
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition Value.cpp:396
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:175
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI AssignmentInstRange getAssignmentInsts(DIAssignID *ID)
Return a range of instructions (typically just one) that have ID as an attachment.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
iterator_range< df_ext_iterator< T, SetTy > > depth_first_ext(const T &G, SetTy &S)
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
bool succ_empty(const Instruction *I)
Definition CFG.h:257
LLVM_ABI bool IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB)
Check if we can prove that all paths starting from this block converge to a block that either has a @...
LLVM_ABI BranchInst * GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, BasicBlock *&IfFalse)
Check whether BB is the merge point of a if-region.
LLVM_ABI unsigned GetSuccessorNumber(const BasicBlock *BB, const BasicBlock *Succ)
Search for the specified successor of basic block BB and return its position in the terminator instru...
Definition CFG.cpp:80
auto pred_end(const MachineBasicBlock *BB)
LLVM_ABI void detachDeadBlocks(ArrayRef< BasicBlock * > BBs, SmallVectorImpl< DominatorTree::UpdateType > *Updates, bool KeepOneInputPHIs=false)
Replace contents of every block in BBs with single unreachable instruction.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool hasOnlySimpleTerminator(const Function &F)
auto successors(const MachineBasicBlock *BB)
LLVM_ABI ReturnInst * FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, BasicBlock *Pred, DomTreeUpdater *DTU=nullptr)
This method duplicates the specified return instruction into a predecessor which ends in an unconditi...
constexpr from_range_t from_range
LLVM_ABI std::pair< Instruction *, Value * > SplitBlockAndInsertSimpleForLoop(Value *End, BasicBlock::iterator SplitBefore)
Insert a for (int i = 0; i < End; i++) loop structure (with the exception that End is assumed > 0,...
LLVM_ABI BasicBlock * splitBlockBefore(BasicBlock *Old, BasicBlock::iterator SplitPt, DomTreeUpdater *DTU, LoopInfo *LI, MemorySSAUpdater *MSSAU, const Twine &BBName="")
Split the specified block at the specified instruction SplitPt.
LLVM_ABI Instruction * SplitBlockAndInsertIfElse(Value *Cond, BasicBlock::iterator SplitBefore, bool Unreachable, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, BasicBlock *ElseBlock=nullptr)
Similar to SplitBlockAndInsertIfThen, but the inserted block is on the false path of the branch.
LLVM_ABI BasicBlock * SplitCallBrEdge(BasicBlock *CallBrBlock, BasicBlock *Succ, unsigned SuccIdx, DomTreeUpdater *DTU=nullptr, CycleInfo *CI=nullptr, LoopInfo *LI=nullptr, bool *UpdatedLI=nullptr)
Create a new intermediate target block for a callbr edge.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
auto cast_or_null(const Y &Val)
Definition Casting.h:714
auto pred_size(const MachineBasicBlock *BB)
LLVM_ABI void DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, bool KeepOneInputPHIs=false)
Delete the specified block, which must have no predecessors.
LLVM_ABI void ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V)
Replace all uses of an instruction (specified by BI) with a value, then remove and delete the origina...
LLVM_ABI BasicBlock * SplitKnownCriticalEdge(Instruction *TI, unsigned SuccNum, const CriticalEdgeSplittingOptions &Options=CriticalEdgeSplittingOptions(), const Twine &BBName="")
If it is known that an edge is critical, SplitKnownCriticalEdge can be called directly,...
DomTreeNodeBase< BasicBlock > DomTreeNode
Definition Dominators.h:94
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
LLVM_ABI bool DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Examine each PHI in the given block and delete it if it is dead.
LLVM_ABI bool HasLoopOrEntryConvergenceToken(const BasicBlock *BB)
Check if the given basic block contains any loop or entry convergent intrinsic instructions.
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
LLVM_ABI void InvertBranch(BranchInst *PBI, IRBuilderBase &Builder)
LLVM_ABI bool EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU=nullptr, bool KeepOneInputPHIs=false)
Delete all basic blocks from F that are not reachable from its entry node.
LLVM_ABI bool MergeBlockSuccessorsIntoGivenBlocks(SmallPtrSetImpl< BasicBlock * > &MergeBlocks, Loop *L=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr)
Merge block(s) sucessors, if possible.
LLVM_ABI void SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore, Instruction **ThenTerm, Instruction **ElseTerm, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr)
SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen, but also creates the ElseBlock...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI BasicBlock * ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, LandingPadInst *OriginalPad=nullptr, PHINode *LandingPadReplacement=nullptr, const CriticalEdgeSplittingOptions &Options=CriticalEdgeSplittingOptions(), const Twine &BBName="")
Split the edge connect the specficed blocks in the case that Succ is an Exception Handling Block.
auto succ_size(const MachineBasicBlock *BB)
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI void SplitLandingPadPredecessors(BasicBlock *OrigBB, ArrayRef< BasicBlock * > Preds, const char *Suffix, const char *Suffix2, SmallVectorImpl< BasicBlock * > &NewBBs, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method transforms the landing pad, OrigBB, by introducing two new basic blocks into the function...
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI BasicBlock * SplitBlockPredecessors(BasicBlock *BB, ArrayRef< BasicBlock * > Preds, const char *Suffix, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method introduces at least one new basic block into the function and moves some of the predecess...
LLVM_ABI bool VerifyMemorySSA
Enables verification of MemorySSA.
Definition MemorySSA.cpp:84
LLVM_ABI void createPHIsForSplitLoopExit(ArrayRef< BasicBlock * > Preds, BasicBlock *SplitBB, BasicBlock *DestBB)
When a loop exit edge is split, LCSSA form may require new PHIs in the new exit block.
LLVM_ABI bool MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, MemoryDependenceResults *MemDep=nullptr, bool PredecessorWithTwoSuccessors=false, DominatorTree *DT=nullptr)
Attempts to merge a block into its predecessor, if possible.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
DWARFExpression::Operation Op
PredIterator< BasicBlock, Value::user_iterator > pred_iterator
Definition CFG.h:105
LLVM_ABI BasicBlock * SplitCriticalEdge(Instruction *TI, unsigned SuccNum, const CriticalEdgeSplittingOptions &Options=CriticalEdgeSplittingOptions(), const Twine &BBName="")
If this edge is a critical edge, insert a new node to split the critical edge.
LLVM_ABI bool FoldSingleEntryPHINodes(BasicBlock *BB, MemoryDependenceResults *MemDep=nullptr)
We know that BB has one predecessor.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI bool isCriticalEdge(const Instruction *TI, unsigned SuccNum, bool AllowIdenticalEdges=false)
Return true if the specified edge is a critical edge.
Definition CFG.cpp:96
LLVM_ABI unsigned SplitAllCriticalEdges(Function &F, const CriticalEdgeSplittingOptions &Options=CriticalEdgeSplittingOptions())
Loop over all of the edges in the CFG, breaking critical edges as they are found.
LLVM_ABI void updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, BasicBlock *NewPred, PHINode *Until=nullptr)
Replaces all uses of OldPred with the NewPred block in all PHINodes in a block.
LLVM_ABI Printable printBasicBlock(const BasicBlock *BB)
Print BasicBlock BB as an operand or print "<nullptr>" if BB is a nullptr.
auto pred_begin(const MachineBasicBlock *BB)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
Definition iterator.h:363
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1909
LLVM_ABI bool RecursivelyDeleteDeadPHINode(PHINode *PN, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
If the specified value is an effectively dead PHI node, due to being a def-use chain of single-use no...
Definition Local.cpp:641
LLVM_ABI Instruction * SplitBlockAndInsertIfThen(Value *Cond, BasicBlock::iterator SplitBefore, bool Unreachable, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, BasicBlock *ThenBlock=nullptr)
Split the containing block at the specified instruction - everything before SplitBefore stays in the ...
LLVM_ABI void DeleteDeadBlocks(ArrayRef< BasicBlock * > BBs, DomTreeUpdater *DTU=nullptr, bool KeepOneInputPHIs=false)
Delete the specified blocks from BB.
LLVM_ABI BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="")
Split the edge connecting the specified blocks, and return the newly created basic block between From...
LLVM_ABI void setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ)
Sets the unwind edge of an instruction to a particular successor.
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI void SplitBlockAndInsertForEachLane(ElementCount EC, Type *IndexTy, BasicBlock::iterator InsertBefore, std::function< void(IRBuilderBase &, Value *)> Func)
Utility function for performing a given action on each lane of a vector with EC elements.
GenericCycleInfo< SSAContext > CycleInfo
Definition CycleInfo.h:23
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:869
Option class for critical edge splitting.
CriticalEdgeSplittingOptions & setPreserveLCSSA()